实时边沿检测实验报告

实时边沿检测实验报告
实时边沿检测实验报告

武汉大学教学实验报告电子信息学院通信工程专业 2016年7月3日

实验名称实时边沿检测指导教师曹华伟

姓名李卓擎年级大三学号 2013301200075 成绩

姓名郝玉洁年级大三学号 2013301200076 成绩

1.使用matlab进行sobel算法验证的结果:原始图:

阈值设为100时,Sobel算法边检图:

2.verilog行为级仿真代码验证

仿真波形图:

从仿真波形图中可以看出,sobel的输出只有全0和全1,与verilog程序的设置一致。将输出得到的savadata.txt恢复成的图片:

由此图像可以得出,该sobel算法正确。

3.通过VGA显示器观察的实验效果:

(1)二值图像:

(2)边沿提取图像:

4.后仿真实验结果:

(1)波形图:

(2)生成的txt文件恢复出的图像:

电气检测技术试验报告

本科生实验报告 实验课程电气测试技术学院名称核技术与自动化工程学院专业名称电气工程及其自动化学生姓名刘恒学生学号50504 指导教师王洪辉实验地点逸夫楼6C801 实验成绩 二O—四年十二月 填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用 A4 纸双面打印(封面双面打印)或在 A4 大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,倍行距,页边距采取默认形式(上下,左右,页 眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%间距:标准);页码用小五号字底 端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小 4 号宋体);关 键词(隔行顶格书写“关键词”三字,提炼 3-5 个关键词,用分号隔开,小 4 号黑体); 正文部分采用三级标题; 第1章XX (小二号黑体居中,段前行) XXXXX小三号黑体XXXXX(段前、段后行) 1.1.1 小四号黑体(段前、段后行) 参考文献(黑体小二号居中,段前行),参考文献用五号宋体,参照《参考文献著录规则

( GB/T 7714-2005)》。

实验一 金属箔式应变片性能 一单臂电桥 (910 型 998B 型) 1.1实验目的 (1) 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 (2) 观察了解箔式应变片的结构及粘贴方式; (3) 测试应变梁变形的应变输出; (4) 熟悉传感器常用参数的计算方法。 实验原理 本实验说明箔式应变片及单臂单桥的工作原理和工作情况。应变片是最常用的测力 传感元 件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形 变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成 电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种, 当电桥平衡时,桥路对臂电阻乘积 R1、R2 R3 R4中,电阻的相对变化率分别为 2迟;用四个应变片组成二个差对工作,且 R R1=R2=R3=R4=R, R 仆 R 。 由此可知,单臂、半桥、全桥电路的灵敏度依次增大。 所需单元及部件:直流稳压电源、差动放大器、双平衡梁、测微头、一片应变片、 F/V 表、主、副电源。 旋转初始位置:直流稳压电源打到 2V 档,F/V 表打到2V 档,差动放大增益最大。 实验步骤 了解所需单元、部件在试验仪上的所在位置,观察梁上的应变片, 应变片为棕色衬 底箔式结 构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片, 测 微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大 器的输 出端与F/V 表的输入插口 Vi 相连;开启主、副电源;调节差动放大器的增益到 最大位置,然后调整差动放大器的调零旋钮使 F/V 表显示为零,关闭主、副电源。 相等,电桥输出为零,在桥臂四个电阻 R1/R1、差动状态工作,则有

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

自动检测技术

自动检测技术 实验一应变片的粘贴工艺实验 一、实验目的: 熟悉掌握应变片的粘贴工艺及要求。 二、应变片的粘贴工艺及要求: 应变片的粘贴工艺及质量直接影响着测量的精度与成败,因此必须按照粘贴工艺规程粘贴应变片,一般步骤为: 1、应变片的检查 (1)外观检查 用放大镜(或投影仪)进行外观检查。凡是金属丝栅不紊乱、布置均匀。引线牢固,底基胶层均匀者可以认为合格。 (2)阻值分选 用精密电桥测量应变片的阻值,一般不超过应变片名义阻值的±0.5%时,认为其合格。但要根据实测电阻值分组包装使用。在同一组中,各片之间的实测电阻值偏差最好不超过±0.1Ω。当相差为±0.5Ω时上,电阻应变仪就不易平衡了。 2、粘贴表面的清理(即试件清理) 一般对贴片表面的要求为: (1)完全去掉表面的氧化皮及污垢。通常采用手提电动砂轮,钢刷、 砂布等打磨。测点表面最好用0#或1#砂布打磨到▽6即可,也 不易太光滑。打磨表面为应变片基底面积的2~3倍 (2)用划针在测点表面轻画贴片位置的坐标线。 (3)用丙酮(或无水乙醇、甲苯)和脱脂棉清洗。直到没有脏物为止,晾干后即可开始粘贴应变片。 3、贴片的具体步骤

