多代超支化水性聚氨酯的合成及表征

多代超支化水性聚氨酯的合成及表征
多代超支化水性聚氨酯的合成及表征

超支化聚合物阻垢剂

一种新型超支化聚合物阻垢剂 摘要 在超支化聚乙烯亚胺中添加阴离子乙烯基单体,乙烯基磷酸、乙烯基磺酸、丙烯酸、马来酸和丙烯三羟酸来制备一系列聚合物,并对其作为防止碳酸钙和硫酸钡沉积的阻垢剂的性能进行研究。使用高压管阻塞设备对其在1200磅和100℃条件下进行动态力学测试,发现这些新型阻垢剂可以抑制碳酸盐和硫酸盐结垢,其中丙烯酸类共聚物对碳酸盐垢效果最好,膦酸基类共聚物对硫酸盐垢效果最好。 此前还没有关于超支化聚乙烯亚胺在海水中生物降解数据的报告。用 OECD306测试技术对分子量为300和1200的聚合物进行测试,得到了在28天时对海水的生物降解率分别是10%和19%,马来酸或丙烯酸功能化的分子量为1200的超支化聚乙烯亚胺表现出了很高的生物降解率,在28天内可以达到34%,到60天可以升高到60%。这反映了细菌对烯烃基羧酸盐组分的攻击和消化比对胺基聚合物骨干更容易。 关键词:垢,晶体生长,石油,阻垢剂,聚合物 1、前言 结垢通常定义为无机盐在水溶液中的沉积。在上游石油天然气工业中,水垢最常见的组分是碳酸钙和硫酸锶/硫酸钡(Sallis 等,1995;Frenier、Ziauddin,2008;Kelland,2009;mjad, 2010)。结垢是石油天然气工业中的一个主要问题,垢对油井和管道的阻碍和堵塞会导致生产中显著的延迟和损失。多种带有功能组分的水溶性分子或水溶性高分子化学药剂被用作阻垢剂来防止结垢,其中最常见的功能组分就是膦酸盐、羧酸盐和磺酸盐。高分子和低分子膦酸盐都是有效的阻垢剂,但有效的油田阻垢剂只有带有多个羧酸或磺酸基团的高分子。 氨基膦酸盐是最常见的非高分子类膦酸基油田用阻垢剂,图1所示是两个例子,包括最常见的氨基膦酸盐类油田用阻垢剂二乙烯三胺五甲叉膦酸(DTPMPA)(Stewart 、Walker,2003;Tomson等, 2003; Sorbie、Laing, 2004)。高分子膦酸盐也是熟知的阻垢剂但是由于环保特性差在北海地区并不使用,这主要

