The Dynamics of Small Instanton Phase Transitions

The Dynamics of Small Instanton Phase Transitions
The Dynamics of Small Instanton Phase Transitions

a r

X

i

v

:h e

p

-

t

h

/05

8

1

9

v

2

1

4

D e

c

2

5

UPR1130-T The Dynamics of Small Instanton Phase Transitions Alexander Borisov 1,Evgeny I.Buchbinder 2,Burt A.Ovrut 1?1Department of Physics and Astronomy,University of Pennsylvania,Philadelphia,PA 191042School of Natural Sciences,Institute for Advanced Study Einstein Drive,Princeton,NJ 08540Abstract The small instanton transition of a ?ve-brane colliding with one end of the S 1/Z 2interval in heterotic M -theory is discussed,with emphasis on the transition moduli,their potential function and the associated non-perturbative https://www.360docs.net/doc/9212513783.html,ing numerical meth-ods,the equations of motion of these moduli coupled to an expand-ing Friedmann-Robertson-Walker spacetime are solved including non-

perturbative interactions.It is shown that the ?ve-brane collides with the end of the interval at a small instanton.However,the moduli then continue to evolve to an isolated minimum of the potential,where they are trapped by gravitational damping.The torsion free sheaf at the small instanton is “smoothed out”into a vector bundle at the isolated minimum,thus dynamically completing the small instanton phase transition.Radiative damping at the origin of moduli space is discussed and shown to be insu?cient to trap the moduli at the small instanton point.

1Introduction:

In[1],Witten studied SO(32)heterotic string theory on R6×K3with an SO(N),4≤N≤32gauge instanton supported on K3with instanton number24.The e?ective R6theory manifests N=2supersymmetry and has gauge symmetry SO(32?N).The boundary of instanton moduli space contains singular points,at each of which one unit of instanton number is concentrated.These are called“small”instantons and the local moduli space M′was shown to be4N?12dimensional.It was demonstrated in[1]that M′can be described as the?at directions of a potential energy function.This is constructed from N hypermultiplets,each transforming as a fundamental N representation of SO(N)and as a doublet under an additional SU(2)gauge symmetry.At the origin of?eld space,all of these?elds become massless and the SU(2)symmetry becomes exact.Away from this point,however,the SU(2)symmetry is spontaneously broken and only the4N?12moduli of M′remain massless.One concludes that as one approaches a small instanton point in moduli space,the theory develops extra(massless)species and an enhanced symmetry.Such points are often referred to as being ESP.

Small instantons also occur in M-theory on R4×X×S1/Z2,where X is a Calabi-Yau threefold[2,3].As?rst discussed in[2],to be consistent these vacua must have,supported on the Calabi-Yau manifold at each end of the S1/Z2interval,a gauge instanton indexed by a subgroup of E8.One can,for simplicity,assume a trivial instanton at one end of the interval.The non-trivial instanton on the other end is a connection on a holomorphic vec-tor bundle V over X with structure group G?E8.Quantum consistency requires that the instanton number,here generalized to the2nd Chern class c2(V),must satisfy the constraint c2(V)=c2(T X)?W,where T X is the tangent bundle of the Calabi-Yau threefold and W is an e?ective class corre-sponding to M-?ve-branes in the S1/Z2“bulk”space.The e?ective R4theory manifests N=1supersymmetry.Its gauge symmetry depends on the choice of structure group G.In a series of publications[4,5],holomorphic vector bundles with G=SU(N)were constructed.We will refer to these when speci?city is required.For example,when G=SU(3),SU(4)and SU(5), the e?ective R4gauge symmetry is E6,Spin(10)and SU(5)respectively.

The boundary of instanton moduli space contains singular points where a portion of the vector bundle becomes concentrated as a torsion free sheaf over an isolated holomorphic curve with e?ective class C′.These are the heterotic M-theory analogs of small instantons.Here,however,the local

1

moduli spaces M′are more complicated,changing with the structure of the Calabi-Yau threefold,the holomorphic vector bundle and the choice of C′. The moduli spaces of small instantons on elliptic Calabi-Yau threefolds over Hirzebruch bases B=F r with vector bundles constructed from spectral cov-ers were analyzed in several publications[6].For example,consider B=F1, G=SU(3)and C′=S,with S a section of F1.Then,it was shown that dim M′=3(b?a)?6,where a,b are integers satisfying the constraints a>6 and b>a+3.It is expected that any M′can again be described as the?at directions of a potential energy function.This would be constructed from chiral supermultiplets transforming in some representation R of G and,pos-sibly,as a representation r of an additional gauge symmetry H.At the origin of?eld space,all of these?elds become massless and the H symmetry be-comes exact.Away from this point,the H symmetry is spontaneously broken and only the moduli of M′remain massless.Therefore,as one approaches a small instanton in moduli space,the theory develops extra(massless)species and,possibly,an enhanced symmetry.That is,small instantons in heterotic M-theory are ESP.Unfortunately,such potential functions have not been explicitly constructed for most moduli spaces.Limited simple examples in-dicate that such potentials exist,but a general proof is still lacking.Be that as it may,in this paper we will assume that small instanton moduli spaces M′in heterotic M-theory can be so described.

In heterotic M-theory,strings wrapping a holomorphic curve in the Calabi-Yau threefold will generate a non-perturbative superpotential for both geo-metric and vector bundle moduli[7,8].As?rst discussed in[9],the su-perpotential created by a such a“worldsheet instanton”has a speci?c form; namely,an exponential of geometric and curve moduli multiplied by a“Pfaf-?an”.The Pfa?an is a function of the determinant of the Dirac operator twisted by the vector bundle restricted to the curve.It is generically true[10] that the Pfa?an evaluated at any holomorphic curve is a homogeneous poly-nomial of the moduli of the restricted bundle.This has important implica-tions for small instantons.It was shown in[10,11]that the moduli of the vector bundle restricted to the small instanton curve C′are precisely those which parameterize M′.Hence,strings wrapped on C′generate a superpo-tential on M′which“lifts”some,or all,of the?at directions.Furthermore, new local minima may now occur substantially away from the ESP at the zero of?eld space.Within the context of B=F r,G=SU(3)and C′=S, Pfa?ans were explicitly computed in[10,11].For example,for r=1,a>5 and b=a+6,dim M′=3(6)?6=12and the Pfa?an was shown to be an

2

explicit homogeneous polynomial of degree5in7of the12moduli of M′.

At a small instanton in heterotic M-theory,the vector bundle V degen-

erates into the“union”of a new holomorphic vector bundle V′over X and a sheaf over the curve C′.Because of the existence of the S1/Z2interval,the sheaf can“detach”from X,leaving only V′behind,and become a component

of a new M-?ve-brane curve in the bulk space.That is,C′?W′.The physi-cal interpretation of this is that the small instanton“emits”a?ve-brane into

the bulk space.Of course,this can occur in reverse,a component C′?W′of a bulk space?ve-brane being“absorbed”into V′via a small instanton to become V.Such a process,either absorbing or emitting a bulk?ve-brane,is

called a small instanton phase transition and was de?ned and studied in[12]. It was shown that there are two types of small instanton transitions,the

?rst in which the structure group of the vector bundle is unchanged while the number of chiral zero modes is altered and a second where the reverse is true,the structure group changes while the number of chiral zero modes

remains?xed.For an elliptically?bered Calabi-Yau threefold X,the?rst type of transition occurs when C′is the pull-back of a curve in the base B. This is analogous to the heterotic SO(32)case.The second type of transition

takes place when C′is proportional to the elliptic?ber F.In this paper,we will consider only those small instanton transition for which the structure

group is unchanged.

An important aspect of any small instanton transition is that the M-?ve-brane wrapped on C′in the bulk space itself has moduli.The most

conspicuous of these is the translation modulus,the real part of which de-scribes the separation of the?ve-brane from the end of the S1/Z2interval and whose imaginary part is an axion.For a Calabi-Yau threefold X elliptically

?bered over any base B,the complete moduli space M C′of an M-?ve-brane wrapped on C′,both its dimension and geometry,was computed in[13].This

space depends strongly on the curve C′and typically contains many moduli in addition to the translation https://www.360docs.net/doc/9212513783.html,bining this with the discussion above,we see that in heterotic M-theory the full moduli space of a small instanton phase transition is M′∪M C′,where M′is the instanton phase and M C′the?ve-brane phase.Generalizing the above discussion,we assume that the complete phase transition can be described by a potential energy function constructed from chiral supermultiplets in some representation R of G and,possibly,in a representation r of an additional gauge symmetry H.The origin of?eld space is an ESP.Away from this point,however,the H symmetry is spontaneously broken and only the moduli parameterizing

3

M′∪M C′remain massless.

