幂的运算总结及方法归纳

幂的运算总结及方法归纳
幂的运算总结及方法归纳

幂的运算

一、知识网络归纳

二、学习重难点

学习本章需关注的几个问题:

●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a

a 1

=

-(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。

◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。

◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将2

00

4写成442

004

?,再逆用积的乘方法则计算

11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。

◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。

一、同底数幂的乘法

1、同底数幂的乘法

同底数幂相乘,底数不变,指数相加.

公式表示为:()m

n

m n

a a a

m n +?=、为正整数

2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即

()

m n p m m p a a a a m n p ++??=、、为正整数

注意点:

(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.

(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.

例题:

例1:计算列下列各题

(1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2

4

c c c -?-?- 简单练习: 一、选择题

1. 下列计算正确的是( )

A.a2+a3=a5

B.a2·a3=a5

C.3m +2m =5m

D.a2+a2=2a4

2. 下列计算错误的是( )

A.5x2-x2=4x2

B.am +am =2am

C.3m +2m =5m

D.x·x2m-1= x2m

3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b

5

p 2+p 2+p 2=3p 2

正确的有( )

A.1个

B.2个

C.3个

D.4个

4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )

A.100×102=103

B.1000×1010=103

C.100×103=105

D.100×1000=104

二、填空题

1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7

=________。

3、103·_______=1010

4、(-a)2·(-a)3·a5

=__________。

5、a5·a( )=a2·( ) 4=a18

6、(a+1)2·(1+a)·(a+1)5

=__________。 中等练习:

1、 (-10)3·10+100·(-102

)的运算结果是( )

A.108

B.-2×104

C.0

D.-104

2、(x-y)6·(y-x)5=_______。

3、10m ·10m-1

·100=______________。 4、a 与b 互为相反数且都不为0,n 为正整数,则下列两数互为相反数的是( )

A.a2n-1与-b2n-1

B.a2n-1与b2n-1

C.a2n 与b2n

D.a2n 与b2n

5. ※计算(a-b)n ·(b-a)n-1

等于( )

A.(a-b)2n-1

B.(b-a)2n-1

C.+(a-b)2n-1

D.非以上答案

6. ※x7

等于( )

A.(-x2 )·x5 B 、(-x2)·(-x5) C.(-x)3·x4 D.(-x)·(-x)6

7、解答题

(1) –x2·(-x3) (2) –a·(-a)2·a3

(3) –b2·(-b)2·(-b)3 (4) x·(-x2)·(-x)2·(-x3)·(-x)3

(5) 1+-?n n x x x (6)x

4-m

·x 4+m

·(-x)

(7) x 6

·(-x)5

-(-x)8

·(-x)3

(8) -a3

·(-a)4

·(-a)5

7. 计算(-2)1999+(-2)2000

等于( )

A.-23999

B.-2

C.-21999

D.21999

8. 若a2n+1·ax =a3

那么x=______________ 较难练习: 一、填空题:

1. 111010m n +-?=________,45

6(6)-?-=______.

2. 234x x xx +=________,25

()()x y x y ++=_________________. 3. 31010010100100100100001010??+??-??=___________. 4. 若1216x +=,则x=________.

5. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 若2345y xx x x x x =,则y=______;若25

()x a a a -=,则x=_______. 6. 若2,5m n

a a ==,则m n a +=________. 二、选择题

7. 下面计算正确的是( )

A .326b b b =;

B .336x x x +=;

C .426a a a +=;

D .56mm m = 8. 81×27可记为( ) A.3

9; B.7

3; C.6

3; D.12

3

9. 若x y ≠,则下面多项式不成立的是( )

A.2

2

()()y x x y -=-; B.3

3

()()y x x y -=--; C.2

2

()()y x x y --=+; D.2

2

2

()x y x y +=+

10. 计算1999

2000(2)(2)-+-等于( )

A.3999

2

-; B.-2; C.1999

2-; D.1999

2

11. 下列说法中正确的是( )

A. n a -和()n

a - 一定是互为相反数 B. 当n 为奇数时, n a -和()n

a -相等 C. 当n 为偶数时, n a -和()n

a -相等 D. n a -和()n

a -一定不相等 三、解答题:

12. 计算下列各题:

(1)2

3

2

3

()()()()x y x y y x y x -?-?-?-;(2)2

3

()()()a b c b c a c a b --?+-?-+ (3)2

3

4

4

()()2()()x x x x x x -?-+?---?; (4)122333m m m x x x x x x ---?+?-??。 13. 已知21km 的土地上,一年内从太阳得到的能量相当于燃烧8

1.310kg ?煤所产生的能

量,那么我国629.610km ?的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?

