Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and

Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and
Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and

Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision

making

Yuqiang Li a ,b ,Shengming Liao a ,?,Gang Liu a

a School of Energy Science and Engineering,Central South University,Changsha,Hunan 410083,China

b

Department of Mechanical Science and Engineering,University of Illinois at Urbana-Champaign,IL 61801,USA

a r t i c l e i n f o Article history:

Received 28April 2014

Received in revised form 3July 2014Accepted 6July 2014

Available online 5August 2014Keywords:

Solar-dish Brayton system Multi-objective optimization NSGA-II

Decision making

a b s t r a c t

A 100kW regenerative Brayton heat engine driven by the hybrid of fossil fuel and solar energy was considered for optimization based on multiple criteria.A thermodynamic model of such hybrid system was developed so that the power output,thermal ef?ciency and dimensionless thermo-economic perfor-mance with the imperfect performance of parabolic dish solar collector,the external irreversibility of Brayton heat engine and conductive thermal bridging loss could be obtained.Evolutionary algorithm based on NSGA-II (Elitist Non-dominated Sorting Genetic Algorithm)was employed to optimize triple-objective and dual-objective functions,where the temperatures of hot reservoir,cold reservoir and work-ing ?uid,the effectiveness of hot-side heat exchanger,cold-side heat exchanger and regenerator were considered as design https://www.360docs.net/doc/9d13508169.html,ing decision makings,including Shannon Entropy,LINMAP and TOPSIS methods,the ?nal optimal solutions were selected from Pareto frontier obtained by NSGA-II.The results show that there exists an appropriate working ?uid temperature to cause optimal solution under each given condition.The comparisons of triple-objective and dual-objective optimization with single-objec-tive optimization indicate that multi-objective optimization can yield the more suitable results due to the lower deviation index from the ideal solution.In the analysis of triple-objective optimization,an expected result is obtained that the optimal values of the power out,ef?ciency and dimensionless thermo-economic performance of solar-dish Brayton system (68.65kW,0.2331and 0.3077)are 22.6%,34.9%and 18.4%respectively less than that of convectional Brayton heat engine.Finally,a range of func-tional relationship between the optimized objectives in Pareto frontier is ?tted to provide more detailed insight into the optimal design of solar-dish Brayton system.

ó2014Elsevier Ltd.All rights reserved.

Introduction

Growing demand for energy and increasing environmental problems have driven the development of solar energy source as a replacement of fossil fuels [1].One of the most cost ef?cient ways of utilizing solar energy is solar thermal power technology includ-ing trough,central tower and dish heat engine systems [2].High ef?ciency,modularity,autonomous and inherent hybrid capability make solar-dish heat engine systems receiving more and more attention.In most contemporary solar-dish heat engine system,Stirling heat engine has been used as the power conversion unit [3].However,Brayton heat engine shows a number of advantages,chie?y including a signi?cant reduction in O&M costs and simpli-?ed hybridization [4].Recent development in the ?eld of high-temperature regenerator will allow the regenerative Brayton heat engine to compete with Stirling heat engine in term of ef?ciency [5].Solar-dish Brayton system has the potential to become one of the least expensive sources of renewable energy power.

Recently,great attention has been drawn to the single-objective optimization of thermodynamic systems driven by solar energy based on various criteria including power output [6],thermal ef?-ciency [7],power density [8],ecological [9],exergetic [10]and thermo-economic performance [11],etc.As the performance of a ?at plate solar air heater is poor due to low heat transfer capability,the system was optimized by Siddhartha [12]to obtain maximum thermal performance.Optimal thermal performance was obtained under different Reynolds number,emissivity of the plate,tilt angle and number of glass plates.Wang et al.[13]optimized a solar-dri-ven Kalina cycle with the net power output as an objective function under the given conditions.Results indicated that an optimal tur-bine inlet pressure can lead to the maximum net power output and maximum system ef?ciency.The optimal performance analy-sis of an internally and externally irreversible solar driven heat

https://www.360docs.net/doc/9d13508169.html,/10.1016/j.ijepes.2014.07.027

0142-0615/ó2014Elsevier Ltd.All rights reserved.

?Corresponding author.Tel.:+86073188836936;fax:+86073188879863.

E-mail address:smliao@https://www.360docs.net/doc/9d13508169.html, (S.Liao).

engine was carried out by Yilmaz et al.[14].It was found that the design parameters at maximum power density resulted in higher thermal ef?ciency than those at maximum power output condi-tions.Zhang et al.[15]established an irreversible model of a solar-driven Brayton heat engine.The operating temperature of the solar collector and the temperature ratio in the isobaric process under maximum thermal ef?ciency were obtained.The optimiza-tion of an integrated solar combined cycle system was studied using an exergoeconomic concept,where an attempt was made to minimize investment cost of equipment and cost of exergy destruction[16].Optimization process improved the thermal ef?-ciency and exergy ef?ciency of the system and reduced the rate of fuel cost.

However,the single-objective optimization always brings about unacceptable results with respect to the other objectives when the objectives under consideration con?ict with each other.For many complicated problems,the multi-objective approaches are more accurate and real because it allows decision making to think about the trade-offs between different bene?ts of different objects[17]. In dealing with multi-objective optimization problems,it needs to satisfy a number of different and even contradictory objectives at the same time,which is known as Pareto optimal solutions. For a given Pareto optimal set,the corresponding objective func-tion values in the objective space are called the Pareto frontier. Evolutionary algorithms(EA)are widely applied to solve multi-objective optimization in recent years[18–22],because it has been proved to be more ef?cient than the classic optimization methods such as weighted sum methods,goal programming and min–max methods.

A number of research works on multi-objective optimization of the solar-driven thermodynamic systems have been investigated by researchers[23–30],because of the limitation of single objec-tive optimization.However,few works have involved the multi-objective optimization of solar-dish Brayton system.In this study, multi-objective optimization is conducted to achieve the optimal power output,thermal ef?ciency and dimensionless thermo-economic performance for a solar-dish Brayton system.The EA method based on the elitist non-dominated sorting genetic algorithm(NSGA-II)is employed to obtain the Pareto optimal set and Pareto frontier in objective space[31,32].The?nal optimal solutions from available solutions located at the Pareto frontier are selected by the decision makings including Shannon Entropy, LINMAP and TOPSIS methods.

Thermodynamic analysis of the solar-dish Brayton system Solar-dish Brayton system description

The schematic diagram for a100kW regenerative Brayton heat engine driven by the hybrid of fossil fuel and solar energy is shown in Fig.1.During the day time,the parabolic dish concentrator con-trolled by a sun tracker dramatically focuses sun light on the focal point where the receiver is located.The receiver absorbs energy re?ected by the concentrator and transfers it to the Brayton heat engine’s working?uid.The Brayton heat engine produces power by the controlled burning of fuel.In the solar-dish Brayton system, solar energy is used to replace(or supplement)the fuel.The result-ing hot working?uid expands rapidly and is used to produce power.In the gas turbine,the burning is continuous and the expan-sion working?uid is used to drive the turbine and alternator.The waste heat exhausted from the gas turbine is used to preheat working?uid from the compressor in the regenerator,which is a key to improve system ef?ciency.

Thermodynamic model of solar-dish Brayton system

A thermodynamic model is established to calculate the power output,thermal ef?ciency and dimensionless thermo-economic performance of solar-dish Brayton system based on the following assumptions:

The solar-dish Brayton system operates at a steady state.

The heat source and heat sink of Brayton heat engine have in?-nite thermal capacitance rates.

Nomenclature

q obtained energy,W

I direct solar?ux intensity,W/m2

A area,m2

f dimensionless objective functions

h heat transfer coef?cient,W mà2Kà1

T temperature,K

e emissivity factor

R concentrator ratio

_Q heat transfer rate,W

_C heat capacity rate,W Kà1

N number of transfer units

C i annual investment cost,ncu yearà1

C f annual fuel cost,nuc yearà1

P power output

F0dimensionless thermo-economic performance

ED Euclidian distance

SE Shannon Entropy

a investment cost parameter,ncu yearà1mà2

b fuel consumption cost parameter,ncu yearà1Wà1

k a/b,economical parameter,W mà2

d deviation index

X assessment parameter of Shannon Entropy decision making Y assessment parameter of TOPSIS decision making Greek

g thermal ef?ciency

d Stefan’s constant,W mà2Kà4

e heat exchanger effectiveness

n percentage of the internal conductance of heat engine with respect to the thermal capacity rate of working

?uid

Subscript

c parabolic dish solar collector

app aperture

rec receiver

B Brayton heat engine

wf working?uid

H heat resource

L heat sink

R regenerator

0ambient condition,optics

1–6process states of Brayton cycle

168Y.Li et al./Electrical Power and Energy Systems64(2015)167–175

The Brayton heat engine is an endoreversible regenerative gas-turbine power cycle.

The imperfect performance of parabolic dish solar collector,the external irreversibility of Brayton heat engine and conductive thermal bridging loss are considered.

Fig.2shows the T–S diagram of solar-dish Brayton system based on the assumptions,which consists of four processes includ-ing two constant pressure(1–2and3–4)and two isentropic pro-cesses(2–3and4–1).The working?uid at state1is heated by the regenerator and then the hot isothermal reservoir at tempera-ture T H to state2.After this process,the working?uid passes through the turbine to state3for producing power.After state3, the working?uid releases heat to the regenerator and then to the cold isothermal reservoir at temperature T L to state4.Finally the working?uid undergoes the compression process4–1in the compressor and return to state1.