The existence of small instanton phase transitions,from the point of view of holomorphic vector bundles and topology,was demonstrated in[12].In the present paper,by studying the motion of heterotic M-theory vacua in moduli space coupled to an expanding Friedmann-Robinson-Walker(FRW) spacetime,we will show that these phase transition can also take place dy-namically.Speci?cally,we will show that an M-?ve-brane in the bulk can dynamically evolve through the ESP,the point in moduli space where the ?ve-brane collides with the end of the S1/Z2interval,continuing until the vacuum comes to rest at a local minimum of the non-perturbative superpo-tential.At this point,which is substantially distant from the ESP,the sheaf over C′has combined with V′to form a smooth vector bundle V,completing the small instanton phase transition.The dynamical system is trapped at this local minimum by the Hubble friction of the FRW space.We ignore the e?ect of moduli trapping due to radiation into massless?elds at the ESP[15], but will argue that this is insu?cient to alter our results.Our results are con-sistent with those found,in di?erent contexts,in[14,15,16,17,18].These papers ignore any non-perturbative potentials that might arise and discuss ?at moduli space.They?nd that the moduli are trapped,both by Hubble friction and quantum radiation,exactly at the ESP,which,they go on to argue,gives it a special physical meaning.We note that were we to turn o?the non-perturbative superpotential in heterotic M-theory,one would arrive at precisely the same conclusion.However,turning on this potential com-pletely alters this result and allows the completion of the small instanton phase transition.

Throughout this paper,for notational and computational simplicity,we will take all?elds to be dimensionless and choose units in which M P=1.

4

2Moduli Trapping without a Non-Perturbative Superpotential:

In this section,we consider the dynamics of small instanton transitions ignor-ing the non-perturbative superpotential generated by worldsheet instantons.

In this case,the moduli space M′∪M C′is the?at locus of the poten-tial.As discussed above,the dimension and geometry of this moduli space

is completely understood,at least for a wide range of base spaces B and small instanton curves C′.However,M′and M C′are both,generically, multi-dimensional.For example,the small instanton discussed in the in-troduction had M′parameterized by12complex?elds.Unfortunately,a detailed calculation of dynamics in a multi-dimensional moduli space is not only unenlightening in its complexity,but is far beyond our computational power.For this reason,we will restrict our discussion to a simpli?ed moduli space,one in which both M′and M C′are taken to be one-dimensional.We denote the complex modulus of M′,the instanton phase,byψ.Physically, this modulus describes the“smoothing out”of the small instanton sheaf into the smooth vector bundle V.The complex modulus of M C′,the?ve-brane phase,is written asφand represents the translation modulus of the?ve-brane.We want to emphasize that the literature describing transitions in

di?erent contexts[14,15,16,17,18]all employ very similar simpli?cations. Without Gravitation

We begin by considering the dynamics of the moduliφandψin static?at spacetime;that is,we turn o?their interaction with gravity.The simplest

N=1supersymmetric self-interactions that have precisely a one-dimension instanton phase and a one-dimension?ve-brane phase are described by the superpotential

W=λφ2ψ2.(1) Recall that bothφandψare taken to be dimensionless and,hence,λhas mass dimensions3in Planck units.Furthermore,we choose the Planck mass

M P to be unity.The potential function describing the small instanton phase transition is then given by

V=|?φW|2+|?ψW|2=4λ2|φ|2|ψ|2(|φ|2+|ψ|2).(2)

5

The instanton phase is the one-dimensional complex submanifold de?ned by φ=0,whereas the?ve-brane phase is the one-dimensional space given by ψ=0.The dynamical calculation is carried out in the four-dimensional real space parameterized by Reφ,Imφ,Reψand Imψ.Without loss of generality, one can takeλ=1.Other values ofλlead to the same conclusions.In this paper,we will assume that the Calabi-Yau radius and the interval length are chosen,in units where M P=1,to be in the phenomenologically acceptable range

R CY~(10?3)?1,πρ~(10?4)?1.(3) This implies that in order to achieve the correct phenomenological values for the Newton and gauge coupling parameters,the dimensionless volume and interval moduli should be stabilized at(or be slowly rolling near)the values of order one.In this paper,we will assume that this is the case.This limits φto be less than or of the order of unity.For reasons to become clear in the next subsection,we will choose bothφandψmoduli to have values much smaller than one.

Let us compute the dynamics with the following initial conditions.Take the initial moduli to be

φ0=(7.4×10?2)+i(?4×10?3),ψ0=(0)+i(3×10?3)(4)

and their initial velocities as

˙φ

=(?3.9×10?7)+i(?5.7×10?7),˙ψ0=(7.9×10?6)+i(?6.2×10?6).(5) 0

These values represent the following physical situation.First,there is a?ve-brane in the bulk space substantially separated from the end of the S1/Z2 interval with a much smaller displacement in the axionic direction.A similar very small displacement occurs in the vector bundle modulus.The?ve-brane has a small negative velocity in the Reφdirection which will cause it to collide with the end of the interval and a similar velocity in the axion direction. Substantially larger velocities are given to both Reψand Imψwhich enable a possible transition from the?ve-brane branch to the instanton branch.The equations of motion are solved numerically on MATHEMATICA,with the results for Reφand Imψpresented in Figures1and2.Curve(A)in Figure 1shows that the?ve-brane collides with the end of the interval but then continues to oscillate around that point.Similarly,curve(B)shows that the collision initiates a transition in the vector bundle modulus direction

6

200000

400000600000800000

-0.1-0.075

-0.05

-0.025

0.0250.05

0.075

0.1

t

A B

Reφ,ImψFigure 1:No gravitation and no non-perturbative superpotential:curves (A)and (B)represent the dynamics of Reφand Imψrespectively.

which,however,quickly terminates.The resulting motion is an oscillation around the small instanton in the vector bundle direction as well.Figure 2shows the overall motion in moduli space near the small instanton at the origin of ?eld space.Note that although the amplitude of any individual real modulus increases and decreases quasi-periodically,the overall amplitude remains constant in time,as is clearly indicated in Figure 2.The dynamics of the remaining two real moduli,Imφand Reψ,is similar,so we will not display them.

These results are easy to explain.First of all,in both the ?ve-brane and instanton branches,the potential energy function has walls which be-come progressively steeper as one moves away from the origin of ?eld space.Hence,the moving moduli see a “concave”potential that always re?ects them back toward the origin.This accounts for the oscillation around the small instanton at the origin of ?eld space.Secondly,the lack of any damp-ing,be it Hubble friction or any other mechanism,means that the overall oscillation amplitude persists.The ?nal conclusion is that the phase tran-sition is never completed.Instead the system oscillates endlessly around the small instanton.Note that these results are consistent with those found in [14,15,16,17,18]when analyzing undamped motion in di?erent contexts.

7

-0.1-0.075-0.05-0.025

0.0250.050.0750.1-0.1-0.075

-0.05

-0.025

0.0250.05

0.075

0.1

Reφ

Imψ

Figure 2:No gravitation and no non-perturbative superpotential:the combined motion of Reφand Imψnear the origin of moduli space.

With Gravitation

Let us now consider the moduli φand ψinteracting with gravity.In this case,the dynamics is described by N =1chiral multiplets coupled to supergravity and one must specify both a superpotential W and a Kahler potential K .The superpotential remains the same,namely

W =λφ2ψ2.(6)

In general,the Kahler potential of moduli in heterotic M -theory is unknown.However,near the origin of ?eld space,that is,when the magnitudes of the moduli are much smaller than unity,this can be taken to be “?at”.Therefore,as long as we restrict φand ψdescribing our small instanton phase transition to be small,the Kahler potential is given by

K =|φ|2+|ψ|2.

(7)

8

This is one reason why we chose the initial conditions for φand ψin the pre-vious subsection to be much less than one.The potential function describing the small instanton phase transition is now

V =e K (|D φ|2+|D ψ|2?3|W |2),(8)

where W and K are given in (6)and (7)respectively and D is the Kahler covariant derivative.This is a rather complicated function of the moduli.However,for φand ψmuch smaller than unity,one need only consider the lowest order interactions.All terms that are higher order in M ?1P can safely be ignored.The result is that one can analyze the dynamics with the same potential as in the non-gravitational case,that is,

V =4λ2|φ|2|ψ|2(|φ|2+|ψ|2).(9)

As previously,we will choose λ=1and only consider the region of moduli space where φand ψare much smaller than one.Additionally,one must give an ansatz for the spacetime geometry.We will assume a metric of the form

ds 2=?dt 2+a (t )2 dx 2(10)

corresponding to a spatially ?at manifold of the FRW type.Furthermore,we

200000400000600000800000

1.5

2

2.5

3

3.5

t a (t )

Figure 3:Graph of the FRW expansion parameter a (t ).

will only consider metrics that are monotonically expanding.There are,in total,?ve equations of motion that must be solved simultaneously.To begin

9

with,there is a single Einstein equation for the scale parameter a .Addition-ally,there are the four equations of motion for the real and imaginary parts of the moduli φand ψ.Despite the fact that the potential in (9)is inde-pendent of gravitationally induced interactions,non-trivial gravity e?ects do enter each equation as a Hubble damping term.