环保型水性聚氨酯合成革浆料

环保型水性聚氨酯合成革浆料 (温州寰宇高分子材料有限公司浙江温州325000) 摘要:回顾了PU革浆料的发展状况,分析了我国现行工艺存在的问题,展望了我国PU革的发展前景。作者在不改变现行生产工艺的条件下,研究开发了新一代环保型水性聚氨酯浆料。研究表明,该浆料节约成本,完全能替代溶剂型浆料,性能达到甚至超过溶剂型和国外同类水性浆料。 关键词:PU革浆料;水性聚氨酯;环保 1 PU革浆料的发展与现状 在我国PU皮革是一个新兴的产业,它的发展仅20年左右。由于其具有优异的耐磨性、良好的抗撕裂强度和伸长率,同时赋予PU皮革表面平坦、手感丰满、舒适、回复性良好、价格适中等特性,PU皮革不但替代了很多原来价格昂贵的天然皮制品,而且也逐渐取代低档、廉价的PVC人造革,现已成为人们日常生活中一种不可或缺的消费品。近十几年发展迅速蓬勃。据报道,我国的PU皮革市场的每年增长幅度已达15%~25%,仅温州合成革行业,已从初始的一家企业发展到如今的100多家企业,300多条干式、湿式生产线,整个行业的固定投资已达100多亿元,产量和市场份额已占全国70%,日产能力300多万平方米,品种发展到上千种,年产值近100亿元。因此有人说我国的PU皮革市场逐渐成为推动全球的PU皮革,甚至整个聚氨酯市场发展的主要动力之一。 目前国内合成革生产过程中,均采用有机溶剂型的PU树脂作为生产革品基层和面层的基本原料,这种类型的PU树脂均通过甲苯、二甲苯、丙酮、丁酮(MEK)、乙酸乙酯和二甲基甲酰胺(DMF)等作为主要溶剂以溶剂聚合法制得。这些占整个树脂成分60%以上的有机溶剂都是有害物质,而且对人体造成的危害是多方面的。其中,甲苯等芳香烃溶剂对造血器官具有危害性,在高浓度环境下长期接触,可能发生急性中毒而休克,慢性中毒将出现血小板和白血球减少,并出现相应的病症。丁醇、丁酮、丙酮、乙酸乙酯和二甲基甲酰胺等溶剂都有相当大的毒副作用,其中乙酸乙酯对眼和粘膜有刺激性,并有麻醉性;合成革生产中用量最大的二甲基甲酰胺,对皮肤、眼部粘膜有强刺激性,吸入高浓度蒸汽时,会刺激咽部引起恶心,经常接触,经皮肤侵入,会导致肝功能障碍;而且有机溶剂对女性孕育下一代将产生严重的负面影响。 据统计,一条合成革生产线日均需消耗10t左右溶剂型PU树脂,其中占溶剂型PU树脂总用量60%以上的是溶剂,虽然湿法生产线中85%左右的溶剂被回收,但湿法生产线中仍有15%左右、干法生产线中95%的溶剂无法回收,将通过水和空气排放到周边的河流和天空中,势必会严重污染当地的环境,给人们的生产、生活,公众的生命健康构成重大威胁。如果以温州市300条生产线计算,年均需要的溶剂型PU树脂用量为70多万t,每年将会有数以万吨的溶剂排放到空气和周边的河流中,造成的污染将不可想象。由于苯、甲苯等有害溶剂易燃、易爆,极易引发火灾,造成伤残,甚至死亡,近年已屡见报道。 在大力发展经济的同时,保持优良的环境,健康的身体是当今社会发展的一个重要目标。正确处理“保护”和“促进”的关系,减少工业生产对环境和人类本身的伤害,是不可逆转的潮流,也是历史赋予我们的责任。人类只有一个地球,保护我们的家园,保持可持续性地发展经济的问题,已成为全球的共识,引起了各国政府的高度重视。在美国、意大利、日本、韩国等合成革主要生产国,已逐渐淘汰溶剂型PU树脂产品,采用环保型PU树脂。我国也先后制定、出台了许多相关的法律、法规。如:《环境保护法》、《劳动保护条例》、《职业病防治法》等等,为化工产业的发展提出了要求,严格了规范。随着我国加入世贸组织,我们企业参与国际市场竞争,客观上也要求我们生产和使用无公害的产品,消除国际上“绿色贸易壁垒”对我国产品的非贸易壁垒限制。 从源头上杜绝污染,对于PU革行业来讲已迫在眉睫。温州寰宇高分子材料有限公司,通过长期不懈的努力,已成功开发出国内首创的环保型聚氨酯合成革树脂产品。其主攻方向为:

树形、超支化聚合物的研究进展

树形、超支化聚合物的研究进展 董璐斌 (天水师范学院化学系,甘肃天水,741000)摘要:随着社会的高度发展,对原材料的性能提出了越来越高的要求,也推动了新型高分子化合物和新材料的发展。树形、超支化聚合物由于其独特的分子结构和物理化学性质使之在众多领域有着广泛的用途。故本文对树形、超支化聚合物的应用研究进展进行综述。 关键词:树枝状聚合物;超支化聚合物;应用;进展 树形聚合物和超支化聚合物为高度支化的聚合物,性质的独特性,引起了众多领域科学家的广泛关注,在此主要介绍树形聚合物在超分子化学、生物医学、光化学与电化学、催化剂等领域的研究进展;超支化聚合物在热固性树脂增韧剂、染色助剂、缓释剂、超支化液晶、涂料及聚合物薄膜方面的应用研究进展。 一、树形聚合物的应用研究进展 1、超分子化学 由于树形聚合物的结构、尺寸、表面和内部的官能团种类及数目等分子参数都可以精确控制,使得其非常适合作为超分子体系的构筑单元和研究超分子体系的模型,因此,从树形聚合物的出现开始就在超分子领域引起了极大的兴趣。 Cardulls等合成了一种两亲的C60树枝状聚合物,并在空气-水界面上形成了单分子层的L2B膜。C60树枝状聚合物共轭体系是由富勒烯二酸合成的。这种膜有可能应用于光学技术或生物传感器领