The obtained energy of the parabolic dish collector

Given the conduction,convection and radiation losses,the actual useful obtained energy of the parabolic dish collector is given by[3,33]q

c

?IA app g0àA rec?h ceT HàT0Tte c deT4HàT40

where I is the direct solar?ux intensity;A app

tor aperture area and the absorber area,respectively;

lector optical ef?ciency;h c is the conduction/convection transfer coef?cient;T H and T0are the average

and the ambient temperature,respectively;

tor of the collector;and d is the Stefan’s constant.

Thermal ef?ciency g c of the parabolic

obtained as[3,33]

g

c

?

q

c

IA app

?g0à

1

IR c

h ceT HàT0Tte c deT4

H

à

h

where R c is the collector concentrating ratio.

The conductive thermal bridging losses from

heat sink

Using Bejan’s linear-mode[34],the rate

from the hot reservoir at temperature T H to

temperature T L is given by

_Q

HL

?_C BeT HàT LT?_C wf neT HàT LT

where_C B is the internal conductance of Brayton heat engine;C wf is the heat capacity rate of the working?uid;and n denotes the per-centage of the internal conductance with respect to the heat capac-ity rate of the working?uid(n?_C B=_C wf).

The absorbed heat from the heat source and the released heat to the heat sink

The rates at which heat is supplied from heat source to working ?uid(_Q H),heat is rejected from the working?uid to the heat sink (_Q L)and heat is exchanged in the regenerator(_Q R)are obtained by [35,36]

_Q

H

?_C wf e HeT HàT5T?_C wfeT2àT5Te4T

_Q

L

?_C wf e LeT6àT LT?_C wfeT6àT4Te5T

_Q

R

?_C wf e ReT3àT1T?_C wfeT5àT1T?_C wfeT3àT6Te6T

where the effectiveness of hot-side heat exchanger e H,cold-side heat exchanger e L and regenerative heat-exchanger e R are de?ned as:

e H?1àeàN He7Te L?1àeàN Le8T

Fig.1.Schematic diagram of a solar-dish Brayton system. Fig.2.T–S diagram of a solar-dish Brayton system.

e R?N R

N Rt1

e9T

where the number of transfer units N H,N L,N R are based on the min-imum heat conductance rates as N H?h H A H=_C wf,N L?h L A L=_C wf, N R?h R A R=_C wf.

Rearranging Eqs.(4)–(6)gives

T2?e H T Hte1àe HTT5e10TT4?e L T Lte1àe LTT6e11TT5?e1àe RTT1te R T3e12TT6?e1àe RTT3te R mT1e13TSince processes(4–1)and(2–3)are isentropic compression and expansion,the second law of thermodynamics requires that

T1T3?T2T4e14T

After substituting Eqs.(10)–(13)into Eq.(14),it can be obtained that

a1T2

3

ta2T3ta3?0e15T

where

a1?e1àe HTe1àe LTe1àe RTe R

a2?a4T1ta5

a3?a1T2

1

ta6T1ta7

a4?e1àe HTe1àe LTe2Rte1àe HTe1àe LTe1àe RT2à1

a5?e He1àe LTe1àe RTT Hte1àe HTe L e R T L

a6?e He1àe LTe R T Hte1àe HTe Le1àe RTT L

a7?e H e L T H T L

Then T2,T3,T4,T5and T6can all be expressed as a function of T1, T H,T L and e R,e L,e H:

T3?a8?àa2àea2

2à4a1a3T1=2

h i

=2a1e16TT2?e H T Hte1àe RT?e1àe RTT1te R a8 e17T

T4?e L T Lte1àe RT?e1àe RTa8te R T1 e18TT5?e1àe RTT1te R a8e19TT6?e1àe RTa8te R T1e20TThe total heat absorbed rate_Q HT from the hot reservoir and heat released rate_Q LT to cold reservoir are obtained using the following expressions:

_Q

HT

?_Q Ht_Q HL?_C wf e HeT HàT5Ttn_C wfeT HàT LTe21T

_Q

LT

?_Q Lt_Q HL?_C wf e LeT6àT LTtn_C wfeT HàT LTe22TSubstituting from Eqs.(19),(20)into Eqs.(21),(22)gives

_Q

HT

?_C wf e H?T Hàe1àe RTT1àe R a8 t_C wf neT HàT LTe23T

_Q LT ?_C wf e L?e1àe RTa8te R T1àT L t_C wf neT HàT LTe24T

Power output,thermal ef?ciency and dimensionless thermal-economic

performance

According to the?rst law of thermodynamics,the power output

P and the thermal ef?ciency g B of Brayton heat engine are given by:

P?_Q HTà_Q LT?_C wf e H?T Hàe1àe RTT1àe R a8 à_C wf e L?e1àe RTa8

te R T1àT L e25T

g

B

?1à

_Q

LT

_Q

HT

?

e H?T Hàe1àe RTT1àe R a8 àe L?e1àe RTa8te R T1àT L

e H?T Hàe1àe RTT1àe R a8 tneT HàT LT

e26T

Therefore,the thermal ef?ciency of solar-dish Brayton system is

obtained by

g

m

?g B g c?g0à

1

IR c

h ceT HàT0Tte c deT4

H

àT4

T

h i

?

e H?T Hàe1àe RTT1àe R a8 àe L?e1àe RTa8te R T1àT L

e H?T Hàe1àe RTT1àe R a8 tneT HàT LTe27T

Given the thermo-economic performance of solar-dish Brayton

system,the power output per total cost accounting for both invest-

ment and fuel consumption cost is also considered as the optimiza-

tion objective,which is de?ned as follows[11]:

F?

P

C itC f

e28T

where C i and C f refer to annual investment and fuel consumption

costs,respectively.The investment cost of the system is assumed

to be proportional to the size of the system.The size of the system

can be taken proportional to the total heat transfer area.Thus the

annual investment cost of the system can be given as:

C i?aeA HtA LTe29T

where a is equal to the capital recovery factor times investment cost

per unit heat transfer area;the hot-side exchanger area A H and cold-

side exchanger area A L are obtained as

A H?à

_C

wf

lne1àe HT

h H

e30T

A L?à

_C

wf

lne1àe LT

h L

e31T

The annual fuel consumption cost is proportional to the heat

rate input,i.e.

C f?b_Q HTe32T

where the coef?cient b is equal to the annual operation hours times

price per unit heat input.After substituting Eqs.(25)and(29)–(32)

into Eq.(28),the dimensionless thermo-economic performance is

given by

F0?

e H?T Hàe1àe RTT1àe R a8 àe L?e1àe RTa8te R T1àT L

e H?T Hàe1àe RTT1àe R a8 àk lne1àe HT

h H

tlne1àe LT

h L

h ie33T

where k=a/b is the economical parameter.

Multi-objective optimization with evolution algorithm based

on NSGA-II

Multi-objective optimization formulation

In multi-objective optimization,there does not typically exist a

feasible solution that maximizes or minimizes all objective func-

tions simultaneously.Therefore,attention is paid to Pareto optimal

solutions which are not dominated by other solutions and cannot

170Y.Li et al./Electrical Power and Energy Systems64(2015)167–175

be improved with respect to any objective

least one objective.The set of all

referred to as the Pareto optimal set,and the

tive function values are called the Pareto

tier is bounded by an ideal objective

objective vector z nadir,which de?ne upper

the objective function values of Pareto

tively[17].All mentioned above have been

illustrates the Pareto frontier for the

functions f1and f2.

Visualizing the Pareto frontier via

NSGA-II

In the present investigation,the Pareto

responding Pareto frontier are achieved

algorithm based on elitist non-dominated

(NSGA-II)proposed by Deb[37].Shi and Reitz

formance of different schemes for

algorithms and concluded that NSGA-II was

ods because it carried out an elite-preserving

cit diversity-preserving mechanism

depicted in Fig.4.In an evolutionary cycle

parent population is?rst generated and is

teria:(i)rank and(ii)crowding distance.

by a tournament selection are stored in an

pool,where crossover and mutation

ate the child populations.Next,the old set of solutions and newly

created solutions are merged to create a larger population,and?t-ness values are assigned to all individuals by the non-dominated sorting.Finally,individuals with better?tness are selected by elitist sorting and these become the parent individuals.These steps are repeated until the maximum generation number is reached.When NSGA-II terminates,non-dominated solutions of the?nal popula-tion are the approximate Pareto frontier of multi-objective space. Decision making in multi-objective optimization

In the case of multi-objective problems,informing the decision making is needed to select the?nal optimal solution from the Par-eto frontier.A number of decision makings can be applied[39].In this study,most recognized and common type of decision makings,which is a useful tool to acquire weights of alternatives[40]. Consider P ij in decision matrix f ij with n alternatives and m objectives,the element of this matrix for j th objective is obtained by:

P ij?

f ij

P n

i?1

f ij

;i?1;...;n;j?1;...;me34TShannon Entropy is calculated as below

SE j?àM

X n

i?1

P ij ln P ij;where M?

1

lnenT

e35T

Next step is to calculate deviation degree(d j)which shows that to what extent j th objective has useful information for decision making.Deviation degree is given by

d j?1àSE je36T

Then the weight of j th objective can be obtained based on fol-lowing equation:

w j?

d j

P m

j?1

d j

e37T

A comprehensive assessment parameter is expressed as:

X i?P ij?w je38TThe solution with maximum X i is selected as a?nal desired optimal solution in Shannon Entropy decision making.Therefore, the index of?nal optimal solution i?nal is

i final?i2maxeX iTe39TLINMAP decision making

The Euclidian distance of every solution on the Pareto frontier from the ideal solution marked by ED i+is de?ned as:

ED it?

?????????????????????????????????????

X n

j?1

ef ijàf ideal

j

T2

r

e40T

Fig.3.Pareto frontier of a multi-objective optimization.Fig.4.Flow chart of NSGA-II algorithm.