Let us compute the dynamics with the following initial conditions.Take the initial value of the scale parameter to be

a 0=1.(11)

It is unnecessary to ?x an initial radial velocity.We will continue to choose the initial conditions for the φand ψmoduli and their velocities to be those given in (4)and (5)respectively.These values represent exactly the same physical situation as in the previous subsection.Here,however,the moduli evolve with respect to an expanding FRW background spacetime.The equa-tions of motion are solved numerically on MATHEMATICA.The result for the scale parameter a is shown in Figure 3,while those for Reφand Imψare presented in Figures 4and 5.Figure 3shows that a increases monotonically from its initial value,indicating an expanding FRW universe.

200000

400000600000800000

-0.1-0.075

-0.05

-0.025

0.025

0.05

0.075

0.1

Reφ,Imψ

t

A B Figure 4:FRW spacetime but no non-perturbative superpotential:curves (A)and (B)represent the dynamics of Reφand Imψrespectively.

From curve (A)in Figure 4,one sees that the ?ve-brane collides with the end of the interval and then continues to oscillate around that point.How-ever,the average amplitude and frequency of the oscillation are now strongly damped in time,with Reφconverging toward zero.Similarly,curve (B)in

10

Figure 4shows that the collision initiates a transition into the vector bundle modulus direction which then terminates,reverses and begins to oscillates around Imψ=0.Once again,the average amplitude and frequency of the oscillation in the vector bundle modulus direction are damped in time and Imψconverges to zero.Figure 5shows the overall motion in moduli space -0.1-0.075-0.05-0.025

0.0250.050.0750.1

-0.1

-0.075

-0.05

-0.0250.025

0.05

0.075

0.1Imψ

Reφ

Figure 5:Gravitation but no non-perturbative superpotential:the combined motion of Reφand Imψnear the origin of moduli space.

near the small instanton at the origin of ?eld space.Note that the overall amplitude decreases in time.The dynamics of the remaining real moduli,Imφand Reψ,is similar,so we do not display them.

The physical explanation of these results is identical to that given in the previous subsection,with one important exception.The expansion of the universe produces “friction”in the motion of the moduli.This causes their oscillation around the origin of ?eld space to have ever diminishing amplitude and frequency.The physical conclusion is that after collision and a period of

11

damped oscillation,the?ve-brane becomes?xed at the end of the interval. The associated bundle data is the“union”of V′and a torsion free sheaf over the curve C′.That is,the system approaches the small instanton ESP and the phase transition to a smooth bundle V is never completed.Note that these results are completely consistent with those found in[14,15,16,17,18] when analyzing damped motion in di?erent contexts.

3Moduli Trapping with a Non-Perturbative Superpotential:

Having established our preliminary results,we now turn to the main discus-sion in this paper;namely,the dynamics of small instanton transitions in the presence of a non-perturbative superpotential generated by worldsheet instantons.In this case,the moduli space M C′of the curve remains?at. However,the potential for the vector bundle moduli is now substantially al-tered,with the result that,generically,the?at moduli space M′is replaced by one or more isolated local minima.To proceed,we must?rst be more explicit about the form of the non-perturbative interactions.

Heterotic Non-Perturbative Superpotentials

It was shown in[9]that the superpotential generated by a string wrapped on an isolated curve C′has the form

W NP∝P faff(ψa)e?τφ,(12) whereψa are a subset of vector bundle moduli and we have assumed,for simplicity,that the moduli space of the?ve-brane wrapped on C′is one-dimensional and parameterized by the dimensionless translation modulusφ. The coe?cientτis then dimensionless and given by

τ=1

2κ211 1/3πρv,(13)

whereρis the size of the S1/Z2interval,v is the area of C′andκ11is the eleven-dimensional Planck scale.When the Calabi-Yau radius and the inter-val length are chosen,in units where M P=1,to be in the phenomenologically acceptable range eq.(3),τis found[19]to be of order250.Let us recall that

12

in our notation the position of the?ve-brane is dimensionless and bounded by the length of the interval which is of order one.

As mentioned in the introduction,P faff(ψa)is the Pfa?an of the Dirac operator twisted by the vector bundle V restricted to the curve C′.It is found to be a homogeneous polynomial of the moduliψa of the restricted bundle.In general,the Pfa?an is di?cult to compute.However,it has been explicitly calculated in[10,11]for vector bundles with structure group SU(N)restricted to an isolated curve C′in an elliptic Calabi-Yau threefold with base B=F r.For example,choosing r=1,a speci?c SU(3)vector bundle and C′=S,where S is an isolated curve in F1,it was shown that the Pfa?an is a homogeneous polynomial of degree5in7out of the12moduli of M′.An important pattern that emerges from the results in[10,11]is that the smaller the dimension of M′,the smaller the degree of the homogeneous polynomial.A?nal comment is that the coe?cient of proportionality has not been explicitly computed.

Now consider the simpli?ed moduli space in which both M′and M C′are one-dimensional and parameterized by the moduliψandφrespectively.In this case,the non-perturbative superpotential W NP in(12)takes the form

W NP=Aψp e?τφ,(14) where p is a small integer and A is a coe?cient of mass dimension3?p in Planck units.We now proceed to discuss the moduli dynamics in the presence of superpotential(14).

Without Gravitation

Again consider the dynamics of the moduliφandψin static?at spacetime. However,the complete superpotential is now given by

W=λφ2ψ2+Aψp e?τφ.(15) The potential function describing the small instanton phase transition is

V=|?φW|2+|?ψW|2,(16) where

?φW=2λφψ2?τAψp e?τφ,?ψW=2λφ2ψ+pAψp?1e?τφ.(17)

13

The minimum of this potential has two distinct types of separated loci.The ?rst,speci?ed by

ψ=0,φarbitrary,(18) is the moduli space M C′of C′.However,the moduli space M′is now replaced by p?2isolated points located at

ψ= ?2λp p?2,Reφ=?4

.(20)

200e4

The choice forτis consistent with the phenomenologically acceptable values of R CY andπρgiven in(3).Similarly,in view of the discussion above,p=4 is a reasonable value for the degree of the Pfa?an polynomial.The choice of A in(20)is less well-motivated.It is taken because it enhances the distance between the local minimum and the ESP in moduli space,as can be seen from(19).For the parameters in(20),the local minima in(19)become Reψ=0,Imψ=±0.1,Reφ=?0.01,Imφ=0.(21) Similar physical conclusions will be reached for a wide range of all three parameters.

With these choices,we compute the moduli dynamics using initial condi-tions similar to those given in(4)and(5).The physical situation is identical to that described in the previous section.The moduli equations of motion are solved numerically on MATHEMATICA,with the results for Reφand Imψshown in Figure6.

Figure6(C)indicates that the?ve-brane collides with the end of the inter-val but then,eventually,continues to oscillate without damping around that point.Now,however,there is a new phenomenon.Note that immediately after the collision the Reφmodulus gets“hung up”at the negative value corresponding to the local minima in(21).It lingers there for a considerable time,before rolling back through the origin and continuing its oscillation

14

20000400006000080000100000120000140000

-0.1

-0.05

0.05

0.120000400006000080000100000120000140000-0.1-0.050.050.1-0.1-0.050.050.1-0.1-0.050.050.1t ImψImψ

Reφt (C )(A )

(B )Figure 6:(C)and (B)represent the dynamics of Reφand Imψrespectively for the case of a non-perturbative superpotential but no gravity.(A)gives the combined motion of these moduli.15

around the small instanton point.Similar,but more dramatic,behaviour for Imψis shown in Figure6(B).After a few small oscillations around the origin of?eld space,the Imψmodulus rolls all the way out to the value+0.1 corresponding to one of the local minima in(21).It stays in the vicinity of this minimum for some time,before rolling back through the origin and be-ginning an undamped oscillation around the small instanton.The choice of +0.1rather than the other minimum at?0.1is due to the initial conditions. These can be changed to select the other local minimum.The behaviour of both moduli is graphically presented in Figure6(A),where the excursion of the moduli to the local minimum and back is clearly visible.The other two real moduli,Imφand Reψ,simply oscillate with undamped motion around the origin of?eld space,so we will not display them.