14.(1) 计算并把结果写成一个底数幂的形式:①43981??;②66251255??。 (2)求下列各式中的x: ①3

21(0,1)x x a a a a ++=≠≠;②62(0,1)x x p p p p p ?=≠≠。

15.计算23455

1()22

x y x y -

????。 16. 若1

5(3)59n n x x x -?+=-,求x 的值.

二、幂的乘方与积的乘方

1、幂的乘方

幂的乘方,底数不变,指数相乘.

公式表示为:()

()n

m

mn a

a m n =、都是正整数.

2、积的乘方

积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.

公式表示为:()()n

n n

ab a b n =为正整数.

注意点:

(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.

(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.

(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;

(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.

例题: 1.计算:()4

3a

表示 .

2.计算:(x 4)3

= .

3计算:(1)n m a a ?3)(; ⑵[

]4

23

)1(a

?-

简单练习: 一、判断题 1、()5232

3x x x

==+ ( ) 2、()

763

2a a a a a =?=-? ( ) 3、()

932

32

x x x

== ( ) 4、9333)(--=m m x x ( )

5、5

3

2

)()()(y x x y y x --=-?- ( ) 二、填空题:

1、,__________

])2[(32=-___________)2(3

2=-; 2、______________)()(3

22

4=-?a a ,____________)()(3

2

3=-?-a a ; 3、___________

)()(4

55

4=-+-x x ,_______________)()(123

1=?-++m m a a ;

4、___________________

)()()()(32

22

54

22

2x x x x ?-?; 5、若 3=n x , 则=n x 3________. 三、选择题 1、1

22)

(--n x 等于( )

A 、14-n x

B 、14--n x

C 、24-n x

D 、24--n x 2、2

1)(--n a

等于( )

A 、22-n a

B 、22--n a

C 、12-n a

D 、22--n a 3、1

3+n y

可写成( )

A 、13)

(+n y B 、1

3)

(+n y C 、n

y

y 3? D 、1

)

(+n n y

4.()21

1n

n p +??-????

等于( )

A .

2n

p

B .2n p -

C .2

n p

+- D .无法确定

5.计算()

2

32

3xy y x -??的结果是( )

A .y x 105?

B .y x 85?

C .y x 85?-

D .y x 12

6? 6.若N=(

)4

32

b

a a ??,那么N 等于( )

A .77b a

B .128b a

C .1212b a

D .712b a 7.已知3,5==a a y x ,则a y x +的值为( )

A .15

B .3

5

C .a 2

D .以上都不对

中等练习: 一、填空题

1.计算:(y 3)2+(y 2)3

= . 2.计算:=

-?-3

223)()(a a .

3.)

(234)2(=.(在括号内填数)

二、选择题

4.计算下列各式,结果是8x 的是( )

A .x 2

·x 4

; B .(x 2

)6

; C .x 4

+x 4

; D .x 4

·x 4

. 5.下列各式中计算正确的是( )

A .(x 4)3=x 7; B.[(-a )2]5=-a 10

; C.(a m )2=(a

2

)m =a

m

2; D.(-a

2

)3=(-a 3)

2

=-a 6

.

6.计算3

2)(x -的结果是( )

A.5x -;

B.5x ;

C.6x -;

D.6x . 7.下列四个算式中:

①(a 3)3=a 3+3=a 6;②[(b 2)2]2=b 2×2×2=b 8;③[(-x )3]4=(-x )12=x 12

④(-y 2)5=y 10

,正确的算式有( )

A .0个;

B .1个;

C .2个;

D .3个.

8.下列各式:①[]32

5)

(a a -?-;②34)(a a -?;③2332)()(a a ?-;④[]34a --,计算结

果为12a -的有( )

A.①和③;

B.①和②;

C.②和③;

D.③和④. 较难练习:

1、2(a n b n )2+(a 2b 2)n

2、(-2x 2y )3+8(x 2)2·(-x 2)·(-y 3

)

3、-2100X0.5100X(-1)

1994

+12

4.已知2m =3,2n =22,则22m+n

的值是多少

5.已知()8

3

21943a ??

= ???