一般按使用粘贴剂所要求的工艺进行。但应注意以下几点: (以使用KH一502粘贴剂为例) (1) 粘片前粘片的工具要准备齐全。 (2) 首先在应变片如背面和清理好的试件表面上都涂上—层很薄的粘贴剂、然后将应变片按试验要求的方位贴于试件上。 (3) 贴上后,在片上盖上—层玻璃纸。一手提住引线,用另一只手的大拇指轻轻滚压(主要用垂直压力,不要有推力)。把多余的胶水与气泡挤出。 (4) 贴片完毕后,应变片应该整齐、干净,位置准确,胶层均匀。 4、应变片的干燥处理: 在贴片完成后,应根据所用粘贴剂的干燥固化条件,进行干燥处理。对KH一502粘贴剂。一般可在干燥的空气中自然干燥,也可用热烘干燥,如用红外线灯烤,电吹风吹等。 5、粘贴质量的检查: 对应变片粘贴质量应检查如下项目: (1)应变片粘贴位置是否准确; (2)胶水是否均匀。有无气泡与漏贴部分,尽量给以补救。尤其注意将两端贴牢。 (3)用万用表检查应变片是否断路或短路。 (4)用高阻计或万用表欧姆高阻挡,(如MF—10型的10K档)检查应变片与试件间的绝缘电阻。对于一般的测量,绝缘电阻≥50~100兆欧即可。 6、导线的连接与固定: 对经过检查合格的应变片,即可焊接导线并使之固定。导线是应变片与测量仪器连接的桥梁,起着传输应变信号的作用。因此,应选择合适的导线。一般为了保护应变片,往往应在应变片与导线之间设有接线

检测技术实验报告

《检测技术实验》 实验报告 实验名称:第一次实验(一、三、五) 院(系):自动化专业:自动化 姓名:XXXXXX学号: XXXXXXXX 实验室:实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理

通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 E为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端Ui短接,输出端Uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。Rw4的位置确定后不能改动。关闭主控台电源。 3、将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单 臂直流电桥,见图1-2,接好电桥调零电位器Rw1,直流电源±4V(从主控台接入),电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。 4、在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电 压表显示2mV,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表1-1,关闭电源。 五、实验数据处理: 利用matlab拟合出的曲线如下:

现代电子技术综合实验报告 熊万安

电子科技大学通信与信息工程学院实验报告 实验名称现代电子技术综合实验 姓名: 学号: 评分: 教师签字 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:学号:指导教师:熊万安 实验地点:科A333 实验时间:2016.3.7-2016.3.17 一、实验室名称:电子技术综合实验室 二、实验项目名称:电子技术综合实验 三、实验学时:32 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 试验要求: 1. 数码管第1、2位显示“1-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;同时,每秒钟,蜂鸣器对应发出0.3秒的声音加0.7秒的暂停,对应第8秒到第1秒,声音分别为“多(高

音1)西(7)拉(6)索(5)发(4)米(3)莱(2)朵(中音1)”;数码管第5位显示“-”号,数码管第6、7、8位显示温度值,其中第6、7位显示温度的两位整数,第8位显示1位小数。按按键转到任务2。 2. 停止声音和温度。数码管第1、2位显示“2-”,第3、4位显示学号的最后2位,第5位显示“-”号,第6到第8位显示ADC电压三位数值,按按鍵Key后转到任务3,同时蜂鸣器发出中音2的声音0.3秒; 3. 数码管第1、2位显示“3-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;调节电压值,当其从0变为最大的过程中,8个发光二极管也从最暗(或熄灭)变为最亮,当电压值为最大时,秒表暂停;当电压值为最小时,秒表回到初始值8.0;当电压值是其他值时,数码管又回到第3、4位显示从8.0秒到1.0秒的循环倒计时秒表状态。按按鍵Key回到任务1,同时蜂鸣器发出中音5的声音0.3秒。