Comparing these results with the static?at case in Section2,we con-clude that the non-perturbative superpotential has a dramatic e?ect on the dynamics of the moduli.Speci?cally,the moduli now evolve far from the origin of?eld space,seeking,and reaching,an isolated local minimum of the potential.However,since there is no mechanism for damping,the moduli roll through the isolated minimum,returning to oscillate around the small instanton.Were one to wait for a su?ciently long time,the moduli might once again brie?y return to one of the two local minima,only to roll out again and oscillate around the origin of?eld space.The lack of any damp-ing means that the overall oscillation amplitude persists.We conclude that, despite the existence of isolated local minima,the phase transition is never completed.

With Gravitation

Now let the moduliφandψinteract with gravity.The superpotential remains the same,namely

W=λφ2ψ2+Aψp e?τφ.(22) Since the values of all moduli we consider,including the isolated local minima, are much smaller than unity,one can continue to choose the Kahler potential to be

K=|φ|2+|ψ|2.(23) Furthermore,sinceφandψare much smaller than one,the complicated potential function in(8)simpli?es to

V=|?φW|2+|?ψW|2.(24)

16

That is,all terms that are higher order in M?1

P can be ignored.The poten-

tial function is then identical to the non-gravity case with identical minima; namely,the?ve-brane branch(18)and the p?2isolated minima given in(19). As in the previous subsection,we chooseλ=1and take

τ=400,p=4,A=

1

20000400006000080000100000120000140000

-0.1

-0.05

0.05

0.120000400006000080000100000120000140000-0.1-0.050.050.1-0.1-0.050.050.1-0.1-0.050.050.1t Imψ

ImψReφ

Reφt (C )(A )

(B )Figure 7:(C)and (B)represent the dynamics of Reφand Imψrespectively for a non-perturbative superpotential in an expanding FRW spacetime.(A)gives the combined motion of these moduli.18

Comparing these results with those in the previous subsection,we see that the e?ect of the expanding FRW geometry on the dynamics of theφandψmoduli is dramatic.Previously,without gravitation,these moduli evolved out to the local minimum of the non-perturbative superpotential.However, because of the absence of any mechanism for damping,the moduli eventually rolled out of the local minimum and back to the origin of?eld space.They oscillated forever with no loss of amplitude or frequency around the small instanton,occasionally,perhaps,temporarily revisiting one of the two local minima.When coupled to the expanding FRW spacetime,however,this behaviour is completely modi?ed.The results in Figure7graphically con?rm that the moduli now evolve out to the local minimum and are trapped there by gravitational damping.The physical reason is clear.Immediately after collision,the moduli have su?cient“energy”to overcome a potential barrier and roll into a valley surrounding the local minimum.However,the energy is rapidly“red-shifted”by the expanding geometry.The result is that the moduli can no longer cross the potential barrier to return to the origin of ?eld space.The continued loss of energy to gravitational expansion causes the moduli to oscillate with smaller and smaller amplitude and frequency around the minimum,eventually coming to rest there.That is,they are gravitationally trapped at the isolated minimum.

Before drawing our?nal conclusions,we would like to comment on the e?ect of radiative damping on the moduli dynamics.As discussed in[15], radiative damping occurs at an ESP,where the number of massless states and,hence,the quantum mechanical amplitude to produce light particles is greatly enhanced.This leads to radiative“friction”on the moduli dynamics, damping their motion.Thus far in this paper we have ignored this e?ect, considering only gravitational damping.Could the inclusion of radiative damping change our conclusions,perhaps trapping the moduli at the ESP? The answer is no.The results reported in[15]show that although radiative damping is a strong e?ect,it requires the moduli to oscillate several times around the ESP before their amplitude is substantially reduced.However, as is clear from Figures7(C)and7(B),the transition ofφandψfrom the vicinity of the ESP to that of the isolated minimum occurs immediately upon collision,within less than one oscillation(Note that the small amplitude oscillations of Imψin Figure7(B)all occur prior to the collision and not near the ESP).Furthermore,they never return to the ESP.It is safe to conclude, therefore,that radiative damping at the ESP simply has no opportunity to e?ect the moduli dynamics and can be safely ignored for the process

19

《中国药典》2020—注射用重组人粒细胞巨噬细胞刺激因子原液相关蛋白检测国家药品标准公示稿

注射用重组人粒细胞巨噬细胞刺激因子原液相关蛋白检测 依法测定(通则 0512)。色谱柱采用四烷基硅烷键合硅胶为填充剂(如: C 4 柱,4.6mm×15cm,粒径 5μm 或其他适宜的色谱柱),柱温为室温;以 0.1% 三氟乙酸的水溶液为流动相 A ,以 0.1%三氟乙酸-90%乙腈的水溶液为流动相B ;流速为 1.2ml/min ;在波长 214nm 处检测;按下表进行梯度洗脱。 用稀释液(pH7.0 的磷酸盐缓冲液)将供试品稀释至每 1ml 中约含 0.5mg , 作为供试品溶液;用稀释液将对照品稀释至每 1ml 中约含 0.5mg ,作为对照品溶液 A ;取对照品溶液 A 与每 1ml 中约含 0.125mg 的人或牛血清白蛋白溶液 (溶剂为稀释液),按体积比 1:4 混匀作为对照品溶液 B 。取供试品溶液与对照品溶液 A 、B 各 100μl 注入液相色谱仪。 供试品溶液与对照品溶液 A 、B 图谱中,粒细胞巨噬细胞刺激因子主峰的保留时间应一致,约为 22 分钟。对照品溶液 B 图谱中,主峰与人或牛血清白蛋白峰的分离度应不小于 2,重复进样(不少于 4 次)所得主峰峰面积的 RSD 应不大于 1.5%。 按面积归一化法只计算保留时间为 5~30 分钟的相关蛋白峰面积,单个相关蛋白峰面积应大不于总面积的 1.5%,所有相关蛋白峰面积应不大于总面积的4.0%。 备注:在该品种原液检定项下,3.1.4 纯度之后增加 3.1.5 相关蛋白项(具体内容见上文:注射用重组人粒细胞巨噬细胞刺激因子原液中相关蛋白检测), 后续检测项目编号依次递增。 时间(分钟) A (%) B (%) 0 64 36 30 44 56 35 0 100 45 0 100 50 64 36 60 64 36

重组人粒细胞刺激因子注射液

重组人粒细胞刺激因子注射液 【药品名称】 通用名称:重组人粒细胞刺激因子注射液 英文名称:Recombinant Human Granulocyte Colonystimulating Factor Injection 【成份】 主要组成成份:重组人粒细胞刺激因子,本品系由含有高效表达人类细胞刺激因子(G-CSF)基因的大肠杆菌,经发酵、分离和高纯度化后制成。辅料名称:甘露醇;吐温-80;磷酸氢二钠;柠檬酸。 【适应症】 1.癌症化疗等原因导致中性粒细胞减少症;癌症患者使用骨髓抑制性化疗药物,特别在强烈的骨髓剥夺性化学药物治疗后,注射本品有助于预防中性粒细胞减少症的发生,减轻中性粒细胞减少的程度,缩短粒细胞缺乏症的持续时间,加速粒细胞数的恢复,从而减少合并感染发热的危险性。 2.促进骨髓移植后的中性粒细胞数升高。 3.骨髓发育不良综合征引起的中性粒细胞减少症,再生障碍性贫血引起的中性粒细胞减少症,先天性、特发性中性粒细胞减少症,骨髓增生异常综合征伴中性粒细胞减少症,周期性中性粒细胞减少症。 【用法用量】 1.肿瘤用于化疗所致的中性粒细胞减少症等,成年患者化疗后,中性粒细胞数降至1000/mm3(白细胞计数2000/mm3)以下者,在开始化疗后2~5g/kg,每日1次皮下或静脉注射给药。儿童患者化疗后中性粒细胞数降至500/mm3(白细胞计数1000/mm3)以下者,在开始化疗后2~5g/kg,每日1次皮下或静脉注射给药。当中性粒细胞数回升至5000/mm3(白细胞计数10000/mm3)以上时,停止给药。 2.急性白血病化疗所致的中性粒细胞减少症白血病患者化疗后白细胞计数不足1000/mm3,骨髓中的原粒细胞明显减少,