,求3a 的值

6.已知105,106αβ==,求2310αβ+的值

7.已知x n =5,y n =3,求 (x 2y)2n

的值。

8.比较大小:218X310与210X3

15

9.若有理数a,b,c 满足(a+2c-2)2

+|4b-3c-4|+|

2

a -4b-1|=0,试求a 3n+1

b 3n+2-

c 4n+2

10、太阳可以近似的看作是球体,如果用V 、r 分别代表球的体积和半径,那么343

V r π=,太

阳的半径约为6X105

千米,它的体积大约是多少立方千米?(π取3)

三、同底数幂的除法

1、同底数幂的除法

同底数幂相除,底数不变,指数相减.

公式表示为:()0,m

n

m n

a a a a m n m n -÷=≠>、是正整数,且.

2、零指数幂的意义

任何不等于0的数的0次幂都等于1.用公式表示为:()0

10a a =≠.

3、负整数指数幂的意义

任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为

()1

0,n n

a a n a -=

≠是正整数 4、绝对值小于1的数的科学计数法

对于一个小于1且大于0的正数,也可以表示成10n a ?的形式,其中

110,a n ≤<是负整数.

注意点:

(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了;

(2)

()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉.

(3) 只要底数不为0,则任何数的零次方都等于1. 例题:

计算下列各题: (1)(m-1)5

÷(m-1)3

; (2)(x-y )10

÷(y-x )5

÷(x-y ); (3)(a m

)n

×(-a

m

3)

n

2÷(a

mn

)5

;

(4) 21

--(-

32)2-+(2

3)0. 简单练习:

1. ÷a 2

=a 3

. 2.若53

-k =1,则k= .

3.3

1

-+(

9

1)0

= . 4.用小数表示-3.021×103

-= 。

5.计算:26a a ÷= ,2

5

)()(a a -÷-= . 6.在横线上填入适当的代数式:14

6

_____x x =?,2

6

_____x x =÷. 7.计算:559x x x ?÷ = , )(3

5

5

x x x ÷÷ = . 8.计算:8

9

)1()1(+÷+a a = . 9.计算:2

3

)()(m n n m -÷-=___________. 10.(-a 2

)5

÷(-a )3

= ,920

÷2710÷37

= 。

中等练习: 1.如果a m

÷a x

=a

m

3,那么x 等于( )

A .3 B.-2m C.2m D.-3 2.设a ≠0,以下的运算结果:①(a 3

)2· a 2=a 7;②a 3÷a

2

-=a 5

③(-a )3

÷a 0

=-a 3

;④(-a )

2

-÷a=a

1

-,其中正确的是( )

A. ①②

B. ①③

C. ②④

D. ②③

3.下列各式计算结果不正确的是( )

A.ab(ab)2

=a 3b 3

; B.a 3b 2

÷2ab=2

1

a 2

b ; C.(2ab 2)3=8a 3b 6; D.a 3÷a 3·a 3=a 2

. 4.计算:()()()

4

3

25

a a

a -÷?-的结果,正确的是( )

A.7

a ; B.6

a -; C.7

a - ; D.6

a . 5. 对于非零实数m ,下列式子运算正确的是( )

A .9

2

3)(m m = ; B .623m m m =?; C .532m m m =+ ; D .426m m m =÷.

6若53=x ,43=y ,则y x -23等于( ) A.

25

4

; B.6 ; C.21; D.20. 7.计算:

⑴3

45

9

)(a a a ÷?; ⑵3

4

7

)()()(a a a -?-÷-; ⑶533248÷?; ⑷[]

23323

4)()()()(x x x x

-÷-?-÷-.

8.地球上的所有植物每年能提供人类大约16106.6?大卡的能量,若每人每年要消耗5108?大卡的植物能量,试问地球能养活多少人? 较难练习:

1观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是( )

A.2 ; B .4; C .8; D .6. 2.若02

)3()

63(2-+--x x 有意义,则x 的取值范围是( )

A .x>3;

B .x<2 ;

C .x≠3或x≠2;

D .x≠3且x≠2.

3.某种植物花粉的直径约为35000纳米,1纳米=910-米,用科学记数法表示该种花粉的直径为 .

4. 已知8

27

)3

2

(=

-x ,则x= . 5计算:20082009)8

1

()125.0(---÷-.

6.已知:200932122221----+???++++=s ,请你计算右边的算式求出S 的值.

7. 解方程:(1)15822=?x ; (2)5

)7(7-=x . 8. 已知3,9m

n

a a ==,求32m n a -的值. 9.已知23

5,310m n ==,求(1)9m n -;(2)29m n -.