域。 Crooks等用在金箔表面重复沉淀的方法,通过第四代的聚酰胺2胺树形聚合物(PAMAM)与马来酸酐-甲基乙烯基醚共聚物自组装成渗透选择性膜,该膜对外部刺激、pH值变化具有响应性。此膜作超分子“门”的功能是pH的函数:在低pH值时阴离子容易穿透而阳离子被排除在外;在高pH值时,结果相反。 2、生物和医学 树形聚合物的大小、内部空腔和表面管道决定了它可以作为蛋白质、酶和病毒理想的合成载体,再加上它们很容易进行官能化作用,树形聚合物在很多与生物和医学相关的领域都得到了应用。这些领域包括药物载体、基因载体、DNA生物传感器、硼中子俘获治疗试剂、核磁共振造影剂、免疫制剂等。 Roy和Zanini等在糖型树形聚合物方面进行了部分研究工作。他们合成的L2赖氨酸树形聚合物能有效的抑止红血球的凝聚。这一点已通过流感A病毒试验证实。 硼中子俘获治疗(BNCT)是一种最新治疗癌症的方法。在这种疗法中,低能中子与10B核子进行的核裂变反应所产生的能量及细胞毒素用来破坏恶性细胞。PAMAM树形聚合物(G2,G4)首先连接到异氰酸根络硼烷,再被接到单克隆抗体上,这样就具有了通过免疫结合来选择靶向肿瘤的能力。 树形聚合物在医学上的另一个重要应用是用作核磁共振造影剂(MRI)。它与螯合剂相连可对靶器官进行成像,以检查脑或器官血池

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.360docs.net/doc/9213573908.html,ki.china.coatings.2008.07.007

超支化聚合物的研究进展

超支化聚合物的研究进展 李璇 化学与环境学院 1105班 111030210 摘要超支化聚合物由于具有高度支化三维球状结构以及众多的端基的独特结构特征,与传统的线型高分子在性能上有很大差异,因而引起科学家们高度关注。本文通过对其结构、合成及应用的介绍,旨在加深人们对该领域的了解,从而促进该领域的快速发展。 关键词树枝状分子;超支化聚合物;结构特征; Progress of Hyper-branched Polymers Li Xuan (College of Chemical and Environment Class 1105 No.111030210) Abstract Hyper-branched polymers due to the unique characteristics of the highly branched three-dimensional spherical structure and a large number of end group structure, has the very big difference performance with the traditional linear polymers, which attracted the attention of scientists. This paper describes the structure, synthesis and application of hyper-branched polymers, in order to deepen the understanding of the people in this field, thus contributing to the rapid developments in the field. Key Words Dendrimer,Hyper-branched polymer,Structural characteristic 在过去的很长一段时间,聚合物化学家们发现了一种由一系列支化单元组成的树状支化大分子--新的“树状分子”,它可分为树枝状大分子和超支化聚合物两大类。树状大分子的合成为了控制分子的尺寸和形状,通常需要多步反应。而超支化高分子因其分子结构而得名,它是一种经一步法合成得到的高度支化的聚 型单体分子间的缩聚合物[1]。早在1952年,Flory[2]就首先在理论上论述通过AB x 制备高度支化大分子超支化聚合物的可能性。但是,对于这种非结晶、无链缠绕的超支化聚合物,当时并未引起足够重视。直到90年代初,Kim等[3]制备了超支化的聚苯之后,人们才开始对它产生兴趣。 1 超支化聚合物简介 1.1 超支化聚合物支化度 超支化聚合物有三种不同的重复单元,即树状单元、线型单元和由未反应的B官能团所决定的的末端单元。1991年,Fr chet 把支化度作为描述超支化聚合物结构的一个因素, 如式1 所示: 支化度(DB)=(D+T)/(D+T+L)(1) 在这里,D 代表树状单元数, T 代表末端单元数,L 代表线型单元数。 Frey 基于反应过程, 将式1 修改成如式2 所示: (2) 这里,N 是分子数。因为式(2)中的N 可被忽略, 所以式(1)和(2)给出的DB 几乎相同。