可生物降解塑料PHAs

可生物降解塑料PHAs现状及发展浅谈 摘要:塑料从产生以来给人类带来很大便利,但是也产生了“白色污染”问题。本文主要介绍可生物降解塑料PHAs合成生产提取等方面状况,说明其存在问题,并展望可生物降解PHAs 今后的发展方向。 关键词:可生物降解塑料PHAs 合成发展 1. 塑料因其具有密度小、强度高、耐腐蚀、价格低廉等优良特性,在人类生活各方面及工农业生产中获得了广泛的应用。然而,塑料垃圾在填埋、焚烧处理过程中已暴露出种种弊端。目前塑料垃圾以每年2500万t的速度在自然界中积累[1],破坏自然环境,对人类和各种生物的生存造成了严重威胁。随着人类环保意识的加强,许多国家都开始关注可降解塑料的研究与开发,种种可降解塑料不断问世。 在各种可降解塑料中,可生物降解塑料PHAs(聚-β-羟基烷酸Polyhydroxyalkanoates,简称PHAs)尤其受到关注。PHAs作为有光学活性的一种聚酯,除具有高分子化合物的基本特性外,其独特优点是还具有生物可降解性和生物可相容性,因此,用PHAs制作各种容器、袋和薄膜等,可大大减少这些废弃物对环境的污染。此外,PHAs还可用作医药方面的骨骼替代品、骨板和长效药物的生物可降解载体等[1,2]。 2. PHAs 的生物合成 2.1 传统的 PHA 合成方法 PHA通常通过两阶段的流加培养方式生产 ,即细胞生长期和 PHA 合成期。在细胞生长期 ,使用营养丰富基质以得到高细胞产量;在随后的 PHA 合成期 ,通过限制某些营养物质 ,例如 N、 P、 O等,使细胞生长受限制 ,从而达到使微生物的代谢转移到PHA 的合成[5]。 糖类物质 ,例如葡萄糖和蔗糖是 PHA 合成最常用的碳源 ,因为它们的价格相对较便宜。 2.2 使用植物油或脂肪酸合成 PHA 脂肪油或它们的衍生物脂肪酸也是合成 PHA的较好碳源因为它们是不太昂贵且可再生的原料。此外 ,由脂肪酸合成 PHA 的产率系数(例如 ,丁酸的产率系数为 0.65~0.95kg/kg)比由葡萄糖合成的(0.32~0.48kg/kg)高得多[5]。然而 ,由植物油或脂肪酸合成PHA 仍然存在一些问题有待解决。其中一个主要问题是微生物相对较低的生长速率 ,并且细胞内 PHA 的含量较低。尽管由月桂酸合成PHA 的含量达到细胞干重的50%,但是科学家仍有许多工作要做 ,比如 ,筛选和开发能够高效利用植物油的菌种及发酵技术。

中国重组人粒细胞集落刺激因子在肿瘤化疗中的临床应用专家共识(最全版)

中国重组人粒细胞集落刺激因子在肿瘤化疗中的临床应用专家共识 (最全版) 恶性肿瘤患者在化疗过程中,中性粒细胞减少是细胞毒类化疗药物主要的剂量限制性毒性,其减少程度和持续时间与患者感染风险增加相关[1,2]。发热性中性粒细胞减少症(febrile neutropenia, FN)通常被定义为中性粒细胞绝对值(absolute neutrophil count, ANC)低于0.5×109/L,或ANC低于1.0×109/L且预计在48 h内将低于0.5×109/L,同时患者单次口内温度≥38.3 ℃或≥38.0 ℃且持续1 h以上,或腋温>38.5 ℃持续1 h以上[3]。患者出现FN后可能导致化疗药物剂量降低或治疗延迟从而降低临床疗效,也可出现严重感染,甚至死亡。还可能会增加诊断和治疗的费用进而导致医疗花费增加。 重组人粒细胞集落刺激因子(recombinant human granulocyte–colony stimulating factor, rhG–CSF)是一种人工合成的促进中性粒细胞增殖、分化、激活的细胞因子,主要用于细胞毒类化疗药物治疗后出现的中性粒细胞减少症。目前临床上应用的rhG–CSF主要分为每日使用的rhG –CSF和每周期化疗仅使用一次的聚乙二醇rhG–CSF。聚乙二醇rhG–CSF 具有长效特性,由聚乙二醇分子与rhG–CSF共价结合而成,其药效学特性及防治FN相关不良事件发生方面与短效rhG–CSF基本一致[4,5,6,7,8]。 基于循证医学的荟萃分析结果表明,对已经出现发热性中性粒细胞减少症的患者,在使用广谱抗生素的基础上加用rhG–CSF可以显著缩短Ⅳ

重组人粒细胞刺激因子注射液

医保乙类! 立生素重组人粒细胞刺激因子注射液Recombinant Human Granulocyte Colony-stimulating Factor for Injection 多重机制,全面提升中性粒细胞 国际上第一个N端不含蛋氨酸的G-CSF 国家重点新产品,医保乙类 荣获北京市科技进步二等奖 荣获“北京市名牌产品”称号 与天然分子序列相同,不会导致抗体形成 工艺先进,高纯度与高活性 有效治疗放化疗所致的中性粒细胞减少 6种规格、2种包装(西林、预充),方便临床使用 北京双鹭药业股份有限公司市场部

一、立生素(重组人粒细胞刺激因子注射液)简介 G-CSF是指特异作用于造血系统中粒系祖细胞,促机其增殖、向成熟中性粒细胞分化,并维持细胞的存活及其生物功能的一种造血生长因子,是刺激骨髓细胞集落形成的集落刺激因子的一种。 规格:西林瓶包装(75ug、100ug、150ug、200ug、250ug、300ug);预充式包装(75ug、150ug、300ug)。 二、立生素的作用机制 粒生素(G-CSF)选择性地作用于粒系造血祖细胞,促进其增殖、分化,刺激粒细胞前体细胞增殖并向成熟粒细胞分化,促进骨髓成熟中性粒细胞向外周血释放,以及增加成熟粒细胞的功能。 三、立生素对肿瘤放化疗引起的粒细胞减少症的治疗作用 化学治疗是恶性肿瘤综合治疗的主要内科手段之一。化疗中最常见的不良反应为骨髓抑制,临床主要表现为白细胞及中性粒细胞减少,患者常因此被迫减少化疗药物剂量、终止治疗以及延长化疗间歇期,使系统治疗的连续性和完整性受到影响。重度白细胞减少易并发全身感染及出血,严重者可导致死亡。 G-CSF适用于癌症化疗等原因导致的中性粒细胞减少症。癌症患者使用骨髓抑制性化疗药物,特别是在强烈的、骨髓剥夺性化学药物治疗后、注射本品有助于预防中性粒细胞减少症的发生,减轻中性粒细胞减少的程度,缩短粒细胞缺乏症的持续时间,加速粒细胞数的恢复,从而降低合并感染发热的危险。 四、立生素的临床应用 1、预防或治疗肿瘤放化疗所致的粒细胞和白细胞减少; 2、造血干细胞移植中动员外周造血干细胞,或加速造血干细胞移植后粒细胞恢复; 3、用于重症感染的辅助治疗; 4、用于非化疗药物所致的药源性的粒细胞减少症; 5、促进化疗所致的口腔粘膜溃疡的愈合; 6、动员骨髓干细胞治疗急性心肌梗死。 五、立生素的用法用量 化疗药物给药结束后24~48小时起皮下或静脉注射本品,每日一次。用量和用药时间应根据化疗强度和中性粒细胞下降的程度决定。 对化疗强度较大或粒细胞下降较明显者,以2.5μg/kg体重/日的剂量连续用药7天以上较为适宜,至中性粒细胞恢复至5000/mm3停药; 如所用化疗药物的剂量较低,估计造成的骨髓抑制不太严重者,可考虑使用较低剂量预防中性粒细胞的减少,以1.25μg/kg体重/日的剂量用药,至中性粒细胞数稳定于安全范围; 对化疗后中性粒细胞已明显降低的患者(中性粒细胞<1000/mm3),以5μg/kg体重/日的剂量用药至中性粒细胞恢复至5000/mm3以上,稳定后终止本品治疗并监视病情。

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

生物降解材料

生物降解材料: 1.天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2.化学合成聚脂:PLA、PCL、PBS、PPC等; 3.微生物发酵合成高分子化合物:PLA、PHA; 4.转基因植物合成高分子化合物:PHA。 生物基含量和价格 材料优缺点

1.可完全生物降解 2.可替代大部分塑料,价格可以和石油塑料 竞争 3.分子结构多样性,综合性能好 4.可单独使用或和淀粉等其他生物质共同 使用 5.可取代PCL、Ecoflex等石油基可降解材 料 6.核心技术门槛高竞争者很难模仿进入材料具体价格

生物降解塑料生产厂家 种类公司型号产能(吨/年)

PLA PLA产业链

→ → → 产业链分析: 1.PLA改性材料生产企业:其生产受到上下游的影响比较严重。 2.PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较强。 3.PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产成本和纯度直接影响PLA产品的成本和性能。 4.PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不构成对于PLA改性材料生产企业的直接瓶颈。 5.消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。 PLA改性材料企业