10.化简求值:(2x-y )13

÷[(2x-y )3]2

÷[(y-2x )2

]3

,其中x=2,y=-1。

运用幂的运算法则的四个注意

一、注意法则的拓展性

对于含有三个或三个以上同底数幂相乘(除)、幂(积)的乘方等运算,法则仍然适用。 例1. 计算:

(1)a aaa a

a

···2

3

4

1234

10

==+++ (2)[

][]

()a b a b a b 23

436

41224

== (3)()-=

x y z xyz 4

444

二、注意法则的底数和指数的广泛性

运算法则中的底数和指数,可取一个或几个具体的数;也可取单独一个字母或一个单项

式,甚至可以是一个多项式。

例2. 计算: (1)()

y

y

m n m

n m n

-+-=22

(2)()

()()x y x y x y m n n m

+÷+÷+++322

22

()()

=+=+++--+x y x y m n n m m 322222

三、注意法则的可逆性

逆向应用运算法则,由结论推出条件,或将某些指数进行分解。 例3. 在下面各小题的括号内填入适当的数或代数式:

(1)()--+x x m 1

·

()()

()

=--+x x n 3

2()()()

· (2)a

n ()

(

)÷-1

=÷=++a a a

n n 224

()

四、注意法则应用的灵活性

在运用法则时,要仔细观察题目的特点,采取恰当、巧妙的解法,使解题过程简便。 例4. 计算:

125256255

÷?÷n m

=÷?÷==-+--+5555553243241224n m n m n m

幂的运算方法总结

作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练。现在对此做一探索。

幂的运算的基本知识就四条性质,写作四个公式:

①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n

只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1、已知a7a m=a3a10,求m的值。

思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了。

问题2、已知x n=2,y n=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n和y n的运算。

因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728

方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。

方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?

问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。

方法原则:逆用公式倒一倒。

当底数是常数时,会有更多的变化,如何思考呢?

问题4、已知22x+3-22x+1=48,求x的值。

思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。

简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x

=6×22x=48 ∴22x=8 ∴2x=3

∴x=1.5

方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。

问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。

思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。

简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34

∵m、n是正整数∴m+1=4,4m+1-n=0

∴m=3,n=13

方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。

问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。

思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。

简解:由题意知2c=2×2b=4×2a

∴2c=2b+1=2a+2

∴c=b+1=a+2

方法思考:底数是相同的常数时,通常把冪的值同乘以适当的常数变相同,然后比较它们的指数。

方法原则:系数质数和指数,常数底数造一造。

综合用到以上方法就更需要引起注意。

问题7、已知2x=m,2y=n,求22x+3y+1的值。

思路探索:要求的代数式与已知距离甚远,考虑逆用公式将其变成已知的代数式的形式。

简解:22x+3y+1=22x×23y×21=(2x)2×(2y)3×2=m2n3×2=2m2n3

方法思考:综合运用化质数、逆用公式和整体代人的方法。

问题8、已知a=244,b=333,c=422,比较a、b、c的大小。

思路探索:同底数幂比较大小观察指数大小即可,底数不能变相同的,只好逆用公式将指数变相同,比较底数大小了。

简解:a=244=24×11=(24)11=1611,

b=333=33×11=(33)11=2711

c=422=42×11=1611

∴a=c<b

方法思考:化同指数冪是比较底数不能化相同的冪的又一种方法。

思考归纳:幂的运算首先要熟练掌握幂的四条基本性质,不但会直接套用公式,还要能逆用。其次要注意要求的代数式与已知条件的联系,没明显关系时常常逆用公式将其分解。第三,底数是常数时通常将其化成质数积的乘方的形式,有常数指数的通常求出其值,作为该项的系数。第四,底数不同而指数可变相同的可通过比较底数确定其大小关系,还可通过积的乘方的逆运算相乘。

思考原则

可用公式套一套,

整体不同靠一靠,

逆用公式倒一倒,

常数底数造一造,

系数质数和指数,

综合运用瞧一瞧。

幂的运算方法总结

幂的运算方法总结 姓名:__________ 指导:__________ 日期:__________

作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练,现在对此做一探索。

幂的运算的基本知识就四条性质,写作四个公式: ①am×an=am+n ②(am)n=amn ③(ab)m=ambm ④am÷an=am-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1 已知a7am=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2 已知xn=2,yn=3,求(x2y)3n的值。 思路探索: (x2y)3n中没有xn和yn,但运用公式3就可将(x2y)3n化成含有xn和yn的运算。 因此可简解为,(x2y)3n=x6ny3n=(xn)6(yn)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢?