Y.

where f ideal

j is the ideal solution of j th objective

optimization.In the LINMAP decision minimum distance from ideal point is optimal solution[41],hence,i?nal is

i final?i2mineED itT

TOPSIS decision making

Besides the ideal solution,the nadir TOPSIS decision making.Therefore,beside the of each solution from ideal solution ED i+,the of each solution from the nadir solution mented as a criterion for the selection of?nal

ED ià?

??????????????????????????????????????X n

j?1

ef ijàf nadir

j

T2 r

A new assessment parameter is de?ned as

Y i?

ED ià

ED iàtED it

e43T

In TOPSIS decision making,a solution with maximum Y i is selected as a desired?nal solution[42],therefore,i?nal is

i final?i2maxeY iTe44TResults and discussion

Multi-objective functions,including triple-objective(P–g m–F0) and dual-objective(P–g m,P–F0and g m–F0),are optimized by imple-menting NSGA-II and decision makings.In this regard,six design variables with corresponding constraints expressed in Eqs.(45)–

(50)have been considered as follows:

Temperature at hot reservoir;700K6T H61000Ke45T

Temperature at cold reservoir;400K6T L6500Ke46T

Temperature of the working fluid at state1of Brayton cycle;

T L

Effectiveness of regenerator;0:56e R60:8e50TAll the other operating parameters will remain constant as g0=0.85,I=1000W mà2,R c=1300,e c=0.9,d=5.67?10à8 W mà2Kà4,h c=20W mà2Kà1,T0=300K,k=4,n=0.02,h H= h L=2000W mà2Kà1,and_C wf?1050W Kà1.

Fig.5shows the Pareto frontier for triple-objective(P,g m and F0) optimization obtained using NSGA-II algorithm with the speci?ed options in Table1.Three?nal optimal solutions selected by Shannon Entropy,LINMAP and TOPSIS decision makings are also indicated separately.The ideal solution is in coordination(69.72, 0.2352and0.3114)which are P,g m and F0respectively.The corresponding nadir solution is in coordination(65.64,0.2255 and0.2968).With respect to the20–30%thermal ef?ciency of solar-dish Bratyton system,optimal solution regions are appropriate according to the previous works[4,15].To assist the optimal design of the system,the?tted curve(F0=0.1018–0.0185ln P+0.0198g m+13.4277g m2à52.1478g m3+71.2245g m4) derived from Pareto frontier is obtained.

Table2lists the?nal optimal results of triple-objective optimi-zation and single-objective optimization in detail.It can be observed that the?nal optimal solutions always occur in the max-imum temperature at hot reservoir,the minimum temperature at cold reservoir and the maximum effectiveness of cold-side heat exchanger,hot-side heat exchanger and regenerator within the de?ned ranges.The differences between the optimal solutions depend on the temperature of the working?uid in Brayton cycle. In order to explore the reasonable status of various solutions obtained in this study,the deviation index of each solution from the ideal solution is presented as[25].

d?

?????????????????????????????????????

P n

j?1

f jàf ideal

j

2

r

?????????????????????????????????????

P n

j?1

f jàf ideal

j

2

r

t

?????????????????????????????????????

P n

j?1

f jàf nadir

j

2

re51T

The last column of Table2represents the deviation indexes for the results in each optimization approach.As is clear,the deviation indexes(0.3682,0.2614and0.2652)for the triple-objective opti-mization are less than those for maximum P,maximum g m and maximum F0which are0.2848,0.4071and0.5645,respectively. Therefore,the?nal optimal solution selected by LINMAP decision making is the most preferred.

In order to analyze the performance difference between hybrid and conventional systems,the same Brayton heat engine without solar?eld is optimized based on the indicated triple-objective. Without the effect of solar?eld on the Brayton cycle,the maximum effectiveness of hot-side heat exchanger,cold-side heat exchanger and regenerator can reach to0.8,0.8and0.9,respectively.Based on the increase of fuel consumption rate and the decrease of invest-ment cost because of no solar share,the economical parameter k=2.5is applied in the optimization.Fig.6presents the Pareto frontier and the?nal optimal result selected by LINMAP decision making which shows the minimum deviation index from ideal solution in triple-objective optimization.It can be seen that

5.Pareto frontier and optimal solutions for triple-objective(P–g m optimization.

Table1

Speci?ed NSGA-II options for multi-objective optimization in this

study.

Speci?ed options for AGA Value

Population250

Generations500

Pool size200

Tour size2

Distribution index for crossover20

Distribution index for mutation20

172Y.Li

the optimal solutions locate in 76.04kW 6P 693.02kW,0.32656g B 60.3681and 0.34156F 060.3916.Table 3compares the corresponding optimal results of hybrid and conventional sys-tems,where the optimal values of E H ,E L ,E R ,T H and T L are not included because they are always approximately equal to their maximum or minimum limits as shown in Table 2.It is found that the optimal power out,ef?ciency and dimensionless thermo-eco-nomic performance of solar-dish Brayton system decrease 22.6%,34.9%and 18.4%respectively when compare with convec-tional Brayton heat engine,which is expected outcome according the previous studies [43,44].

Figs.7–9present the Pareto frontiers for the dual-objective optimization (P –g m ,P –F 0and g m –F 0),where the ?nal optimal solu-tions selected by decision makings are shown too.As can be seen Figs.7–9,the thermal ef?ciency and dimensionless thermo-eco-nomic performance decrease with the rising power output,while the dimensionless thermo-economic increases with the ef?ciency.Likewise,three curves are ?tted to the Pareto frontiers obtained in the dual objective optimization,which are g m =(0.2731à0.0283P 0.5)/(1à0.1192P 0.5),F 0=(0.3131à0.0045P )/(1à0.0142P )and F 0=1.4727g m à0.0354,respectively.

Tables 4–6compare the ?nal optimal results for dual-objective (P –g m ,P –F 0and g m –F 0)optimizations based on Shannon Entropy,LINMAP and TOPSIS decision makings and for single-objective

optimizations based on maximum P ,g m and F 0.From the last vol-ume of Tables 4–6,it is found that the deviation indexes for the dual-objective optimization are less than the corresponding values in single-objective optimization,which is consistent with the result in triple-objective optimization.Hence,it implies that the solutions for multi-objective optimization are more desirable

Table 2

Comparison between optimal solutions for triple-objective (P –g m –F 0)and single-objective optimizations.Fig.6.Pareto frontier and optimal solution for convectional Brayton heat engine.

Table 3

Comparison of optimal results in convectional Brayton heat engine and solar-dish Brayton system based on the NSGA-II and LINMAP decision making.Systems

Dependent variables Objectives T 1(K)

T 2(K)T 3(K)T 4(K)T 5(K)T 6(K)_Q R (kW)_Q HT (kW)_Q LT (kW)P (kW)g

F 0Brayton heat engine 556.38943.93737.86434.91719.71574.52171.49247.98159.1988.790.3581(g B )0.3773Solar-dish Brayton

586.87

904.57

718.38

466.09

692.08

613.17

110.47

235.68

167.04

68.65

0.2331(g m )

0.3077

Pareto frontier and optimal solutions for dual-objective (P –g m )optimization.

Pareto frontier and optimal solutions for dual-objective (P –F 0)optimization.

Y.Li et al./Electrical Power and Energy Systems 64(2015)167–175

173

results.In addition,the ?nal optimal solution selected by Shannon Entropy decision making presents the minimum deviation index,which is different from the case in triple-objective optimization.It should be noted that the application of decision makings has not general rule as other decision makings may yield better optimal solutions in other cases.

Conclusions

A thermodynamic model is developed to determine power output,thermal ef?ciency and dimensionless thermo-economic performance of a solar-dish Brayton system.Multi-objective optimizations,including triple-objective (P –g m –F 0)optimization and dual-objective (P –g m ,P –F 0and g m –F 0)optimization,are carried out using evolutionary algorithm based on NSGA-II,in which the temperatures of hot reservoir,cold reservoir and the working ?uid of Brayton cycle,as well as the effectiveness of hot-side heat exchanger,cold-side heat exchanger and regenerator are consid-ered as design variables.

The ?nal optimal solutions located at the Pareto frontier obtained by NSGA-II are selected by three decision makings based on Shannon Entropy,LINMAP and TOPSIS methods,respectively.The results show that an optimal working ?uid can be achieved in a given case.By comparing the deviation index of each solution from the ideal solution,it is indicated that the multi-objective opti-mization can lead to a more desirable design than the single-objec-tive optimization.In the analysis related to the performance difference between hybrid and convectional systems,it is found that the optimal power out,ef?ciency and dimensionless thermo-economic performance of solar-dish Brayton system decrease by 22.6%,34.9%and 18.4%respectively when compare with that of the same Brayton heat engine without solar ?eld.For triple-objective and dual-objective optimizations,the optimal solutions with the least deviation index are yielded by different decision makings,which illustrates that the application of

decision

9.Pareto frontier and optimal solutions for dual-objective (g optimization.