水性聚氨酯性能优缺点

水性聚氨酯的优点: 聚氨酯的全名叫聚氨基甲酯。水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,其分子结构中含氨基甲酸酯基、脲键和离子键,内聚能高,粘结力强,且可通过改变软段长短和软硬段的比例调节聚氨酯性能。 水性聚氨酯乳液相比较与溶剂型聚氨酯具有以下优点: (1)由于水性聚氨酯以水作分散介质,加工过程无需有机溶剂,因此对环境无污染,对操作人员无健康危害,并且水性聚氨酯气味小、不易燃烧,加工过程安全可靠。 (2)水性聚氨酯体系中不含有毒的-NCO基团,由于水性聚氨酯无有毒有机溶剂,因此产品中无有毒溶剂残留,产品安全、环保,无出口限制。 (3)水性聚氨酯产品的透湿透汽性要远远好于同类的溶剂型聚氨酯产品,因为水性聚氨酯的亲水性强,因此和水的结合能力强,所以其产品具有很好的透湿透汽性。 (4)水作连续相,使得水性聚氨酯体系粘度与聚氨酯树脂分子量无关,且比固含量相同的溶剂型聚氨酯溶液粘度低,加工方便,易操作。 (5)水性聚氨酯的水性体系可以与其它水性乳液共混或共聚共混,可降低成本或得到性能更为多样化的聚氨酯乳液,因此能带来风格和性能各异的合成革产品,满足各类消费者的需求。 并且,由于近年来溶剂价格高涨和环保部门对有机溶剂使用和废物排放的严格限制,使水性聚氨酷取代溶剂型聚氨酷成为一个重要发展方向。 水性聚氨酯膜的优点: 水性聚氨酯树脂成膜好,粘接牢固,涂层耐酸、耐碱、耐寒、耐水,透气性好,耐屈挠,制成的成品手感丰满,质地柔软,舒适,具有不燃、无毒、无污染等优点。将成革的透氧气性、透湿性、低温耐曲折性、耐干湿擦性、耐老化性等,与溶剂型聚氨酯涂饰后的合成革进行了对比研究。结果表明,经水性聚氨酯涂饰的合成革的透氧量达到了4583.53mg/(em3·h),为溶剂型的1.5倍,且透水汽量达到了615.53mg/(cm3·h),约为溶剂型的8倍;低温耐曲折次数大于4万次,为溶剂型的2倍。采用水性聚氨酯替代传统的溶剂型聚氨酯完成合成革的