问题3 已知a3=2,am=3,an=5,求am+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:am+2n+6=ama2na6=am(an)2(a3)2=3×25×4=300 方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4 已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解: 22x+3-22x+1 =22x×23-22x×21 =8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5

2016年幂的运算中考分类

2016年幂的运算中考分类 一.选择题(共25小题) 1.(2016?重庆)计算a3?a2正确的是() A.a B.a5C.a6D.a9 2.(2016?福州)下列算式中,结果等于a6的是() A.a4+a2B.a2+a2+a2C.a2?a3D.a2?a2?a2 3.(2016?资阳)下列运算正确的是() A.x4+x2=x6B.x2?x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2 4.(2016?青岛)计算a?a5﹣(2a3)2的结果为() A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6 5.(2016?深圳)下列运算正确的是() A.8a﹣a=8 B.(﹣a)4=a4C.a3?a2=a6D.(a﹣b)2=a2﹣b2 6.(2016?雅安)下列各式计算正确的是() A.(a+b)2=a2+b2B.x2?x3=x6C.x2+x3=x5D.(a3)3=a9 7.(2016?台州)下列计算正确的是() A.x2+x2=x4B.2x3﹣x3=x3C.x2?x3=x6D.(x2)3=x5 8.(2016?枣庄)下列计算,正确的是() A.a2?a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1 9.(2016?盐城)计算(﹣x2y)2的结果是() A.x4y2B.﹣x4y2C.x2y2D.﹣x2y2 10.(2016?攀枝花)计算(ab2)3的结果,正确的是() A.a3b6B.a3b5C.ab6D.ab5 11.(2016?重庆)计算(x2y)3的结果是() A.x6y3B.x5y3C.x5y D.x2y3 12.(2016?吉林)计算(﹣a3)2结果正确的是() A.a5B.﹣a5C.﹣a6D.a6 13.(2016?成都)计算(﹣x3y)2的结果是() A.﹣x5y B.x6y C.﹣x3y2D.x6y2 14.(2016?宿迁)下列计算正确的是() A.a2+a3=a5B.a2?a3=a6C.(a2)3=a5D.a5÷a2=a3 15.(2016?漳州)下列计算正确的是() A.a2+a2=a4B.a6÷a2=a4C.(a2)3=a5D.(a﹣b)2=a2﹣b2 16.(2016?巴中)下列计算正确的是() A.(a2b)2=a2b2B.a6÷a2=a3C.(3xy2)2=6x2y4D.(﹣m)7÷(﹣m)2=﹣m5 17.(2016?德州)下列运算错误的是() A.a+2a=3a B.(a2)3=a6C.a2?a3=a5D.a6÷a3=a2 18.(2016?安徽)计算a10÷a2(a≠0)的结果是() A.a5B.a﹣5C.a8D.a﹣8 19.(2016?南京)下列计算中,结果是a6的是() A.a2+a4B.a2?a3C.a12÷a2D.(a2)3 20.(2016?扬州)下列运算正确的是()

幂的运算与整式的乘除知识点复习

幂的运算与整式的乘除知识点 一、幂的运算: 1.同底数幂相乘文字语言:_________________________;符号语言____________. 例1.计算:(1)103×104; (2)a ? a 3 (3)a ? a 3?a 5 (4) x m ×x 3m+1 例2.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a·(-a)3 (4)-a 3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5 (7)x 3? x 5+x ? x 3?x 4 同底数幂法则逆用符号语言:_________________ 例1:(1) ( ) ( ) ( ) ( ) 222225?=?= (2) () ( ) ( ) ( ) ( ) ( ) 33333336 ?=?=?= 例2:(1)已知a m =3,a m =8,求a m+n 的值. (2)若3n+3=a ,请用含a 的式子表示3n 的值. 2.幂的乘方文字语言: ___________________________;符号语言____________. 例1.计算:(1)( );105 3 (2)()4 3b ; (3)()().3 553a a ? (4)()() () 2 443 22 32x x x x ?+? (5)()() ()()3 35 2 10 25 4 a a a a a -?-?-?-+)( (6)()[ ]()[]4 33 2y x y x +?+ (7)()()()[]2 2 n n m m n n m -?-- 幂的乘方逆用符号语言:_________________ 例1:(1)) () () (6 4 (2 3 (_____) (_____) (____) (___) 12 a a a a a ==== (2)) () ((_____) (______) a a a n m mn ===)((__)a m =)((___)a n (3) 3 9(____) 3=