自动检测技术的实验报告

自动检测技术实验报告 实验一 金属箔式应变片性能实验 ——单臂、半桥、全桥电路性能比较 一、实验目的: 1. 观察了解箔式应变片的结构及粘贴方式。 2. 测试应变梁形变的应变输出。 3. 比较各种桥路的性能(灵敏度)。 二、实验原理: 应变片是最常用的测力传感元件,当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变, 应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常见的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为44332211 R R R R R R R R ????、、、,当使用一个应变片时, ∑? = R R ;当二个应变片组成差动状态工作,则有 ∑?= R R R 2;用四个应变片组成二个差动对工作,且 ∑?= ====R R R R R R R R 4,4321。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4 ? E ?ΣR ,电 桥灵敏度R R V K u //?=,于是对应于单臂、半桥、全桥的电压灵敏度分别为1/4E 、1/2E 和E 。由此可知,当E 和 电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关,单臂、半桥、全桥电路的灵敏度依次增大。

U-X关系曲线图 三、实验所需部件: 直流稳压电源(V 4 档)、电桥、差动放大器、金属箔式应变片、测微头、电压表。 四、实验接线图: 图(1) 五、实验步骤: 1、调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+,-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2、按图(1)将实验部件用实验线连接成测试桥路,单臂桥路中R 2、R 3、R 4和W D 为电桥中的固定电阻和直流调平衡电位器,R 1为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V ;半桥桥路中R 1和R 2为箔式应变片,R 3、R 4仍为固定电阻;全桥桥路中R 1、R 2、R 3、R 4全部使用箔式应变片。在接半桥、全桥桥路时应特别注意其应变片的受力方向,一定要接成差动形式。 3、调节测微头,使悬臂梁处于基本水平状态。 4、确认接线无误后开启仪器电源,并预热数分钟。 5、调整电桥电位器W D ,使测试系统输出为零。 6、旋动测微头,带动悬臂梁分别作向上和向下的运动,以水平状态下输出电压为零,向上和向下移动各5mm ,测微头每移动0.5mm 记录一个差动放大器输出电压值,并列表。根据表中所测数据计算灵敏度S ,S = △V /△X ,并在一个坐标图上做出V-X 关系曲线。比较三种桥路的灵敏度,并作出定性的结论。 六、实验数据分析: 实验所得数据如下表所示: 位移mm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 电压V (单臂) -0.006 -0.011 -0.016 -0.030 -0.038 -0.043 -0.050 -0.060 -0.069 -0.076 电压V (半桥) -0.015 -0.030 -0.044 -0.060 -0.072 -0.090 -0.102 -0.118 -0.136 -0.152 电压V (全桥) -0.029 -0.063 -0.093 -0.118 -0.150 -0.182 -0.213 -0.247 -0.282 -0.310 位移mm -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 电压V (单臂) 0.014 0.019 0.026 0.033 0.045 0.052 0.060 0.066 0.076 0.085 电压V (半臂) 0.019 0.034 0.050 0.065 0.080 0.102 0.120 0.138 0.155 0.175 电压V (全桥) 0.033 0.066 0.098 0.136 0.170 0.198 0.230 0.261 0.293 0.325 根据表中所测数据,在一个坐标图上做出V-X 关系曲线图,如下图: v W D +4V -4V R 3 R 2 R 1 R 4

形位公差检测实验报告

目 录 实验一 零件形状误差的测量与检验 实验1—1直线度测量与检验 实验1—2平面度测量与检验 实验1—3圆度测量与检验 实验1—4圆柱度测量与检验 实验二 零件位置误差的测量 实验2—1 平行度测量与检验 实验2—2 垂直度测量与检验 实验2—3 同轴度测量与检验 实验2—4圆柱跳动测量与检验 实验2—4—1圆柱径向跳动测量与检验 实验2—4—2圆柱全跳动测量与检验 实验2—5端面跳动测量与检验 实验2—5—1端面圆跳动测量与检验 实验2—5—1端面全跳动测量与检验 实验2—6 对称度测量与检验 实验三 齿轮形位误差的测量与检验 实验3—1齿圈径向跳动测量与检验 实验3—2齿轮齿向误差测量与检验