Table 4

Comparison between optimal solutions for dual-objective (P –g m )and single-objective optimizations.Optimization algorithms

Decision makings

Design variables Objectives Deviation index

E H

E L E R T H (K)T L (K)T 1(K)P (kW)g m

d NSGA-II

Shannon Entropy 0.690.690.8999.99400.03591.2368.990.23210.1768LINMAP 0.690.70.79999.97400.01590.4168.940.23230.1913TOPSIS

0.70.690.8999.97400.09590.8268.970.23220.1840Maximum P 0.690.690.8999.83400.19604.9271.420.22030.2278Maximize g m

0.69

0.69

0.79

999.78

400.11

564.21

68.06

0.2376

0.4065

Table 5

Comparison between optimal solutions for dual-objective (P –F 0)and single-objective optimizations.Optimization algorithms

Decision makings

Design variables Objectives Deviation index E H

E L E R T H (K)T L (K)T 1(K)P (kW)F

d NSGA-II

Shannon Entropy 0.690.690.8999.98400.01590.1568.910.30670.1978LINMAP 0.690.70.8999.96400.09588.9368.820.30710.2199TOPSIS

0.70.70.791000400.08589.3468.850.30690.2125Maximum P 0.690.690.8999.83400.19604.9271.420.29320.2278Maximize F 0

0.69

0.69

0.79

999.78

400.11

564.21

67.42

0.3144

0.5636

Table 6

Comparison between optimal solutions for dual-objective (g m –F 0)and single-objective optimizations.Optimization algorithms

Decision makings

Design variables Objectives

Deviation index

E H

E L E R T H (K)T L (K)T 1(K)g m

F

d NSGA-II

Shannon Entropy 0.69

0.69

0.8

999.99

400.01

565.59

0.2352

0.3114

LINMAP TOPSIS

Maximum g m 0.70.690.79999.84400.15567.970.23760.31240.1169Maximum F 00.690.690.79999.78400.11564.210.23720.31440.1465

Energy Systems 64(2015)167–175

makings has not general rule and depends on speci?c conditions.In addition,the curves?tted to Pareto frontiers for multi-objective optimization are obtained for better insight into the optimal design of solar-dish Brayton system.

Acknowledgments

This work was partially supported by the Fundamental Research Funds for the Central Universities(Grant No. 2012zzts016)and the Key Laboratory of Regenerative Energy Electric-Technology of Hunan Province(Grant No.2012ZNDL009). References

[1]Liu G.Sustainable feasibility of solar photovoltaic powered street lighting

systems.Int J Elect Power Energy Syst2014;56:168–74.

[2]Li Y,Liao S,Rao Z,Liu G.A dynamic assessment based feasibility study of

concentrating solar power in China.Renew Energy2014;69:34–42.

[3]Sharma A,Shukla SK,Rai AK.Finite time thermodynamic analysis and

optimization of solar-dish Stirling heat engine with regenerative losses.

Thermal Sci2011;15.

[4]Mills D.Advances in solar thermal electricity technology.Solar Energy

2004;76:19–31.

[5]Chen LG,Zhang WL,Sun FR.Power,ef?ciency,entropy-generation rate and

ecological optimization for a class of generalized irreversible universal heat-engine cycles.Appl Energy2007;84:512–25.

[6]Wu C.Output power and ef?ciency upper bound of real solar heat engines.Int J

Ambient Energy1988;9:17–21.

[7]De Mey G,De Vos A.On the optimum ef?ciency of endoreversible

thermodynamic processes.J Phys D:Appl Phys1994;27:736.

[8]S?ahi_n B,Kodal A,Yavuz H.Maximum power density for an endoreversible

Carnot heat engine.Energy1996;21:1219–25.

[9]Cheng CY.The ecological optimization of an irreversible Carnot heat engine.J

Phys D:Appl Phys1997;30:1602.

[10]S?ah?n B,Kodal A,Ekmek?_I,Yilmaz T.Exergy optimization for an

endoreversible cogeneration cycle.Energy1997;22:551–7.

[11]Kodal A,Sahin B.Finite size thermoeconomic optimization for irreversible heat

engines.Int J Thermal Sci2003;42:777–82.

[12]Varun Siddhartha.Thermal performance optimization of a?at plate solar air

heater using genetic algorithm.Appl Energy2010;87:1793–9.

[13]Wang JF,Yan ZQ,Zhou EM,Dai YP.Parametric analysis and optimization of a

Kalina cycle driven by solar energy.Appl Thermal Eng2013;50:408–15. [14]Yilmaz T,Ust Y,Erdil A.Optimum operating conditions of irreversible solar

driven heat engines.Renew Energy2006;31:1333–42.

[15]Zhang Y,Lin BH,Chen JC.Optimum performance characteristics of an

irreversible solar-driven Brayton heat engine at the maximum overall ef?ciency.Renew Energy2007;32:856–67.

[16]Baghernejad A,Yaghoubi M.Exergoeconomic analysis and optimization of an

integrated solar combined cycle system(ISCCS)using genetic algorithm.

Energy Convers Manage2011;52:2193–203.

[17]Konak A,Coit DW,Smith AE.Multi-objective optimization using genetic

algorithms:a tutorial.Reliab Eng Syst Safety2006;91:992–1007.

[18]Sayyaadi H,Amlashi EH,Amidpour M.Multi-objective optimization of a

vertical ground source heat pump using evolutionary algorithm.Energy Convers Manage2009;50:2035–46.

[19]Bernal-Agustín JL,Dufo-López R.Ef?cient design of hybrid renewable energy

systems using evolutionary algorithms.Energy Convers Manage2009;50: 479–89.

[20]Gómez-Lorente D,Triguero I,Gil C,Rabaza O.Multi-objective evolutionary

algorithms for the design of grid-connected solar tracking systems.Int J Elect Power Energy Syst2014;61:371–9.[21]Fadaee M,Radzi M.Multi-objective optimization of a stand-alone hybrid

renewable energy system by using evolutionary algorithms:a review.Renew Sustain Energy Rev2012;16:3364–9.

[22]Dipama J,Teyssedou A,AubéF.A grid based multi-objective evolutionary

algorithm for the optimization of power plants.Appl Thermal Eng 2010;30:807–16.

[23]Vera JT,Laukkanen T,Sirén K.Multi-objective optimization of hybrid

photovoltaic-thermal collectors integrated in a DHW heating system.Energy Build2014.

[24]Ahmadi MH,Dehghani S,Mohammadi AH,Feidt M,Barranco-Jimenez MA.

Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria.Energy Convers Manage2013;75:635–42.

[25]Ahmadi MH,Sayyaadi H,Dehghani S,Hosseinzade H.Designing a solar

powered Stirling heat engine based on multiple criteria:maximized thermal ef?ciency and power.Energy Convers Manage2013;75:282–91.

[26]Antipova E,Boer D,Cabeza LF,Guillén-Gosálbez G,Jiménez L.Uncovering

relationships between environmental metrics in the multi-objective optimization of energy systems:a case study of a thermal solar Rankine reverse osmosis desalination plant.Energy2013;51:50–60.

[27]Gebreslassie BH,Guillén-Gosálbez G,Jiménez L,Boer D.Solar assisted

absorption cooling cycles for reduction of global warming:a multi-objective optimization approach.Solar Energy2012;86:2083–94.

[28]Spelling J,Favrat D,Martin A,Augsburger G.Thermoeconomic optimization of

a combined-cycle solar tower power plant.Energy2012;41:113–20.

[29]Silva R,Berenguel M,Pérez M,Fernández-Garcia A.Thermo-economic design

optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms.Appl Energy2014;113:603–14. [30]Kulkarni GN,Kedare SB,Bandyopadhyay S.Determination of design space and

optimization of solar water heating systems.Solar Energy2007;81:958–68.

[31]Pires DF,Antunes CH,Martins AG.NSGA-II with local search for a multi-

objective reactive power compensation problem.Int J Elect Power Energy Syst 2012;43:313–24.

[32]Panda S,Yegireddy NK.Automatic generation control of multi-area power

system using multi-objective non-dominated sorting genetic algorithm-II.Int J Elect Power Energy Syst2013;53:54–63.

[33]Li YQ,He YL,Wang WW.Optimization of solar-powered Stirling heat engine

with?nite-time thermodynamics.Renew Energy2011;36:421–7.

[34]Bejan A.Theory of heat transfer-irreversible power plants.Int J Heat Mass

Transfer1988;31:1211–9.

[35]Cheng CY,Chen CK.Power optimization of an endoreversible regenerative

Brayton cycle.Energy1996;21:241–7.

[36]Khaliq A,Kumar R.Finite-time heat-transfer analysis and ecological

optimization of an endoreversible and regenerative gas-turbine power-cycle.

Appl Energy2005;81:73–84.

[37]Deb K,Pratap A,Agarwal S,Meyarivan T.A fast and elitist multiobjective

genetic algorithm:NSGA-II.IEEE Trans Evol Comput2002;6:182–97.

[38]Shi Y,Reitz RD.Assessment of multiobjective genetic algorithms with different

niching strategies and regression methods for engine optimization and design.

J Eng Gas Turbines Power2010;132:052801.

[39]Liu G.Development of a general sustainability indicator for renewable energy

systems:a review.Renew Sustain Energy Rev2014;31:611–21.

[40]Guisado JL,Jiménez-Morales F,Guerra JM.Application of shannon’s entropy to

classify emergent behaviors in a simulation of laser dynamics.Math Comput Model2005;42:847–54.

[41]Sayyaadi H,Mehrabipour R.Ef?ciency enhancement of a gas turbine cycle

using an optimized tubular recuperative heat exchanger.Energy2012;38: 362–75.

[42]Etghani MM,Shojaeefard MH,Khalkhali A,Akbari M.A hybrid method of

modi?ed NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel.Appl Thermal Eng2013;59:309–15.

[43]Ghaem Sigarchian S,Strand T,Spelling J,Malmquist A.Modeling and analysis

of a hybrid solar-dish brayton engine.In:Proceedings of the international solar PACES conference;2012.

[44]Soltani R,Mohammadzadeh Keleshtery P,Vahdati M,KhoshgoftarManesh M,

Rosen M,Amidpour M.Multi-objective optimization of a solar-hybrid cogeneration cycle:application to CGAM problem.Energy Convers Manage 2014;81:60–71.