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析 【要点概论】 要点一、同底数幂的乘法特点 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一特点, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其 是遇到底数互为倒数时,算法更简便.如:1010 101122 1.22???? ?=?= ? ????? 重点四、注意事项

(完整版)幂的运算(知识总结)

幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 补充: 零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数) 次幂,等于这个数的p 次幂的倒数。用式子表示为:)0(10≠=a a ,p p a a 1=-(0≠a ,p 是正整数)。 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2452232222 x x x x -?-? ②()()()32 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为:()n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? ()np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

幂的运算(知识总结)

学习必备 精品知识点 幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的 乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2 4 5 2 2 32222x x x x -?-? ②()()() 3 2 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为: () n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? () np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题 (1) (-1/2 ) 2 ÷(-2) 3 ÷(-2) –2 ÷(∏-2005) 0 = = (2) (-2 a ) 3 ÷a -2 =

常见幂的大小比较技巧及幂的运算误区

专训2 常见幂的大小比较技巧及幂的运算误区 名师点金: 1.对于幂,由于它包含底数、指数、幂三种量,因此比较大小的类型有:比较幂的大小,比较指数的大小,比较底数的大小. 2.幂的相关运算法则种类较多,彼此之间极易混淆,易错易误点较多,主要表现在混淆运算法则,符号辨别不清,忽略指数“1”等. 1.幂的大小比较的技巧 比较幂的大小 指数比较法方法11.已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .a <b <c D .b >c >a 底数比较法 方法22.350,440,530的大小关系是( ) A .350<440<530 B .530<350<440 C .530<440<350 D .440<530<350 作商比较法 方法33.已知P =,Q =,那么P ,Q 的大小关系是( )999999119 990A .P >Q B .P =Q C .P <Q D .无法比较 比较指数的大小 4.已知x a =3,x b =6,x c =12,那么下列关系正确的是( ) A .a +b >c B .2b <a +c C .2b =a +c D .2a <b +c 比较底数的大小 5.已知a ,b ,c ,d 均为正数,且a 2=2,b 3=3,c 4=4,d 5=5,那么a ,b ,c ,d 中最大的数是( )

A .a B .b C .c D .d 2.幂的运算之误区 混淆运算法则 6.下列计算正确的是( ) A .a 2+a 3=a 5 B .a 2·a 3=a 5 C .(a 2)3=a 5 D .a 3÷a 2=a 5 7.下列运算中,结果是a 6的是( ) A .a 2·a 3 B .a 12÷a 2 C .(a 3)3 D .(-a)6 8.计算(2a)3的结果是( ) A .6a B .8a C .2a 3 D .8a 3 9.计算: (1)(a 3)2+a 5; (2)a 4·a 4+(a 2)4+(-4a 4)2. 符号辨别不清 10.计算的结果是( )(-12ab 2) 3 A .a 3b 6 B .a 3b 5 C .-a 3b 5 D .-a 3b 618181818 11.计算-[(-a)3]2的结果是________. 12.计算: (1)(-a 2)3; (2)(-a 3)2; (3)[(-a)2]3; (4)a·(-a)2·(-a)7.

幂的运算总结及方法归纳

幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘

法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:() m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 3 4 a a ?; (2) 2 3 b b b ?? ; (3)

(完整版)幂的运算(知识总结)