实验一 零件形状误差的测量与检验 实验1—1直线度测量与检验 一、实验目的 1、通过测量与检验加深理解直线度误差与公差的定义; 2、熟练掌握直线度误差的测量及数据处理方法和技能; 3、掌握判断零件直线度误差是否合格的方法和技能。 二、实验内容 用百分表测量直线度误差。 三、测量工具及零件 平板、支承座、百分表(架)、测量块(图纸一)。 四、实验步骤 1、将测量块2组装在支承块3上,并用调整座4支承在平板上,再将测量块两端点调整到与平板等高(百分表示值为零),图1-1-1所示。 图1-1-1 用百分表测量直线度误差 2、在被测素线的全长范围内取8点测量(两端点为0和7点,示值为零),将测量数据填入表1-1-1中。 表1-1-1: 单位:μm 测点序号 0 1 2 3 4 5 67计算值 图纸值 合格否 两端点连线法 最小条件法 3、按图1-1-1示例将测量数据绘成坐标图线,分别用两端点连线法和最小条件法计算测量块直线度误差。

化工产品分析检测技术实验报告_图文.

前言 仪器分析是一种科学实验的手段,利用它可以获取所需要的信息,仪器分析实验的目的是通过实验教学,包括严格的基本操作训练,实验方案设计,实验数据处理,谱图解析,实验结果的表述及问题分析,掌握仪器的原理、结构、各主要部件的功能及操作技能,了解各种仪器分析技术在科学研究领域的应用,培养理论联系实际、利用掌握的知识解决问题的能力,培养良好的科学作风和独立从事科学实践能力。 在这门课程的学习中,我们了解了原子吸收光谱法、紫外可见分光光度法、红外光谱法、气相色谱法、高效液相色谱法、离子色谱法等仪器分析的方法。其中,我们重点学习了离子色谱法和原子吸收光谱法,并进行了实验操作,下面介绍一下原子吸收光谱法和离子色谱法测浓度。 二、原子吸收光谱法 1.原子吸收光谱法概述: 光谱仪器的产生原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔什(A.Walsh发表了他的著名论文“原子吸收光谱在化学分析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初, Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。电热原子吸收光谱仪器的产生1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-10g,使原子吸收光谱法向前发展了一步。原子吸收分析仪器的发展随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。

实验报告

?珠宝现代检测技术? 实验报告 姓名:邓林峰 班级:11宝石鉴定1班 学号:1120992 日期:2014-10-07

一、已知宝石红外光谱分析: 1天河石的红外光谱反射法分析:据图测试分析可得1130~1010cm-1强吸收区,由2~3个谱带组成。各谱带分别位于1130~1120、1027~1010、强度依次增大,900~400cm-1范围由较多的强度不大的吸收谱带构成一个复杂的弱吸收带,其中595、535cm-1出现中等吸收峰。

2碧玺的红外光谱反射法分析:据图测试分析可得1300cm-1左右有一个强吸收带谱带比较宽为BO3的振动;1200~950cm-1有3个强吸收风带为SiOSi、OsiO、OsiO的振动;820~550cm-1由3个中~弱的 吸收带组成为SiOSi振动。

3尖晶石的红外光谱反射法分析:据图测试分析可得大于750cm-1几本没有吸收峰带,725~500cm-1有2个明显的强吸收带,谱带较宽。 二、未知宝石红外光谱分析:

4据图测试分析可得:1200~900cm-1有2个强吸收带,强度递增;900~400cm-1有较多的强大不大的吸收谱带构成一个复杂的弱吸收带区,535cm出现中等吸收峰,该谱图测试跟长石类的钠长石、微斜长石极像,加上外铺助放大镜、天平、分光镜等工具判断该图是日光石的红外光谱图。 三、已知宝石紫外-可见光测试分析