Y.Li et al./Electrical Power and Energy Systems64(2015)167–175175

一键U盘安装Win7系统教程

一键U盘安装Win7系统教程 如今安装操作系统变得超简单,菜鸟也可以轻松一键U盘安装Win7系统了。下面本文与大家分享下如何轻松使用U盘一键安装Win7系统,每个菜鸟朋友均可以轻松学会U盘装Win7系统,大家知需要准备U盘,然后制作下U盘启动,再将系统文件放置U盘即可,非常容易上手,下面一起来看今天的教程吧。 准备:一键U盘安装Win7系统所需工具: 1、U盘一个(容量至少8G以上,4G勉强也可以); 2、下载好Win7系统,制作好U盘启动; 说明:如今U盘都很便宜,8G以上U盘也不过几十元,大家可以到电脑城或者网购U盘均可,最好选用8G以上U盘,因为如今的Win7系统文件普遍在4G左右,Win8系统更大,因此U盘容量过小,系统文件无法放入。 购买好之后,将U盘插入电脑,然后再网上下载一个U盘启动软件,一键制作U盘启动,此类软件很多,比如大白菜、U大师、电脑店、老毛桃等等均可,随便下载一个软件安装,之后即可按照提示,一键制作好U盘启动,超简单。 将U盘制作成了启动盘之后,我们就需要下载Win7系统了,由于Win7系统很大,下载需要很长时间,建议大家可以提前晚上睡觉前将迅雷7打开挂着电脑下载Win7系统文件,记得设置一下下载完成之后自动关机,然后就去睡觉吧,第二天起来就下载好了,无需干等着下载。

百度搜索Win7系统下载 找到自己喜欢的Win7系统下载 猜你用的到:迅雷7下载完成后自动关机的设置方法 至此制作好了U盘启动,并且下载好了Win7系统,那么准备工作就完成了,下面就可以进入一键U盘安装Win7之旅吧,以下演示的是使用U大师制作的U 盘启动教程,其他诸如大白菜、电脑店等基本大同小异。 一键U盘安装Win7系统步骤:

安装操作系统教程

操作系统安装流程 YZF2(001B) —·杨昭飞·— —·Zhophy Young·— 一、启动盘制作。 常用的启动盘有两种:1.刻录盘;2.系统盘。 制作启动盘所用到的软件:UltraISO、电脑电、大白菜、老毛桃等,我用的是电脑店。 1.刻录盘 刻录盘是通过UltraISO软件制作的一种在U盘只有系统文件的启动盘,刻录盘一旦制作完成就不能再随便拷入或删减U盘内的文件,也不能再拷入和删减系统无关的文件,以确保文件的完整性。 2.系统盘 系统盘是把大白菜或者老毛桃软件小系统win PE安装在U盘,使U盘内的小系统具有独立显示的功能。这种启动盘的优点是在不挪用镜像文件的情况下可以随意拷入和删减其他文件,不影响文件的安装。只要存储空间足够,可以当做一般U盘使用。 二、刻录镜像文件。 Ultra软件制作刻录盘流程: (1)(System\启动盘\刻录盘\UltraISO 绿色免费版)解压,双击打开UltraISO_9.6.2.3059.exe,默认或者修改安装路径。安装完成输入注册码激活UltraISO软件。 (2)这里以安装win8系统为例,先制作win8刻录盘。 打开UltraISO软件,然后点击文件---打开---选择win8系统镜像文件(System\系统\win8\cn_windows_8_x86_dvd_915414),确认打开后就能在软件的界面内看到整个镜像文件的信息了。数据无价,先确认文件无误再继续下边的步骤。 接下来开始制作系统安装盘,点击启动---写入硬盘映像。

进入刻录界面后,在硬盘驱动器部分选择要写入的最小4G的U盘,确认无误后点击写入,等待一段时间就行了。

安装UEFI系统教程(完整版)

初出茅庐,有不足之处,请指教 一、请认真看完本教程再操作,不懂的部分记得参考其他帖子 二、所需工具 1、64位的Windows系统(EFI不支持32位系统,尽量使用原版系统,很多 修改系统删除了EFI支持,也不要GHOST版) 2、U盘一个(不小于4G) 4、支持UEFI启动的主板BIOS 三、在Windows环境下需要做的事 1.制作一个启动U盘 A 、将U盘插入电脑 B 、备份U盘里的文件(这个可以很重要) C 、打开启动U盘制作工具 点击“一键制作成启动U盘”,会出现如下提示 点击“确定”,并等待制作完成 2. 将下载好的系统解压(有很多解压软件都可以解压ISO文件)到U盘的 根目录下(一定要在根目录,U盘里最好不要有其他的东西) 3.设置BIOS(以三星np275e4v-x03cn为例) A、开机按F2进入BIOS(不同的电脑按键不同,有的是ESC、F12) B、将fast bios mode的选项设置为Disabled C、将secure boot设置为Disabled后,会出现OS Mode Selection选 项 D、将OS Mode Selection设置为CSM OS或则CSM OS and UEFI OS C、按F10保存退出 4、保存退出后不停的按F10(这一步的目的是选择从U盘启动,不同电脑的按键不同,有的是按方向键的上下键),打开选项后选择“******”(*号代表你的U盘名)那一项 6、选择第2或3项 四、在WINPE环境下需要做的事 1、使用DiskGenius的快捷分区工具进行分区,也可手动进行分区 2、使用DiskGenius将硬盘转换为GUID(GPT)格式(右键点击“HD0:****” 那一项,会出现如下图所示菜单,点击“转换分区表类型为GUID格式”) 3、此时查看分区表内是否有EFI和MSR分区,如果没有,执行第 4、5步(新 硬盘会自动添加EFI和MSR两个分区,就不用执行第4、5步了) 4、格式化C(系统所在盘),使用DiskGenius拆分C盘在前端留出300M左 右的空间 5、按WIN+R打开运行命令窗口,运行以下命令 diskpart 说明:进入磁盘管理命令工具 list disk 说明:列出计算机上的硬盘,固态硬盘等 select disk 0 说明:选中编号为“0”的硬盘(数字0代表代表一个硬盘) ?create partition efi size=100? 说明:创建大小为100M的EFI分区(不能小于100M) ?create partition msr size=128? ? 说明:创建大小为128M的MSR分区(不能小于128M)

win8.1系统安装详细图文教程

系统安装方式目前有三种,分别是硬盘装系统、U盘装系统、光盘装系统。它们各有优 缺点小编就不在此累述。小编编写此篇教程的目的是为了教大家在系统没崩溃的情况下,通过硬盘安装GHOST系统的方式,实现快速装机目的。具体步骤如下: 硬盘装系统 一、系统下载完成之后,右键单击ISO镜像,弹出菜单选择解压文件; 二、解压完成,文件夹内容如下,双击打开autorun.exe文件或直接打开名为”安装系统”的程序:

三、弹出的“AUTORUN.EXE”运行界面中选择“安装GHOST系统到C盘”; 四、进入系统安装界面,如下图点选相应选项,点确认即可

选择完成,点击确定,然后选择自动重启,即可进入自动装机状态,时间约持续5~10分钟; 注意事项:1、如果自动装机完成后没有直接进入桌面,而出现了黑屏状态,毋须担心,不是系统问题,直接手动重启电脑,重启完成即可正常使用。 2、解压时请直接进行解压,不可系统存放路径不可存有中文字符,否则将无法正常安装。 3、请将解压出的gho文件放到除C盘外的分区,否则将无法正常安装;点击确定后会重新启动自动化安装,一般安装时间在5-10分钟! U盘装系统 U盘装系统是目前最常用的系统安装方式。特别适合于未安装光驱的台式机或超薄笔记本电脑上。小编为了给这类无光驱用户提供最大的便利,将在本文中为大家讲解最详细的U盘装系统教程。 您需要准备一个空的U盘(注意U盘中的重要数据请及时的备份出来,最好提前格式化U盘,U盘容量不小于4G) 第一步:1、下载大白菜U盘制作软件到你的电脑中; 2、下载GHOST系统到你的电脑中; 第二步:首先插入U盘,右键点击U盘,弹出菜单选择快速格式化(切记U盘中重要文件事先要备份出来,以防丢失),然后启动大白菜软件,界面如下图,点击界面最下方的“一键制作U盘启动”按钮,进入自动制作U盘启动盘;

电脑系统安装教程

1、u盘操作系统一个 2、设置电脑从u盘启动 重启计算机,在计算机启动的第一画面上按"DEL"键进入BIOS(可能有的主机不是DEL有的是F2或F1.请按界面提示进入),选择BIOS FEATURES SETUP,将Boot Sequence(启动顺序)设定为USB-ZIP,第一,设定的方法是在该项上按PageUP或PageDown键来转换选项。设定好后按ESC一下,退回BIOS主界面,选择Save and Exit (保存并退出BIOS设置,直接按F10也可以,但不是所有的BIOS都支持)回车确认退出BIOS设置。如下图: 之后进入 设置完成后按F10保存退出,电脑将自动重新启动,重启电脑看看大白菜的启动效果如下面介绍。 U盘启动电脑安装步骤: 一:将U盘操作系统插入电脑USB接口

二:电脑启动的过程进入电脑主板bios设置,设置第一启动项为U盘启动,上面详细介绍过。 三:设置好了U盘启动后重新启动电脑,电脑将直接跳过硬盘将直接进入U盘启动. 然后我们进入的时候选择进入winPE,如下图. 选择进入U盘PE操作系统 四:进入WINPE界面如下:

WIN PE操作系统界面 WIN PE操作系统操作说明

五:如果是新电脑没进行过分区,请先进行分区,重新装电脑的用户可以省掉这步,直接点"系统恢复",如下图: 六: 选择"是" 之后将进入操作系统选择界面,电脑百事网为大家提供的操作系统一般为双系统,大家可以选择自己喜欢的 进入选择U盘中的系统选项,会发现有2个xxx.GHO系统镜像文件, *.GHO文件就是操作系统文件,任意选择一个自己喜欢的即可,如下图:

笔记本系统安装教程

易修装机流程 一、自带win7(asus、thinkpad、lenovo等)。 识别方式: 1)win7标贴 一般说来,标贴主要负责“解释”4类内容:预装操作系统、硬件配置说明、所使用的“先进技术”以及特定功能。 2)背面正面序列号 预装系统安装正常流程:注册解压—调试与分区---安装常用软件---备份 1)注册解压 一般操作流程比较简单,根据系统提示操作即可。(注意几点:语言选择、网络连接等)

2)调试与分区 调试 正常情况下进入系统后只会看到OEM自带信息软件和回收站(包括一些OEM信息软件和某些限时杀毒软件等)。这时候就需要我们人为的去调试系统里面的相关设置和删除多余的OEM自带软件以及并不实用的杀毒软件,以方便正常使用。 正常情况下我们需要做几点相关设置: 显示常用图标到桌面:开始---“搜索程序和文件”位置输入“IC”命令—显示或隐藏桌面上的通用图标—调用(计算机、文档、网络等)图标到桌面 设置系统安全性能:控制面板—用户账户---更改账户类型拉到最低 新建宽带连接:网络—右键属性—设置新的连接或网络---连接到internet---创建新的连接---宽带(PPPOE)----连接。连接完成后把快捷方式发送到桌面 设置主页:网络—右键属性---Internet选项 关闭防火墙:网络—右键属性---windows防火墙 关闭自动更新:计算机---右键属性---windows update---更改设置—从不检查更新 删除无用的程序:控制面板—添加删除程序(杀毒软件等)

分区 一般步骤:计算机—右键管理---磁盘管理 1、lenovo 等。做的比较人性化,一般出厂分区模式:引导分区200M和系统分区C盘50G 大小、D盘(比较大)、lenovo OEM隐藏分区(用于储存出厂备份系统)。 分区比较简单:一般分4个区(包括C盘)更改光驱盘符为G,删除原D盘,与D盘的基础上新建D、E、F分区,分区大小按照均分原则(或者遵从客户意愿)。 2、thinkpad、sony、dell、asus等。 以ThinkPad为例:一般出厂会由1G左右的引导分区、windows7_OS C盘分区以及大于10G 的恢复分区组成(一般像asus、sony、dell等一般不会有隐藏分区或者有隐藏分区,但是

Windows server 2008R2系统安装教程

Windows server 2008 R2 安装教程 (注:此教程省略了制作Raid过程,如需做Raid,请先做好Raid阵列再按下面教程进行系统安装) 1.开机后将系统盘放入光驱,按F11键进入BIOS BOOT选项菜单,选择BIOS Boot Menu: 2.进入了Bios Boot Manager后,选择DVD+/-RW,从光驱启动:

3.服务器开始从光驱启动,进行读取光碟里的文件及信息: 4.读取完系统信息后,系统会进行安装前的预设,第一个界面是选择系统安装的语言类型以及键盘类型,我们还可以看到即将要安装系统是Windows Server 2008 R2系统,我们按Enter(确认键)继续: 5.第二个界面是询问是现在安装,还是修复计算机,新装系统都是默认按Enter

键选择现在安装,继续安装: 安装程序启动: 6.读取完安装程序完毕后,会出现一个选择安装系统的版本提示,一般有三个版本选择,即Standard(标准版)、Enterprise(企业版)、Datacenter(数据

中心版),每个版本都会有两个安装形式,一个完全安装,即图形安装;另一个是服务器核心安装,即命令行形式安装。此教程我们选择安装企业版完全安装: 7.选择版本后,会出现许可条款,如果同意,就可以继续安装,如果你对于条款不同意,就会结束当前安装。当然,我们选择按空格键同意协议条款,继续安装:

8.接下来会询问你进行何种类型的安装,如果你先前系统安装的是windows 2003版本的系统(或其他跟旧的Windows系统),就选择第一项升级。如果你想进行全新安装系统,就选择自定义安装类型,这里,我们按上下键,选择自定义安装,进行全新安装系统: 9.接下来,如果你看到的是如下两个界面中的一个,你会发现,看不到我们要安装系统的硬盘,为什么呢?这是因为,我们在安装系统前,对硬盘做了Raid,需要在此加载一个驱动程序,如果你是做集成Raid的话,就选择相应主板集成的阵列驱动程序,如果你的服务器安装了独立阵列卡,请加载相对应的阵列卡的驱动。

昂达平板系统安装教程

注意事项: 1.在系统安装之前,请仔细阅读本教程的详细步骤! 2.安装系统会清空磁盘的所有数据,请先备份好有用的个人数据!! 3.请确保机器的电量在60%以上,防止因为电量低导致系统安装失败!!!准备工作: 1.准备带供电的USB HUB和OTG线 2.键盘、鼠标(可选)和8GB或更大容量的U盘一个 操作步骤: 一、制作带启动功能的U盘 1.运行UltraISO软件(见目录下的: UltraISO_v9.5. 2.2836.exe)。 2.加载PE镜像(见目录下的: winpe_x86_win10.iso)

3. U 盘插到电脑的USB 接口上,然后依次点击UltraISO 软件上方工具栏的启动—>写 入硬盘映像

在弹出的菜单上注意如下三个选项: 点击写入按钮,即可对U盘创建启动分区。完成以后退出软件,进到电脑的磁盘管理下,可以看到U盘有一个启动分区,然后另一个磁盘可以格式化成NTFS格式,存放大于4GB的单文件了。

二、安装或更新Windows系统 1.在电脑上解压缩下载的压缩包 温馨提示:如果是分卷压缩的,如下图所示,一个压缩包分两部分压缩,必须要全部下载下来,然后解压缩其中一个即可. 2.把前一步制作好的,带启动功能的U盘连接到电脑上,格式化成NTFS格式,在格式化 时要把U盘的磁盘名称改为WINPE(这个很重要,不然在安装系统时,有可能会出现认不到U盘的情况),然后打开前面解压的文件夹,把里面的所有文件复制到U盘上。复制完成以后,打开U盘显示的目录如下: 3.把带供电的USB HUB插上电源,然后插上键盘,鼠标,U盘和OTG线,OTG线另一端连 到平板上。 4.按平板的电源键开机,然后连续短按键盘的F7键,设置U盘启动。如下图所示: 1)按键盘上的向下方向键选中U盘(上边第4个,选中以后,图标会跳动),并按确认键从U盘启动。

用U盘装系统操作图文教程

用U盘装系统操作教程:没有光驱,该怎么办? 需要重装系统的时候,没有光驱,该怎么办?也许你会说可以在dos下硬盘安装,但有几个人会用dos? 其实不仅仅不带光驱的笔记本用户愁怎么装系统,那些没有光驱的台式机用户也愁。为了给这类用户提供方便,笔者今天就来讲解一下,在没有光驱的情况下,如何方便快速的安装操作系统。 ● 装系统前的准备 一个能启动电脑的U盘和一个系统的光盘镜像 在安装系统前,需要准备好一些东西。一个是操作系统的镜像,另一个就是能启动的U盘。下面我们就来讲解怎么

安装deepin版的XP系统。 注:读懂本文需要了解安装操作系统的一些基础知识。 ● 首先是制作一个能启动电脑的带Wind owsPE的启动U盘 先到网上去下载一个叫“老毛桃WinPE”的工具到硬盘里,再把U盘接在电脑上,然后按下面的步骤一步步来就可以制作一个能启动的U盘了。 选第4项,然后回车 输入U盘的盘符,然后回车

来到格式化步骤,按默认的设置,点“开始”就行 顺利格式化

引导部分 这里要说明一下,在“设备”里有两个选项,一个是电脑的硬盘,一个是要制作的U盘。这里一定要选对U盘而别选错硬盘,从大小就能分出来哪个是U盘。笔者的U盘是2G的,所以应该选择(hd1)[1898M]。下面的“选项”部分可以不用管,默认不勾选任何参数就行。确认好以上步骤后,点“安装”然后进行下一步。 写入引导完毕,按任意键继续

要给启动U盘设个密码 本来笔者不想设置启动U盘的密码,但这个步骤不能跳过,所以没办法只好设了一个密码。设置完后,一定要牢记你设好的密码,否则启动U盘会无法使用。 制作完毕 当你完成以上步骤后,恭喜,一个具有启动功能的U盘已经来到你的身边。你再也不用心烦没有光驱不能从光驱启动了,因为以后你可以从U盘启动再安装操作系统!想知道怎么操作吗?下一页就开始。 ● 把电脑的第一启动项设为USB设备启动 以往用光盘装系统,必须调整启动项为光驱启动,而现在我们要用U盘装系统,所以要调整为U盘启动。关于这个,不同电脑不同版本的bios有不同的设置方法,不过都大同小异,目的就是让电脑的第一启动项变为U盘启动。下面我们举例几个不同bios的调整方法。