幕的四则运算(知识总结) 一、 同底数幕的乘法 运算法则:同底数幕相乘,底数不变,指数相加。用式子表示为: a m a n a m n (m n 是正整数) 二、 同底数幕的除法 运算法则:同底数幕相除,底数不变,指数相减。用式子表示为:a m a n a m n °(a 0且m 、n 是正整数,m>n 。) 补充: 零次幕及负整数次幕的运算: 任何一个不等于零的数的 0次幕都等于1;任何不等于零的数的 p (p 是正整数) 次幕,等于这个数的 p 次幕的倒数。用式子表示为: 1 a 0 1(a 0),a p -( a 0,p 是正整数)。 a p 、幕的乘方 mn 1、计算: 补充: 同底数幕的乘法与幕的乘方性质比较: 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为: 扩展 m n p mnp mn p mp. np a a a a a b a b 提高训练 1. 填空 (1) (1/10)5 x (1/10)3 = ______________ (2) (-2 x 2 y 3) 2 = ______________ ⑶(-2 x 2) 3 = ___________ (4) 0.5 -2 = _________ (5) (- 10)2 X (- 10)0 X 10"2 = __________ 2. 选择题 (1)下列说法错误的是. A. (a - 1)0 = 1 a 工1 B. (— a )n = - a n n 是奇数 C. n 是偶数,(一a n ) 3 = a 3n D. 若a 丸,-为正整数,则a p =1/ a -p (2) [(-x ) 3 ]2 ?-x ) 2 ] 3的结果是( ) A. x -10 B .-x -10 C. x -12 D. - x -12 (3) a m = 3 , a n =2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题 (1) (-1/2 ) 2 十(-2) 3 十(-2) - -(口-2005) 0 ⑵(-2 a ) 3 F -2 = 同底数幂乘法 幂的乘方 幂的运算 乘法 乘方 指数运算种类 加法 乘法 运算法则:幕的乘方,底数不变,指数相乘 乘方转化为同底数幕的乘法 练习: .用式子表示为: n 都是正整数) 注:把幕的 ①2 2 x 32 X 2 4 X 2 5 X 2 2 2 m n 3 m 1 2 2 ② a a a a a b “ a n b n (n 是正整数) (m n 、p 是正整数)

(完整版)幂的知识点

幂的运算(基础) 【要点梳理】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们 的指数之和等于原来的幂的指数。即m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从 而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计 算更简便.如:1010 101122 1.22???? ?=?= ? ????? 要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加. (4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】 类型一、同底数幂的乘法性质 1、计算: (1)2 3 4 444??;(2)3 4 5 2 6 22a a a a a a ?+?-?; (3)1 1211()()()()()n n m n m x y x y x y x y x y +-+-+?+?+++?+. 【答案与解析】 解:(1)原式23494 4++==. (2)原式3452617777 2222a a a a a a a +++=+-=+-=. (3)原式11 211222() ()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别 同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算: (1)5 3 2 3(3)(3)?-?-; (2)221() ()p p p x x x +?-?-(p 为正整数); (3)232(2)(2)n ?-?-(n 为正整数). 【答案】 解:(1)原式5 3 2 5 3 2 532 103(3)333333++=?-?=-??=-=-. (2)原式22122151()p p p p p p p x x x x x +++++=??-=-=-. (3)原式525216222 (2)22n n n +++=??-=-=-.

讲义-幂的运算

第四讲幂的运算 (补充讲义) Part1 同底数幂的乘除法 【知识回顾】 1.同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数) 2.同底数幂相除,底数不变,指数相减,即a m÷a n=a m-n(m,n都是正整数) 注意:(1)同底数幂的乘除法法则可以逆用; (2)底数a可以是单独一个数或字母,也可以是一个单项式或多项式,但a≠0;(3)当幂指数是1时,不要误认为没有指数,如a·a2=a3; (4)注意同底数幂的乘除法与整式加减法不可混淆 3.规定:a0=1(a≠0),即任何不等于0的数的0次幂都等于1. 4.任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数,即a-n=(a≠0,n为正整数) 5.2n+2n=2n+1 (22017+22017=22018) 【涉及题型】 1.科学记数法。 2.符号问题。 3.概念的延伸 【精讲例题】 例1.【科学计数法】苏州市军用机场的面积为0.0087平方千米,这个数用科学记数法表示为平方米。 例2.【符号问题】m为偶数,则(a﹣b)m?(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数 C.不相等D.以上说法都不对 例3.【概念延伸】(1)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个 B.1个 C.2个 D.3个 (2)下面的计算不正确的是() A.5a3﹣a3=4a3 B.2m?3n=6m+n C.2m?2n=2m+n D.﹣a2?(﹣a3)=a5

Part2 幂的乘方与积的乘方 【知识回顾】 1.幂的乘方,底数不变,指数相乘,即(a m)n=a m+n 2.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即 (ab)n=a n b n(n为正整数) 【涉及题型】 1.比较大小问题。 2.计算。 3.技巧计算。 【精讲例题】 例4.【比较大小】(1)已知a=8131,b=2741,c=961,则a,b,c的关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a (2)已知a=244,b=333,c=522,那么a、b、c的大小关系是()A.a>b>c B.a<b<c C.c>a>b D.b>c>a 例5.【计算】 (1)计算:(x4)2+(x2)4﹣x(x2)2?x3﹣(﹣x)3?(﹣x2)2?(﹣x) (2)计算0.1259×(﹣8)10+()11×(2)12. 例6.【技巧计算】 (1)已知25x=2000,80y=2000,则等于() A.2 B.1 C.D.