注射用重组人粒细胞巨噬细胞刺激因子

注射用重组人粒细胞巨噬细胞刺激因子 【药品名称】 通用名称:注射用重组人粒细胞巨噬细胞刺激因子 英文名称:Propranolol Hydrochloride T ablets 【成份】 本品主要组成成分: 活性成分为重组人粒细胞巨噬细胞集落刺激因子(rhGM-CSF)。 非活性成分包括甘露醇,磷酸钠,柠檬酸,聚乙二醇4000和人血白蛋白。 【适应症】 适用于治疗和预防骨髓抑制性治疗引起的白细胞减少症。可预防白细胞减少症伴发的潜在的感染的发生,使患者能更好地耐受化学药物的治疗。 【用法用量】 剂量视具体病情而定,应调节剂量使白细胞维持在正常水平。癌症化疗或放疗后24小时,按3-10μg/kg,皮下注射,每日一次,持续5-10天(注意:本药不应与抗癌药物同时使用,化疗停止24小时后方可使用)。用1毫升注射用水溶解(切勿剧烈振荡),可在腹部、大腿外侧或上臂三角肌皮肤处进行皮下注射(要求:注射后局部皮肤隆起约1cm2以便药物缓慢吸收)。 【不良反应】 大部分不良反应多属轻度中度。严重的或危及生命的反应罕见,并且一般是当剂量大于推荐剂量范围时才发生。最常见的不良反应为发热、皮疹,发热可用扑热息痛控制,胸痛、骨痛和腹泻等不良反应较少见。据国外报道,低血压和低氧综合症在首次给药时可能出现,但以后给药则无此现象,本品在临床研究中,尚未发现,但在使用本品过程中建议医生参考。另

外,据国外研究表明,对肺癌病人使用本药治疗时应特别仔细加以观察。 【禁忌】 本药禁用于对rhGM-CSF或该制剂中其它成份有过敏史的病人,同样禁用于自身免疫性血小板减少性紫癜的病人。 【注意事项】 1 本药应在专科医生指导下使用,剂量视病人情况而定,病人对rhGM-CSF的治疗反应和耐受性个体差异较大,应调节剂量使病人白细胞数量维持在所期望的水平。病人在治疗前及开始治疗后定期观察外周血白细胞或中性粒细胞、血小板数据的变化。血象恢复正常后立即停药或采用维持剂量。 2 接受本药的病人偶而会产生急性过敏反应,应立即停药,并给予适当治疗。 3 据国外文献报告:(1)rhGM-CSF很少引起胸膜炎或胸腔积液。心包炎的发生率为2%,心包积液的发 【药物相互作用】 由于rhGM-CSF可以引起血浆白蛋白降低,因此,同时使用具有高血浆白蛋白结合力的药物时应注意调整药物剂量。虽未发现rhGM-CSF不良的药物相互作用的报导,但也不能完全排除存在药物相互作用的可能性。 【药理作用】 药理作用 本品为利用基因重组技术生产的人粒细胞巨噬细胞集落刺激因子(rhGM-CSF)。rhGM-CSF作用于造血祖细胞,促进其增殖和分化,并刺激粒细胞、单核细胞和T细胞的生长,促进成熟细胞向外周血释放,另外,还能促进巨噬细胞及嗜酸性细胞的多种功能。 毒理研究

辽宁生物降解塑料项目投资建议书

辽宁生物降解塑料项目 投资建议书 规划设计/投资方案/产业运营

辽宁生物降解塑料项目投资建议书说明 《关于进一步加强塑料污染治理的意见》指出,到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用;到2022年底,一次性降解塑料制品消费量明显减少,替代品得到推广,在电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式;到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低。2025年前,国内将逐渐限制、禁止使用不可降解塑料袋、一次性塑料餐具、宾馆和酒店一次性塑料制品和快递塑料袋。 该PBAT生物降解塑料项目计划总投资5851.90万元,其中:固定资产投资4682.58万元,占项目总投资的80.02%;流动资金1169.32万元,占项目总投资的19.98%。 达产年营业收入8873.00万元,总成本费用6729.64万元,税金及附加101.62万元,利润总额2143.36万元,利税总额2540.62万元,税后净利润1607.52万元,达产年纳税总额933.10万元;达产年投资利润率36.63%,投资利税率43.42%,投资回报率27.47%,全部投资回收期5.14年,提供就业职位135个。

项目建设要符合国家“综合利用”的原则。项目承办单位要充分利用国家对项目产品生产提供的各种有利条件,综合利用企业技术资源,充分发挥当地社会经济发展优势、人力资源优势,区位发展优势以及配套辅助设施等有利条件,尽量降低项目建设成本,达到节省投资、缩短工期的目的。 ...... 报告主要内容:项目总论、项目必要性分析、项目市场研究、投资方案、项目选址规划、土建方案说明、工艺先进性、项目环保分析、项目安全保护、投资风险分析、项目节能情况分析、实施进度、投资方案计划、项目盈利能力分析、综合评价结论等。 随着全球环境保护力度加大,“限塑”已在60多个国家实行。我国自2004年开始鼓励降解塑料的推广应用,2008年开始实行“限塑”。近几年法规措施不断趋严,2020年1月19日,国家发展改革委、生态环境部公布《关于进一步加强塑料污染治理的意见》,提出分阶段(2020、2022、2025年)限制、禁止使用不可降解塑料产品的行动目标与措施。在严格的限塑、禁塑令下,开发应用可降解塑料势在必行。PBAT是一种全生物可降解塑料,可广泛应用于超市购物袋、外卖餐盒、农用地膜等领域。随着“限塑令”的推出和绿色消费市场的扩大,PBAT等可生物可降解塑料呈现出良好的市场前景,成为当前国内降解塑料领域投资和关注的热点。

重组人粒细胞集落刺激因子注射液使用说明书

重组人粒细胞刺激因子注射液使用说明书 (欣粒生?使用说明书) 请仔细阅读说明书并在医生指导下使用 [药品名称] 通用名称:重组人粒细胞刺激因子注射液 商品名称:欣粒生? 英文名称 汉语拼音: [成分]重组人粒细胞刺激因子,辅料为醋酸钠、冰醋酸、甘露醇、聚梨酸酯 [性状] 无色透明液体,。 [适应症] .促进骨髓移植后中性粒细胞计数增加。 .癌症化疗引起的中性粒细胞减少。包括恶性淋巴瘤、小细胞肺癌、胚胎细胞瘤(睾丸肿瘤、卵巢肿瘤等)、神经母细胞瘤等。 .骨髓异常增生综合征伴发的中性粒细胞减少症。 .再生障碍性贫血伴发的中性粒细胞减少症。 .先天性、特发性中性粒细胞减少症。 [规格] μ支、μ支、μ支 [用法用量] .促进骨髓移植后中性粒细胞数增加。 成人及儿童的推荐剂量为μ, 通常自骨髓移植后次日至第五日给予静脉滴注,每日一次。 当中性粒细胞计数上升超过 时,停药,观察病情。 在紧急情况下,无法确定本药的停药指标中性粒细胞数时,可用白细胞的半数来估算中性粒细胞数。 .癌症化疗后引起的中性粒细胞减少症。 .恶性淋巴瘤、肺癌、卵巢癌、睾丸癌和神经母细胞瘤化疗后次日开始给药,成人及儿童推荐剂量为μ,皮下注射,每日一次。化疗后中性粒细胞数降低到(白细胞计数)以下的成人患者和化疗后中性粒细胞数减少到(白细胞计数)以下的儿童患者应给予本品。 经用药后,如果中性粒细胞计数经过最低值时期后增加到(白细胞计数)以上时,应观察病情,同时停用本品。 如皮下注射困难,应改为μ静脉滴注,成人及儿童,每日一次。 .急性白血病 通常在化疗给药结束后(次日以后),骨髓中的幼稚细胞减少到足够低的水平且外周血中无幼稚细胞时,开始给药,成人及儿童推荐剂量为μ,每日一次,皮下或静脉给药(包括静脉点滴)。 紧急情况下,无法确定本药的给药及停药时间的指标中性粒细胞数时,可用白细胞的半数来估算中性粒细胞数。 .骨髓异常增生综合征伴发的中性粒细胞减少症 中性粒细胞计数低于的患者,给予本品μ皮下或静脉滴注,每日一次。 如果中性粒细胞计数超过 ,应减少剂量或终止给药,并观察病情。 .再生障碍性贫血伴发中性粒细胞减少症 【核准日期】 【修改日期】