水性聚氨酯的制备

水性聚氨酯的制备 1、原料 聚醚二元醇(PPG,分子量为2000和1000),2,4-甲苯二异氰酸酯(TDI),二羟甲基丙酸,丙酮(工业品),2-甲基-2-氨基-7-丙醇。 2、合成 制备水性聚氨酯的主要方法有:丙酮法、预聚体直接分散法、熔融分散法、酮距胺法和酮丫嗪法等按照水性化方法不同,水性聚氨酯的制备又可以分为内乳化法和外乳化法。内乳化法,又称自乳化法,是因聚氨酯链段中含有亲水性成分,无需乳化剂即可得到稳定的乳液的方法。外乳化法,又称强制乳化法,若分了链中仅含少量或者不含亲水性链段或基团必须添加乳化剂,凭借外力进行乳化。 1)丙酮法 亲水的异氰酸酯预聚物和扩链剂的扩链反应在溶剂丙酮中进行,故称之为丙酮法。由于聚合物的合成反应在均相的溶液中进行,故再现性很好。水性聚氨酯树脂合成好以后,再加水乳化,最后减压抽出丙酮溶剂就可得到粒径较小的聚氨酯分敞体。这种方法是经典的方法,浚方法的优点是试验重现性好,得到的聚氨酯水分散体粒径小,稳定性好;但该方法也有缺点,那就是试验过程中丙酮的大量使用,而且还得将丙酮减压抽出,制备工艺复杂,生产成本较大。 2)预聚体直接分散法 该方法是合成聚氨酯分散体的一个普通方法。先制得亲水性的预聚体,当然预聚体含有游离的异氰酸酯基团,然后将预聚体和水混合,扩链反应是预聚体和扩链剂在水中进行。本人在这种方法基础上对此方法进行了改进,得到了一种方法把它罩尔之为边扩链边分散法,运用这种方法成功合成了长期稳定的水性聚氨酯分散体,而且在合成过程中不使用溶剂,简化了制备工艺,节约了合成成本。 3)熔融分散法 将聚酯或聚醚二醇、叔胺和异氰酸酯在熔融状态下制备预聚体,用过量尿素终止生成亲水性的双缩二脲离聚物,在将其在甲醛水溶液中分散,使发生羟甲基阳离子型水性聚氨酯发生反应。 4)外乳化法 外乳化法是最早使用的制备水性聚氯酯的方法,它是1953年美国Du Pont公司的、V Yandott发明。选取制成适当分子量的聚氨酯预聚体或其溶液,然后加入乳化剂,在强烈搅拌下强制性地将其分散于水中,制成聚氨酯乳液或分散体。外乳化法工艺简单,但存在以下缺点: a.在分散阶段需要强力搅拌设备,搅拌工艺对分散液性能影响很大; b.制得的分散液粒径较大,一般大于1.0mm,粒径分布宽,储存稳定性差; c.乳化剂的存在影响成膜后胶膜的耐水性、强韧性和粘结性等力学性能。 5)自乳化法 聚氨酯的自乳化过程实际上是一个相反转过程,在乳化过程中经历了一个从w/o 到o/w的转变过程,随着乳化的进行,聚集念结构也会发生相应变化,并且体现出物化性质(如粘度和电导率)改变。众所周知,聚氨酯材料内由于软链段和硬链段各自成相生微相分离,若将离子型水性聚氨酯中和成盐,那么它就属于离聚体。对离聚体的聚集态结构,许多人进行了研究,提出了很多模型,包括微离子点阵模型、各相同性模型、两相结构模型等。