苏教版七年级下册数学[幂的运算(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 幂的运算(基础) 【学习目标】 1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方); 2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】 【396573 幂的运算 知识要点】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其

幂的大小比较技巧

幂的大小比较技巧 在幂的运算中,我们经常会遇到幂的大小比较问题,其常用的方法有如下几种: 一、化为指数相同的幂后比较 例1 、、的大小关系是( ). A .<< B. C. D. 析解:因为,,, 又因为125<243<256,所以,故选B. 二、化为底数相同的幂后比较 例2 已知,则的大小关系是( ). A. B. C. D. 析解:因为,,. 显然,有,故选A. 三、利用中间量作比较 例3 与的大小关系是:_____.(填“>”、“<”或“=”)(2002年希望杯赛题) 析解:因为,而,即<. 故填“<”. 四、乘方后作比较 例4 设,则的大小关系是( ). A. B. C. D. 析解:因为,所以,此时; 又因为,所以,此时. 503404305503404305305040534<<504030543<<403050453<<()105051033243==()104041044256==()10 3031055125==305040534<<31416181,27,9a b c ===,,a b c a b c >>a c b >>c b a >>b c a >>()31314124813 3a ===()414131232733b ===()61 612122933c ===a b c >>1615133316151333()1313135656433322 22>==>()166441616221615==>16151333111534 111,,345m n p ?? ????=== ? ? ???????,,m n p m n p <m p >34 12121111,51254256 p n ????==== ? ?????1212p n >p n >

幂的运算 知识点总结及考点强化练习

幂的运算 知识点总结及考点强化练习 第一部分 知识梳理 一、 同底数幂的乘法 1. 同底数幂的乘法 同底数幂相乘,底数不变,指数相加。 公式表示为:+m n m n a a a ?=()m n 、都是正整数 2. 同底数幂的乘法可以推广到三个或三个以上的同底数幂相乘,即 m n p m n p a a a a ++??=()m n p 、、都是正整数。 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 二、 幂的乘方和积的乘方 1. 幂的乘方 幂的乘方,底数不变,指数相乘. 公式表示为:()()m n mn a a m n =,都是正整数. 幂的乘方推广:[()]()m n p mnp a a m n p =,,都是正整数 2.积的乘方 积的乘方,把积的每个因式分别乘方,再把所得的幂相乘. 公式表示为:()()n n n ab a b n =是正整数 积的乘方推广:()()n n n n abc a b c n =是正整数 注意点: (1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数. (2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加” 区分开. (3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果. (4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式. 三、 同底数幂的除法

1. 同底数幂的除法 : 同底数幂相除,底数不变,指数相减. 公式表示为:(0)m n m n a a a a m n m n -÷=≠>,、是正整数,且 同底数幂的除法推广: (0)m n p m n p a a a a a m n p m n p --÷÷=≠>+,,、、是正整数 2.零指数幂的意义: 任何不等于0的数的0次幂都等于1: 用公式表示为:01(0)a a =≠ 3.负整数指数幂的意义: 任何不等于0的数的()n n -是正整数次幂,等于这个数的n 次幂的倒数.(先进行幂的运算然后直接倒数): 用公式表示为:1 (0)n n a a n a -=≠,是正整数 4.绝对值小于1的数的科学记数法 对于绝对值大于0小于1的数,可以用科学记数法表示的形式为10 n a -?,其中110a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数(含整数位上的零)所决定. 注意点: (1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了. (2) (0)a m n m n ≠>,、是正整数,且是法则的一部分,不要漏掉. (3) 只要底数不为0,则任何数的零次方都等于1. 第二部分 例题精讲 考点1.幂的运算法则 例1. 计算 (1)26()a a -?; (2) 32()()a b b a -?-; (3)12()n a +; (4)2 232?? ? ??-xy (5)53()a a -÷; (6)32(1)(1)a a +÷+ 变式 计算 (1)35(2)(2)(2)b b b +?+?+ (2)3223()()x x -?-; (3)41n n a a ++÷;

幂的运算方法总结

幂的运算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

?幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300 方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2

相关文档
最新文档