5祖母绿紫外可见光谱分析:据图测试分析可得祖母绿在红区683nm、680nm、和637nm处有吸收线明显,662nm、646nm两个弱带,从 630nm~580nm有一微弱的普遍吸收,在蓝区477nm处有一弱谱线。

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

现代检测技术实验报告

实验一金属箔式应变片单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。 二、实验内容 将应变式传感器的其中一个应变片接入电桥作为一个桥臂,构成直流电桥,利用应变式传感器实现重量的测量。 三、实验所用仪表及设备 应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±4V电源、数字万用表。 四、实验步骤 1、根据图1-1,应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 图1-1 应变片传感器安装示意图 2、实验模板差动放大器调零,方法为: (1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。 3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。 4、在传感器托盘上放置1只砝码,读取数显表显示值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表1-1。

(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书 李学聪冯燕编 广东工业大学自动化学院 二0一四年二月

实验一 热电偶测温及校验 一、 实验目的 1.了解热电偶的结构及测温工作原理; 2.掌握热电偶校验的基本方法; 3.学习如何定期检验热电偶误差,判断是否及格。 二、 实验内容和要求 观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。 三、 实验主要仪器设备和材料 1. CSY2001B 型传感器系统综合实验台(下称主机) 1台 2. 温度传感器实验模块 1块 3. 热电偶 镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支 4. 2 1 3位数字万用表 1只 四、 实验方法、步骤及结果测试 1.观察热电偶,了解温控电加热器工作原理。 ①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。 ②温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比 例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 2.仪器连线(如图1所示) ① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处; ② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。 3.开启电源 将综合实验台和加热炉的电源开关打“开”。 4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。 5. 继续将炉温提高到70℃、90℃、110℃、130℃和150℃,将热电偶输出的热电势记录于表2。

一般检查实验报告

竭诚为您提供优质文档/双击可除 一般检查实验报告 篇一:检测技术实验报告 《检测技术实验》 实验名称:院(系):姓名:实验室:同组人员:评定成绩: 实验报告 第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,

式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1应变式传感器安装示意图 图2-2应变传感器实验模板、接线示意图 图2-3单臂电桥工作原理 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端ui短接,输出端uo2接数显电压表(选择2V档),

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

软件测试实验报告心得

竭诚为您提供优质文档/双击可除软件测试实验报告心得 篇一:软件测试实验报告 软件测试实验报告 万继王(20XX1081147) 任课教师:贾春花 班级:20XX级计科(1)班 实验目的: 计算机在生活中的普遍,计算机已经成为我们生活中不可缺少的部分,计算机已经被广泛的应用到各个领域,网络技术的飞速发展,互联网已经成为了人们发布与获取信息的重要途径之一,在我们的生活中已经离不开计算机,离不开网络,计算机给人们的生活带来方便的同时也需要开发相应的管理系统和软件,所以,这就需要我们进行软件测试,软件测试是使用人工或者自动手段来运行或测定某个系统的过程,检验它是否满足规定的需求或者弄清预期结果与实际结果之间的差别。软件测试作为保证软件质量、提高软件可靠性的重要手段,在软件开发中起着不可替代的作用。其关

键与核心是测试数据生成。软件测试的实质是根据软件开发各阶段的规格说明和程序的内部结构精心选取一批测试数据,形成测试用例,并用这些测试用例去驱动被测程序,观察程序的执行结果,验证所得结果与预期结果是否一致,然后做相应的调整。 此次实验是为了检验我们是否掌握本学期所学的《软件质量保证与测试》这门课程的基础知识,并查找出被测试软件的不足或缺陷,及时做出相应的调整,也让我们掌握一定的黑盒测试和白盒测试的相应内容。还有就是在于总结测试阶段的测试以及分析测试结果,描述系统是否符合需求(或达到xxx功能目标),同时,了解软件测试概念,了解软件测试的主要内容,了解手动测试自动测试,初步掌握测试软件并能够进行简单运用。了解软件测试在当前计算机行业中的相关地位,了解为了成为软件测试工程师所需要掌握的技能。 实验内容: 软件测试前景:随着软件产业的发展,软件产品的质量控制与质量管理正逐渐成为软件企业生存与发展的核心。 软件测试是指:使用人工或者自动手段来运行或测试某个系统的过程,其目的在于检验它是否满足规定的需求或弄清预期结果与实际结果之间的差别。 软件测试的内容:1.确定软件生存周期中的一个给定阶