安装UEFI系统教程完整版

安装U E F I系统教程完整 版 Prepared on 21 November 2021

初出茅庐,有不足之处,请指教 一、请认真看完本教程再操作,不懂的部分记得参考其他帖子 二、所需工具 1、64位的Windows系统(EFI不支持32位系统,尽量使用原版系统,很 多修改系统删除了EFI支持,也不要GHOST版) 2、U盘一个(不小于4G) 4、支持UEFI启动的主板BIOS 三、在Windows环境下需要做的事 1.制作一个启动U盘 A 、将U盘插入电脑 B 、备份U盘里的文件(这个可以很重要) C 、打开启动U盘制作工具 点击“一键制作成启动U盘”,会出现如下提示 点击“确定”,并等待制作完成 2. 将下载好的系统解压(有很多解压软件都可以解压ISO文件)到U盘的 根目录下(一定要在根目录,U盘里最好不要有其他的东西) 3.设置BIOS(以三星np275e4v-x03cn为例) A、开机按F2进入BIOS(不同的电脑按键不同,有的是ESC、F12) B、将fast bios mode的选项设置为Disabled C、将secure boot设置为Disabled后,会出现OS Mode Selection 选项 D、将OS Mode Selection设置为CSM OS或则CSM OS and UEFI OS C、按F10保存退出 4、保存退出后不停的按F10(这一步的目的是选择从U盘启动,不同电脑的按键不同,有的是按方向键的上下键),打开选项后选择“******”(*号代表你的U盘名)那一项 6、选择第2或3项 四、在WINPE环境下需要做的事 1、使用DiskGenius的快捷分区工具进行分区,也可手动进行分区 2、使用DiskGenius将硬盘转换为GUID(GPT)格式(右键点击“HD0: ****”那一项,会出现如下图所示菜单,点击“转换分区表类型为GUID格式”) 3、此时查看分区表内是否有EFI和MSR分区,如果没有,执行第 4、5步 (新硬盘会自动添加EFI和MSR两个分区,就不用执行第4、5步了) 4、格式化C(系统所在盘),使用DiskGenius拆分C盘在前端留出300M 左右的空间 5、按WIN+R打开运行命令窗口,运行以下命令 diskpart 说明:进入磁盘管理命令工具 list disk 说明:列出计算机上的硬盘,固态硬盘等 select disk 0 说明:选中编号为“0”的硬盘(数字0代表代表一个硬盘) create partition efi size=100 说明:创建大小为100M的EFI分区(不能小于100M)

三系统安装教程

《U盘安装三系统教程》 XP WIN7 Linux 在电脑平民化的今天,越来越多的非计算机专业人员使用电脑学习、办公及娱乐,然而电脑也并不安全是绝对的智能的,,它允许用户灵活地选择安装不同的操作系统及应用软件,并进行各种自定义设置,从而满足不同用户的应用需求。在这里,我给大家简单介绍几种系统安装的方法。可能有点长,但希望大家耐心看完,会有收获的。 其实,我们一般人用的操作系统系统无非就常用的那几个,微软的Windows XP、Windows 7,还有一些Linux爱好者玩的linux。接下来笔者就教教大家如何把这三个系统同时装到一台电脑上。 首先,我们必须做好安装前的准备工作,找全我们需要的东西,一个U盘(2G以上最好),还有一些必备的软件,比如USB-HDD、BCDautofix系统修复工具、虚拟光驱软件等等。软件来源可以百度一下,很容易找到。XP和WIN7的系统镜像(一般我们普通玩家很少有人买正版的Windows系统。都是用大虾们的Ghost版。随便网上都可以下载到,我本人也是用的绿茶版的Ghost系统,感觉也蛮好的。本教程我们也用这样的系统) 接下来我们就为安装系统前做点准备工作,首先制作U盘启动盘,我们这里用USB-HDD软件,因为这个软件制作的Win pe 系统兼容性最好,适合大部分老款机和新款笔记本电脑,至今未曾出现过任何异常,而别的U盘制作工具如老毛桃WIN PE ,大白菜的win PE、upanok……在笔记本电脑上可能会出现蓝屏,这大概是因为新的硬盘接口模式,当然要是你的电脑是旧一点的台式机或者台式组装兼容机,用上面任何一个工具都没问题。废话不说我们开始制作可以启动电脑的U盘,就以USB-HDD为例。 第一步:首先网上下载USB-HDD软件,完成后关闭杀毒软件,要不然会影响制作完成。建议在XP系统下打开软件,然后按步骤进行。 第二步,按提示做完启动盘。

原装系统安装教程(详细版)

前言: 我把教程分为两部分: 第一部分:各种安装教程 第一部分之:虚拟光驱安装教程篇 第一部分之:安装工具教程篇(包含UEFI教程) 第二部分:安装界面教程 本教程仅供参考,如有不足之处请提出。谢谢! 附上Windows 7微软原版无修改的系统镜像下载地址: Windows 764位旗舰版 ed2k://|file|cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso|342055731 2|B58548681854236C7939003B583A8078|/ Windows 732位旗舰版 ed2k://|file|cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso|265327616 0|7503E4B9B8738DFCB95872445C72AEFB|/ 备注:您可以直接将上述地址复制到迅雷等下载工具中下载。不提倡使用第三方修改的系统(例如常见的雨林木风、深度、电脑公司等等),并不是盲目的向您推荐所谓“官方”的东西,在下面的教程中您将看到我们也适时的给您提供了合理的选择。 安装前准备工作: 首先我们需要确定我们要安装的系统。以Windows 7为例,他分为32位与64位版本。如果您的内存超过4GB时,请务必安装64位版本,请不要使用32位版本进行“内存破解”,这将严重影响您机器的稳定性。如果您的内存刚好是4GB,那么无论哪个版本区别不大。但如果您刚准备从XP升级到Windows 7或

内存不足4GB,那么这里我建议您选择32位版本。至于对基本版、家庭基础版、家庭高级版、专业版、企业版以及旗舰版的选择,您可以自行斟酌。但不论您选择何种版本,在兼容性、稳定性以及资源消耗上都没有区别。如果无从下手建议您直接选择旗舰版。选择好您需要的系统下载后,建议您继续做如下准备: (一)适合您机器的驱动 为了使机器各硬件能够正常使用,您必须准备好对应您机器的驱动(同时也必须对应系统和位数)。如果没有驱动您可能会遇到显示器无法调节到最佳分辨率、无法玩游戏、无法上网、无法识别您的外设等情况。这些驱动您可以根据您的硬件自行搜索并下载,多数笔记本也会配有驱动光盘或者在品牌官网提供驱动下载。或者您也可以选择事先准备带有万能网卡驱动的“驱动精灵”、“驱动人生””万能驱动管理”等工具,只要保证网卡先正常工作,其余驱动可由工具帮您下载(但这是在您无法找到最合适您的驱动的时候才建议)。 驱动精灵下装地址:https://www.360docs.net/doc/9d13508169.html,/ 驱动人生下装地址:https://www.360docs.net/doc/9d13508169.html,/ 万能驱动管理:https://www.360docs.net/doc/9d13508169.html,/s/1mgFvQyO (二)类运行时的安装包 您无需关心其具体如何工作,您需要知道的是没有了这些东西一些程序将无法正常工作。建议您至少安装如下两类: ============================================================ Microsoft Visual C++ Redistributable Package: https://www.360docs.net/doc/9d13508169.html,/zh-cn/search/DownloadResults.aspx?q=Microso ft+Visual+C%2b%2b+Redistributable+Package 备注:2005、2008、2010、2012、2013等没有向下兼容的关系,64位系统建议您全部安装,32位系统安装带有“x86”的即可。 ============================================================ DirectX 最终用户运行库: https://www.360docs.net/doc/9d13508169.html,/zh-cn/download/details.aspx?id=35 备注:此为联机安装程序,安装时需要联网,您也可以搜索其离线版本。 ============================================================ 安装前请检查C盘空间是否足够,建议30G以上。

最全装系统教程

最全的从装系统教程 首先,确定你的光驱是第一启动顺序并支持从光驱启动。 要从光盘安装,要把BIOS进行设置,使系统能够从光盘启动。其方法如下: (1)启动计算机,当屏幕上显示Press Del to Enter BIOS Setup提示信息时,按下键盘上的Del键,进放主板BIOS设置界面。 (2)选择Advanced BIOS Features 选项,按Enter键进入设置程序。选择First Boot Device 选项,然后按键盘上的Page Up或Page Do wn 键将该项设置为CD-ROM,这样就可以把系统改为光盘启动。 (3)退回到主菜单,保存BIOS设置。(保存方法是:按下F10,然后再按Y键即可) (4)然后将光盘放入光驱,并重启电脑,系统便会从光盘进行引导,并显示安装向导界面,你可以根据提示一步步进行安装设置就OK了。 在Windows XP拷贝完文件到硬盘,第一次重新启动计算机前,必须把光盘从光驱中取出,否则系统仍会从光盘启动并会循环执行安装程序。

方法2: 然后,按任意键进入光驱启动模式,加载Mini版本的操作系统。 然后,按Enter确定继续安装。 然后,按F8接受许可证协议。 然后,选择你想要安装的位置,选择一个足够大的空间,按Enter。 然后,选择文件系统,推荐使用NTFS,按Enter。 然后,将进入磁盘扫描,并且将安装程序复制到硬盘上。 然后,计算机将在15秒后重新启动,按Enter立即重新启动。 然后,从硬盘启动继续安装过程,此时开始是图形界面模式。 在进行完一系列硬件检测后,将进入区域选择提示,在此配置语言,键盘和所在地区。 然后,系统将提示你输入用户名和组织名,并生成一个计算机名,你可以更改。