福建生物降解塑料项目投资分析报告

福建生物降解塑料项目投资分析报告 规划设计/投资方案/产业运营

报告说明— 生物降解塑料是指在土壤、沙土等自然条件下,可与微生物作用降解成为二氧化碳、水等小分子的塑料材料。PBAT是生物降解塑料研究中非常活跃和市场应用最好降解材料之一。PBAT是己二酸丁二醇酯(PBA)和对苯二甲酸丁二醇酯(PBT)的共聚物,兼具PBA和PBT的特性,既有良好的延展性、断裂伸长率、耐热性和抗冲击性能,又具有优良的生物降解性。PBAT成膜性能良好,通常与PLA树脂等共混改性制成终端产品,可用于塑料包装薄膜、农用地膜、一次性用具等。 该PBAT生物降解塑料项目计划总投资8033.42万元,其中:固定资产投资6236.18万元,占项目总投资的77.63%;流动资金1797.24万元,占项目总投资的22.37%。 达产年营业收入14198.00万元,总成本费用10984.45万元,税金及附加139.18万元,利润总额3213.55万元,利税总额3795.98万元,税后净利润2410.16万元,达产年纳税总额1385.82万元;达产年投资利润率40.00%,投资利税率47.25%,投资回报率30.00%,全部投资回收期4.83年,提供就业职位283个。 全球塑料产量约为3.59亿吨,其中生物塑料约占1%,2018年全球生物可降解塑料的市场金额超过11亿美元,产能合计约91.2万吨,预计2023年有望实现17亿美元与128.8万吨。欧洲是可降解塑料的主要市场,

占全球55%、亚太地区占全球25%,北美需求占19%。可降解塑料的应用范围不断扩大,包括包装、纺织纤维、汽车运输等。包装占比最大为58%。国内2019年塑料制品产量为8184万吨,其中可降解塑料优先推广的农用塑料薄膜使用量为246万吨。根据智研咨询国内可降解塑料的消费量在50万吨左右,市场潜能巨大。据统计,中国每年约消耗购物袋400万吨、农膜246万吨、外卖包装260万吨,且随着快递、外卖业务的快速发展,塑料需求持续增长。而对于这些领域,特别适用可降解塑料。假设替代10%,即可新增90万吨以上可降解塑料需求。我们认为随着技术进步、规模化生产、成本下降、环保理念提升,可降解塑料未来成长空间10倍以上。

重组人粒细胞集落刺激因子

【药品名称】重组人粒细胞集落刺激因子注射液 【英文名称】Recombinant Human Granulocyte Colony Stimulating Factor Injection 【药品别名】 商品名:惠尔血(GRAN) 结构式与分子量:根据已知来源于人类膀胱癌细胞的粒细胞集落刺激因子的基因,通过基因重组产生的含有175个氨基酸残基(C845H1339N223O243S9;分子量:18,798.88)的蛋白质。 主要组成成分:重组人粒细胞集落刺激因子 【性状】 本品为无色澄明液体。 【药理、毒理】 本品为利用基因重组技术生产的人粒细胞集落刺激因子(rhG-CSF)。与天然产品相比,生物活性在体内、外基本一致。G-CSF是调节骨髓中粒系造血的主要细胞因子之一,可选择性地作用于粒系造血祖细胞,促进其增殖、分化,并可增加粒系终末分化细胞即外周血中性粒细胞的数目与功能。 【药代动力学】 健康成年男性单次静脉或皮下注射本品1.0(g/kg,其药代动力学参数如下:静脉给药者的半衰期为 1.40小时,AUC为21.6ng(hr/ml;皮下注射者的半衰期为 2.15小时,AUC为11.7ng(hr/ml,生物利用度为0.54。连续6天静点或皮下注射本药后,开始给药日与第6日的血浆中药物浓度无显著性差异,无蓄积现象。 给健康成年男性静点本药3.0(g/kg或皮下注射1.0(g/kg后,测定24小时尿中的药物浓度,结果均在测定界限以下。 【适应症】 1.促进骨髓移植后中性粒细胞计数增加。 2.癌症化疗引起的中性粒细胞减少症。包括恶性淋巴瘤、小细胞肺癌、胚胎细胞瘤(睾丸肿瘤、卵巢肿瘤等)、神经母细胞瘤等。 3.骨髓增生异常综合征伴发的中性粒细胞减少症。 4.再生障碍性贫血伴发的中性粒细胞减少症。 5.先天性、特发性中性粒细胞减少症。 【用法与用量】 1.促进骨髓移植后中性粒细胞计数增加 成人和儿童的推荐剂量为300(g/m2,通常自骨髓移植后次日至第5日给予静脉滴注,每日一次。 当中性粒细胞数上升超过5000/mm3时,停药,观察病情。 在紧急情况下,无法确认本药的停药指标中性粒细胞数时,可用白细胞数的半数来估算中性粒细胞数。 2.癌症化疗后引起的中性粒细胞减少症。 经用药后,如果中性粒细胞计数经过最低值时期后增加到5,000/mm3(WBC:10,000/mm3)以上,应停药,观察病情。 A.恶性淋巴瘤、肺癌、卵巢癌、睾丸癌和神经母细胞瘤化疗后(次日后)开始给药。成人及儿童推荐剂量为50(g/m2,皮下注射,每日一次。化疗后中性粒细胞降到1,000/mm3(WBC:2,000/mm3)以下的成人患者应给予本品。化疗后中性粒细胞计数减少到500/mm3(WBC:1,000/mm3)以下的儿童患者,应皮下注射50(g/m2的本品,每日一次。 如皮下注射困难,应改为100(g/m2静脉滴注(成人及儿童),每日一次。

生物降解材料

生物降解材料https://www.360docs.net/doc/9212513783.html,work Information Technology Company.2020YEAR

生物降解材料: 1.天然生物材料如淀粉、纤维素的改性材料制成的塑料; 2.化学合成聚脂:PLA、PCL、PBS、PPC等; 3.微生物发酵合成高分子化合物:PLA、PHA; 4.转基因植物合成高分子化合物:PHA。

6.核心技术门槛高竞争者很难模仿 进入 生物降解塑料生产厂家 种类公司型号产能(吨/

PLA PLA 产业链 产业链分析: 1.PLA 改性材料生产企业:其生产受到上下游的影响比较严重。

2.PLA生产企业:此类企业上游供给影响不大,来源和供应量很充足,关键在于企业的生产技术和产能。美国的natureworks处于领先地位,每年14万吨的产能,巴斯夫、日本三井和荷兰普拉克都有超万吨的产能。国内海正生物和金发科技分别拥有5000吨左右的产能,在国内PLA生产商中实力较强。 3.PLA原料(中间物)生产商:PLA生产主要有一步法和两步法两种工艺,两步法应用较多,即先由乳酸聚合并解聚得到中间体丙交酯,再由丙交酯开环聚合得到PLA,两步法中,中间体丙交酯的生产成本和纯度直接影响PLA产品的成本和性能。 4.PLA改性材料使用企业:这些企业使用PLA改性材料作为生产进一步产品的原料,成品涵盖范围包括农业、工业、门用等等领域。PLA材料经过改性和复合,其理化性质得到相应改进,可以采用传统吹塑、热塑机械生产成品,传统成品生产企业的转换成本并不高,而此类企业在国内数量巨大,并不构成对于PLA改性材料生产企业的直接瓶颈。 5.消费者终端:消费者的最终需求,决定了PLA改性和复合材料使用企业对PLA改性材料的间接需求,成为真正的、可能的需求瓶颈。因此,分析PLA改性和复合材料行业下游的关键,在于消费者终端的分析。 PLA改性材料企业 PLA PHA 基本性能: 生物相容性,良好的力学性能,非线性光学性,气体隔离性,耐水解性能,压电性,良好的加工性能,耐热性。 性能指标: 分子量: 1000-1000000 玻璃态温度: -60℃~+60℃ 熔点: 40℃~190℃ 结晶度: 10%~60% 断裂伸长率: 5%~1000%