传感器检测技术实验报告

《传感器与检测技术》 实验报告 姓名:学号: 院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员: 评定成绩:审阅教师:

传感器第一次实验 实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。 二、基本原理 电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝长度相对变化。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1. 根据接线示意图安装接线。 2. 放大器输出调零。 3. 电桥调零。 4. 应变片单臂电桥实验。

由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。 系统灵敏度S = ΔU ΔW =0.0535V/Kg (即直线斜率),非线性误差= Δm yFS = 0.08 10.7 ×100%= 0.75% 五、思考题 单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。 答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。 实验三 金属箔式应变片——全桥性能实验 一、实验目的 了解全桥测量电路的优点 二、基本原理 全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ?=?=?=?时,其桥路输出电压 3o U EK ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1.根据接线示意图安装接线。 050 100150200 x y

自动检测技术实验一

东南大学自动化学院 实验报告课程名称:检测技术 第1 次实验

实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 :学号: 实验室:实验组别: 同组人员:实验时间:2013 年11月16日 评定成绩:审阅教师: 实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零

拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验 在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。实验结果填入表2-1,画出实验曲线。 表2-1 重量(g) 20 40 60 80 100 120 140 160 180 200 电压(mv) 15.2 30.5 45.9 61.5 77.0 92.4 108.0 132.8 148.3 163.9 拟合方程为:0.834 4.1933 U W =?- 重量20 40 60 80 100 120 140 160 180 200

精密形位误差的测试与数据处理实验报告(2015年最新)

实验一 正弦尺测莫氏锥度 一、实验目的 熟悉正弦尺测量锥体塞规的原理及操作方法。 二、实验内容 正弦尺测莫氏锥度。 三、实验仪器及器材 正弦尺、莫氏锥度、千分表(表架)、量块。 四、测量原理 图2-1 测量示意图 根据锥体量规的标号,可从手册中查出相应的锥度αtg K 2=,则αsin 可以求出。为了使锥体塞规装到正弦尺上后,其母线平行于基面——平板,故在正弦尺下(锥体小头的圆柱下)要垫起高度h 。可由下式计算: α2sin ?=L h 式中L 为正弦尺二圆柱轴心线间距离。 实际上工件的锥度K 可通过查表查出,从αtg K 2=中导出2 442sin K K +=α,则量块组高度h 按下式直接计算。 2 44K LK h += 仪器说明: L=100mm(200mm) B-宽面式(窄面式)

五、实验步骤 1. 根据被测锥度塞规的公称锥角2α及正弦尺柱中心距L ,由 h=Lsin 2α计算量块组 的尺寸,并组合好量块,在正弦尺下(锥体小头的圆柱下)要垫起高度h 。本实验选用4号塞规,查表得2α=2°58’ 31’’=2.9753°,则h=Lsin 2α=100*sin2.9753°=5.19 mm ,选用4+1.19的量块组合。 2. 将圆锥塞规稳放在正弦尺的工作面上(应使圆锥塞规轴线垂直于正弦尺的圆柱轴 线),选取a 、b 两测量点,这里a 、b 两点的固定距离用一个宽度l =10 mm 的量块保证。 3. 用带架千分表测出a 、b 两点高度差H ?。在被测圆锥塞规素线上距离l 的a 、b 两 点进行测量和读数,将指示表在第一参考点处前后推移,记下最大读数。测量的指示表的测头应先压缩1~2 mm 。重复15次,取平均值。 4. 按l H K ?= ?算出锥体误差,再根据查表所得K ?来判断适用性。 六、实验记录 在试验过成中记录的数据如表2-1所示。 表2-1 莫式锥度测量数据表 七、数据处理及实验分析 1.在a 点处千分表测得的15组数求平均值: 0.00430.0040.0030.0050.00620.00330.0020.0010.001 0.9000.9022() 15 mm ?+-+-++?+?++-++ =()()()

相关文档
最新文档