手把手教你装系统【史上最详细教程】

【寒山居】手把手教你装系统【史上最详细教程】 (其实我是个搬运工) 1L准备介绍 2L U盘制作 3L华硕主板启动项设置 4L技嘉主板启动项设置 5L微星主板启动项设置 6L华擎主板启动项设置 7L映泰主板启动项设置 8L各个主板快速启动快捷键 9L-10L Ghost 装系统 11L硬装系统 作为一个合格的电脑高手,系统安装是必须会的,今天就给大家讲讲怎样通过U盘(移动硬盘)安装系统。 其实以前用光驱安装系统一样,光盘是一个载体,当他作为启动盘的时候要写入一个启动系统文件到光盘上面,电脑选择从光盘启动的时候就会去读取这个文件,启动电脑安装操作系统。如果没有启动文件,光盘也就是一个数据存储盘。就像电影光盘,游戏光盘一样,那是不能启动系统的。 U盘其实也是一个载体,当他没有写入启动文件的时候,就是一个普通的数据仓库。当他写入启动文件,选择从U盘启动的时候,就会像光驱一样启动安装系统。 U盘启动系统的制作就是一个写入启动文件的过程。首先准备一个U盘系统制作工具,“电脑店U盘装机系统”制作简单,而且工具比较齐全,当然还有很多类似的就不一一细说了。 准备工作: 1.买个8G或16G的U盘(这个是必须的,为什么要8G勒,除了启动系统文件,还要些常用的工具,比如:测试软件,驱动什么的。XP系统大概700M,WIN7大概3G多) 2.网上下载“电脑店U盘启动系统”,现在最新版6.0。地址:https://www.360docs.net/doc/9d13508169.html,/ 3.下载WIN7系统(网上下载的一般是ISO文件,这个是用来刻盘用的,里面包含启动文件和一些工具,我们只要用解压软件提取WIN7.GHO(一般是最大的一个文件)文件就行了 4.下载一个驱动精灵完整版(完整版中包含网卡驱动,只要能上网了,所以得驱动问题就都交个驱动精灵解决了,当然还有其他类似的软件根据喜好自己选择)

WIM装系统教程

WIM映像方式安装Windows系统教程 前言 准备工具:一台正常的电脑,一个8G(含)以上的U盘(内容会被清空) 下载:Win8PE_网络标准版;WIN7或者WIN8的系统镜像;激活工具(下载地址在最后)注意:本教程只针对初学者,适用于传统BIOS+MBR分区表环境下安装,如果是UEFI+GPT 分区表所需PE请到无忧启动论坛另外寻找,具体操作也稍有不同。 一、U盘准备篇 一、以下步骤需要在正常的电脑上进行操作。插入U盘,解压“Win8PE_网络标准版.7z”到本地磁盘(如D:\下载\Win8PE_网络标准版)。如图1-1。 图1-1 解压后到文件夹 二、打开文件夹中的UltraISO.exe(若未显示后缀名则打开UltraISO),此处可能弹出用户帐户控制(UAC)提示,请选择是。如图1-2。

图1-2 打开UltraISO 三、打开ISO映像,选中文件夹中的Win8PENet.iso(若未显示后缀名则打开Win8PENet),单击打开按钮。如图1-3。 图1-3 选择Win8PENet 四、单击软件上方菜单栏中的启动-> 写入硬盘映像。如图1-4 图1-4 准备写入 五、选择需要写入的U盘,然后单击写入(此处会清除U盘中的原有内容),随后等待写入完成后拔除U盘。如图1-5。

图1-5 写入U盘 六、将下载的系统ISO文件拷至U盘根目录中。至此,U盘准备篇完成。 二、BIOS设置篇 一、以下内容参考自:https://www.360docs.net/doc/9d13508169.html,/bios.html。根据不同的电脑型号,选择相应的热键,直接一键从U盘启动之前我们制作好的PE进行系统安装(重要提示:在选择启动热键前,需先插入U盘) 组装机主板品牌笔记本品牌台式机 主板品牌启动按键笔记本品牌启动按键台式机品牌启动按键华硕主板F8 联想笔记本F12 联想台式机F12 技嘉主板F12 宏基笔记本F12 惠普台式机F12 微星主板F11 华硕笔记本ESC 宏基台式机F12 映泰主板F9 惠普笔记本F9 戴尔台式机ESC 梅捷主板ESC或F12 联想Thinkpad F12 神舟台式机F12 七彩虹主板ESC或F11 戴尔笔记本F12 华硕台式机F8 华擎主板F11 神舟笔记本F12 方正台式机F12 斯巴达卡主板ESC 东芝笔记本F12 清华同方台式机F12

雨林木风ghost系统安装图解教程

雨林木风ghost系统安装图解教程 大部分用户,都是以光驱引导,用光盘来完成安装系统的。首先设置BIOS 第一启动为光驱启动。操作如下。(以Award Bios为例)和AMI Bios一样,再开机画面时按下“Del”键进入Bios设置菜单(有些是按F1键)进入后大家会看到以下菜单,也有可能会有一些差别,但是基本上是差不多的,但是基本上作用是一样的大家可以用方向键移动光标,回车键确认,ESC键返回,用PageUp,PageDown和数字键键调整设置,在任何设置菜单中可以按下F10键退出并保存设置,这些都和AMI Bios设置差不多!

接下来,我们来进行详细的操作步骤。 1。设置BIOS 为光驱启动后,放入光盘,由光驱引导进入光盘莱单界面。 2。首先我们来对硬盘进行分区。(已分区的就没必要操作) 就用系统盘自带的PQ8.05中文版来完成。 进入PQ操作界面,你就会看到你的硬盘大小和属性了。 选择"作业" "建立"

现在选择建立为"主要分割磁区",也就是"主分区"将来用来装系统。 接下来选择分区类型,因为是GHOST系统所以,随便FAT NTFS 都可以。无所谓。 下面是选择主分区的大小,现在的硬盘都很大了,最小也在120G 以上,所以建议设置大小为10-15G 之间,也就是 10000M-15000M 之间。添好后点击确定。

这样一个新的分区就这样建立了。接下来选择未分配空间(黑白的地方就是未分配的)。依旧选择" 作业" "建立",这次选择"逻辑分割磁区"。分区类型和大小,跟据个人所需,进行分配即可。好,我们所需要的硬盘分区已分好。

下面是一个关键的步骤,就是设置"C盘"也就是"主要分割磁区" 为作用。点击"作业" "进阶" "设置为作用" 提示是 否设置该分区为作用,选择"确定"

[教程] 电脑系统装机教程(包括安装版系统,ghost备份安装)

本帖最后由yaoluqi 于2010-11-13 00:46 编辑 修改启动项 从光盘启动(装机教程一)(如果光驱坏了,用u盘装系统就设置u盘启动一样的设置) 现在我们可以说已经不再使用软驱了,所以当我们需要进入DOS界面时,需要进行一些在DOS下运行的程序软件时,就只有通过带启动功能的光盘来实现这一原来由软盘实现的功能。因此我们需要修改系统默认的启动项,将光驱设置为系统第一启动设备,这样才能保证系统启动后由首先读取光驱内光盘,由带启动功能的光盘引导进入DOS或启动界面。 2010-11-12 23:56 上传 下载附件(83.04 KB)

2010-11-13 00:02 上传下载附件(59.57 KB) 2010-11-13 00:02 上传下载附件(61.81 KB)

2010-11-13 00:02 上传下载附件(72.39 KB) 2010-11-13 00:02 上传下载附件(72.7 KB)

2010-11-13 00:03 上传下载附件(77.65 KB) 2010-11-13 00:03 上传下载附件(43.87 KB)

2010-11-13 00:03 上传 下载附件 (72.11 KB) 本主题由 pc120 于 2011-1-9 10:05 添加图标 优秀 收藏7 分享0 支持0 反对0 绿色,精选,安全,免费——大白菜u 盘启动工具 大白菜唯一官方网站: https://www.360docs.net/doc/9d13508169.html, 回复 引用 举报 返回顶部 大白兔 发短消息 沙发 发表于 2010-11-13 00:04 |只看该作者

Windows操作系统安装方法大全图文教程

Windows操作系统安装方法研究 撰写这篇文章也是闲来无事,在百度知道上回答了一个双系统安装的问题。忽然回忆起自己探索window系统安装的过程,想来颇有乐趣,想要作个总结。 2007年的时候,我刚上大二,在学校碰到一同学,笔记本光驱坏掉了,然后系统密码丢失了,想要重装系统,他的电脑中安装了ghost,当时装B如我,说,交给我吧,没问题。可是,最终把人家的机器搞的什么都没了,ghost也弄没了,于是,自己就再没有办法给他装系统了,至今想起都很丢人。从那以后,自己就潜心研究系统安装的方法,终于小有所成,自认为现在已经基本掌握了普通人所能见到的所有的系统安装方法,在此一并总结。我们只探究单系统安装的方法,只要你能够灵活运用,安装个双系统乃至多系统都不是问题。这里只介绍一个小工具——NTBOOTautofix v2.1.3.exe,安装双系统或者是多系统经常能用的到,就是安装完第二个系统后,第一个系统启动不了了,用这个小工具一修复,就万事大吉了。OK,转入正题。 首先说明一下,这里总结的系统安装方法只以winXP、winVista、win7、win8为例,因为之前的什么dos、win9x、win2000等等,有很多是用软盘安装的,我觉得现在的机器

恐怕鲜有装软驱的吧,很多人甚至连软盘为何物也不知道了,所以,也就没必要探讨了。 下面就我尝试过的方法逐一进行探讨吧,首先是最最普通的安装方法,光盘安装。 一、光盘安装法 (一)介质准备 顾名思义,光盘安装就是用光盘安装系统,那么介质必然是光盘。对于电脑安装系统来讲,光盘无所谓是CD、VCD 还是DVD,只要是能够引导系统的都可以。但是,光盘中的系统却可以大体分为两类,一类是安装版,一类是ghost版。安装版就是运用光盘上的文件来安装系统,这种光盘安装系统在整个过程中都不要将光盘拿出,一旦拿出就容易产生错误。而ghost版是制作系统的人将已安装但未完成的系统打包,用户在安装时光盘首先将镜像还原到硬盘的分区上,而后机器启动系统,在已启动的系统中将剩余安装工作完成。那么对于这种来讲,一旦镜像已还原到硬盘上,光盘就可以取出,不影响系统的安装。 (二)安装方法 其实这种方法的核心就是以光盘引导电脑启动,而后就像安装一个程序一样把系统安装在电脑的硬盘上。那么首先

相关主题
相关文档
最新文档