生物降解高分子材料

生物降解高分子材料 肖群 (东北林业大学材料科学与工程学院,黑龙江哈尔滨 150040) 摘要:高分子材料在日常生活中的使用量越来越大.然而高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量塑料废弃物也与日俱增。给人类赖以生存的环境造成了不可忽视的负面影响。本文简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域。 关键词:生物降解,医用生物材料, 1 前言 聚合物工业蓬勃发展的同时也导致了环境污染的加剧,引起了人们对聚合物废料处理的关注。目前全世界每年生产塑料约1.2亿吨.用后废弃的大约占生产量的50%~60%。废塑料的处理以掩埋和焚烧为主,但这两种处理方法会产生新的有害物质。对此,一些国家实行了3R工程,即减少使用、重复使用和回收循环。但对一些回收困难、不宜回收或需要追加很大能量才能回收的领域(如食品包装、卫生用品),实施3R工程很困难,而如果使用生物降解材料则十分有利[1]。 2生物降解高分子材料定义降解机理 2.1生物降解高分子定义 根据美国ASTM定义生物降解高分子材料是指在一定的条件下.一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料[2,3,4]。真正的生物降解高分子在有水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量 逐渐变小,以致最终成为单体或代谢成CO 2和H 2 O[5]。 2.2生物降解高分子材料的降解机理 生物降解机理和光一生物降解机理.完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏.分裂成低聚物碎片:②生物化学作用:微生物对聚合物作用而产生新 物质(CH 4、C0 2 和H 2 0):③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩 裂。而光一生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成含氧化物,并氧化断裂.分子量下降到能被微生物消化的水平。进一步研究发现.不同的生物降解高分子材料的生物降解性与其结构有很大关系,包括化学结构、物理结构、表面结构等。 对不同种类的生物降解材料而言.它们降解机理的不同决定了它们具有不同的性质。天然降解高分子材料.其本身来源于生物体,能保证足够的细胞及组织亲和性.降解周期一般较短.最终降解产物为多糖或氨基酸.容易被机体吸收.但是这种材料力学性能差。难于满足组织构建的速度要求,应用时需要进行改性。化学合成的生物降解材料的组成、结构和降解行为更易于控制。比如降解速度和强度可调.易构建高孔隙率三维支架.但材料本身对细胞亲和力弱.往往需要引入适量能促进细胞黏附和增值的活性基团、生长因子或黏附因子等。[6] 3生物降解高分子材料的种类及降解过程

重组人粒细胞集落刺激因子注射液

重组人粒细胞集落刺激因子注射液商品名:瑞白;惠尔血;吉粒芬 【规格】 50μg/支、75μg/支、100μg/支、150μg/支、300μg/支、450μg/支 适应症 1.癌症化疗等原因导致中性粒细胞减少症;癌症患者使用骨髓抑制性化疗药物,特别在强烈的骨髓剥夺性化学药物治疗后,注射本品有助于预防中性粒细胞减少症的发生,减轻中性粒细胞减少的程度,缩短粒细胞缺乏症的持续时间,加速粒细胞数的恢复,从而减少合并感染发热的危险性。 2.促进骨髓移植后的中性粒细胞数升高。 3.髓发育不良综合征引起的中性粒细胞减少症,再生障碍性贫血引起的中性粒细胞减少症,先天性、特发性中性粒细胞减少症,骨髓增生异常综合征伴中性粒细胞减少症,周期性中性粒细胞减少症。 【用量用法】骨髓移植患者:于骨髓移植手术后第2日至第5日内开始,每日皮下注射或静滴本品300μg,每日1次。2.实体瘤(肺癌、乳腺癌、卵巢癌、恶性淋巴瘤、睾丸肿瘤、神经母细胞瘤):于化疗完成24h后开始每日皮下注射75μg,每日1次。3.白血病患者:于化疗完成24h后开始每日皮下注射或静滴300μg,每日1次。4.伴随骨髓发育不良综合征的中性粒细胞减少症,静滴100μg,每日1次。5.伴随再生不良性贫血的中性粒细胞减少症:通常成人的白细胞数1乘10的9次方/L以下时,静滴本品400μg,每日1次。 【注意事项】1.少数患者有轻度骨痛、腰痛、胸痛、关节痛的情况发生,亦有少数出现暂时性的血清尿酸、乳酸脱氢酶及碱性磷酸酶增高,停药后可恢复。有时会有恶心、呕吐、SGOT、SGPT升高;皮疹偶有发生。2.对本品有过敏反应的患者、骨髓中的芽球并没有明显减少的骨髓性白血病患者及末梢血液中可看到骨髓芽球之骨髓性白血病患者禁用。3.本品使用中,须定期进行血液检查,要特别注意不可让中性粒细胞增加到必需数量以上,否则须采取适当的减量或停药措施。4.为了防止过敏反应发生,使用前须详细询问病史,必要时要预先进行皮试。5.对进行化疗的中性粒细胞减少的患者,应先给予化疗药物后再注射本品,须避免在化疗前使用。6.已知骨髓异常增生综合征,伴随芽球增加的病例,有转移致骨髓白血病的危险,所以在使用本品时,应先采样细胞,确认并经过体外试验,未见有芽胞之增多,方可使用。7.儿童使用本品时,应谨慎并仔细观察。8.孕妇、早产儿、新生儿、婴儿均不宜使用。9.静脉注射时,应与5%葡萄糖注射液或等渗盐水混合使用,但不宜与其他注射液混合注射。 不良反应1.肌肉骨骼系统:有时会有肌肉酸痛、骨痛、腰痛、胸痛的现象。 2.消化系统:有时会出现食欲不振的现象,或肝脏谷丙转氨酶、谷草转氨酶升高。 3.其他:有人会出现发热、头疼、乏力及皮疹,ALP、LDH升高。 4.极少数人会出现休克、间质性肺炎、成人呼吸窘迫综合征、幼稚细胞增加。 格拉诺赛特 【规格】针剂:50μg、100μg、250μg 【适应症】适用于治疗恶性淋巴瘤、肺癌、卵巢癌、乳癌、睾丸肿瘤、神经母细胞瘤、急性淋巴细胞性白血病等化疗时引起的中性粒细胞减少症,以及骨髓异常增生综合征、再生障碍性贫血、先天性和原发性中性粒细胞减少症等。 【用量用法】静滴:从骨髓移植后的次日或第5日起以5μg/(kg·日)静滴。小儿以5μg/(次·日)静滴。对肿瘤化疗引起的中性粒细胞减少症的用量参考上述用量。 【注意事项】可有食欲不振、骨痛、腰痛、胸痛、发热、头痛,碱性磷酸酶和乳酸脱氢酶值上升,GOT、GPT上升,过敏反应甚至休克等。用前需做皮试。对本品过敏者忌用。有药物过敏史者、有过敏体质者、肝、肾、心、肺功能有重度障碍者慎用。

PBS完全可生物降解塑料

书山有路勤为径;学海无涯苦作舟 PBS完全可生物降解塑料 聚丁二酸丁二醇酯(PBS)因其卓越性能成为最具产业化前景的可完 全生物降解塑料。最近,PBS正式入围国家科技部“十一五”规划,成为政 府层面推动产业化的可完全生物降解塑料。据悉,国家科技部将在年底提 前启动可完全生物降解塑料产业化“十一五”专项。至此,PBS成功赢得产 业化先机,成为中国可完全生物降解塑料产业化的领跑者。 PBS是生物降解塑料材料中的佼佼者,用途极为广泛,可用于包装、 餐具、化妆品瓶及药品瓶、一次性医疗用品、农用薄膜、农药及化肥缓释 材料、生物医用高分子材料等领域。PBS综合性能优异,性价比合理,具有 良好的应用推广前景。 与其它生物降解塑料相比,PBS力学性能十分优异,接近PP和ABS塑料;耐热性能好,热变形温度接近100℃,改性后使用温度可超过100℃,可 用于制备冷热饮包装和餐盒,克服了其它生物降解塑料耐热温度低的缺点; 加工性能非常好,可在现有塑料加工通用设备上进行各类成型加工,是目前 降解塑料加工性能最好的,同时可以共混大量碳酸钙、淀粉等填充物,得到 价格低廉的制品;PBS生产可通过对现有通用聚酯生产设备略作改造进行, 目前国内聚酯设备产能严重过剩,改造生产PBS为过剩聚酯设备提供了新 的机遇。另外,PBS只有在堆肥、水体等接触特定微生物条件下才发生降解,在正常储存和使用过程中性能非常稳定。PBS以脂肪族二元酸、二元醇为主 要原料,既可以通过石油化工产品满足需求,也可通过纤维素、奶业副产物、 葡萄糖、果糖、乳糖等自然界可再生农作物产物经生物发酵途径生产,从 而实现来自自然、回归自然的绿色循环生产。而且采用生物发酵工艺生产 专注下一代成长,为了孩子

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

生物可降解塑料的应用、研究现状和发展方向汇总

生物可降解塑料的应用、研究现状及发展方向 关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料 绪论 半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。因此,解决这个问题已成为环境保护方面的当务之急。一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。为

了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。 不可降解的大众塑料塑料对地球的危害: (1)两百年才能腐烂。塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。 (2)降解塑料难降解。市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。这是一种物理降解,并没有从根本上改变塑料产品的化学性质。 (3)影响土壤的正常呼吸。塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。 (4)易造成动物误食。废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题的理想途径。目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。[7] 可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。

相关文档
最新文档