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

超支化聚合物的活性聚合方法

超支化聚合物的活性聚合方法 1 前言 超支化聚合物是一类具有三维椭球状立体结构的高度支化的大分子聚合物[1],分子之间无缠结, 大量的端基暴露在最外层, 因此超支化聚合物表现出高溶解度、低粘度、化学反应活性高等特殊性能, 对其端基进行改性可得到不同特性和各种功能性的聚合物,如共混改性剂、涂料、纳米杂化材料、药物缓释、光电材料、粘合剂以及可降解聚合物等[2-4]。因此, 超支化聚合物一出现就受到了大批研究者的关注与青睐, 成为高分子科学中的热门课题之一[5-8]。超支化聚合物的飞速发展,不但增加了超支化聚合物的制备方法, 也丰富了超支化聚合物的种类[9 ]。科学家们也在不断开发和应用新型的超支化聚合物[10]。 2 超支化聚合的活性/可控自由基聚合方法 传统的自由基聚合由于其反应条件温和、形式多样化(本体、悬浮、溶液、乳液),易于制备,是合成高分子材料的主要方法。而它慢引发、快增长、易转移、链终止等反应特点使得产物的分子量和结构难以控制、分子量分布宽,还易出现支化交联等现象,严重影响了高分子材料的某些方面的性能。直至上世纪七十年代,科学家发现了碘转移自由基聚合[11](ITP),使氟烯烃的自由基聚合得以控制。经过科学家几十年的不懈努力,活性/可控自由基聚合(Control/Living Radical Polymerization,CRP)成为制备分子结构明确、分子量可控及分子量分布窄的聚合物的主要方法,已引起了学术界和工业界的极大兴趣。当前制备超支化聚合物的活性/可控自由基聚合包括原子转移自由基聚合[12-14](ATRP)、可逆加成—断裂链转移聚合[15,16] (RAFT),且他们都可以与点击化学(Click Chemistry)相结合。这些活性/可控自由基都是使增长自由基浓度降低,但链增长反应仍可进行,双基偶合和歧化反应显著减少,从而达到控制反应的目的,从而便利高效地合成各种具有预定结构的聚合物,比如嵌段、梳型、接枝、星型、超支化和环形等。 2.1 原子转移自由基聚合(ATRP) 原子转移自由基以有机卤化物为引发剂,过渡金属络合物作为卤原子载体即催化剂,在“活性种”与“休眠种”之间建立可逆的动态平衡.有效地抑制了自由基双基终止,实现多种单体的活性聚合和可控自由基聚合,最终实现对反应的控制。 Gaynor等[17]最先报道了利用ATRP制备超支化聚合物的研究成果。他们选择分子结构中含有苄基氯和聚合双键的对氯甲基苯乙烯(CMS)作为单体原料,在CuCI/2,2'-联二Ⅱtt啶(bpy)的催化体系中进行ATRP,最终得到了端基含有大量氯原子的超支化聚合物。Weimer等[18]发现只有使用大量催化剂才能制的超支化聚合物。陈云辉等[19]以CuBr/bpy作为催化剂,通过a—溴代苯乙烷引发二苯甲烷双马来酰亚胺的ATRP,可由双烯化合物原位生成自引发单体合成超支化聚合物。 原子转移自由基聚合(ATRP)利用控制自由基来控制分子结构和分子量,制备分子量分布较窄的聚合物,相对分子质量可以控制在103~105,Mw/Mn介于1.05-1.5之间。通过ATRP得到的聚合物,末端带卤素,可被其他亲核基团所取代,用来制备末端功能化的聚合物。迄今为

合成革用水性聚氨酯树脂技术应用现状及未来发展

合成革用水性聚氨酯树脂技术应用现状及未来发展 摘要: 通过对合成革水性聚氨酯的合成、生产应用配制、皮膜的性能进行比较详细的研究,结果表明我们的合成革用水性聚氨酯能在各种性能上达到甚至超过溶剂型树脂。且经济成本更低,更安全环保,它将可以逐渐取代溶剂型聚氨酯树脂。 关键词: 合成革用水性聚氨酯、交联、强度、耐屈挠、热水揉 一、国内合成革发展及现状 中国聚氨酯合成革的生产真正意义上的开始是1983年山东烟台合成革厂从日本引进聚氨酯合成革的生产技术及设备。但是中国合成革行业真正意义上的发展是在改革开放后实现的,特别是最近十年,合成革行业进入快速发展时期,行业整体平均每年都保持15%-20%的快速增长,无论是生产线的数量还是生产量在世界范围内都处于领先地位,到目前为止中国已成为世界上合成革的生产大国、使用大国。 目前全国共有人造革合成革企业2000多家,上千条生产线,其中规模以上干法生产线有516条,这些PU树脂主要都是以DMF、甲苯、丁酮、乙酸乙酯等为溶剂,这些溶剂的使用具有多方面的危害: (1)DMF经常接触会导致人体肝功能障碍;甲苯对皮肤粘膜有刺激作用,对中枢神经系统有麻醉作用;丁酮、乙酸乙酯等也都是长期吸入其蒸气会使眼、鼻、喉等粘膜受刺激,而引起炎症;长期接触这些有机溶剂势必影响人体健康。 (2)这些溶剂直接排放或者通过水性排放都会对周边环境造成极大的污染和破坏,进而影响整个地球生态环境。 (3)大多数这些有机溶剂都是易燃易爆的化学品,这样在储存、运输、操作上就存在了一定的安全隐患。 (4)使用有机化学作溶剂造成了资源的很大浪费。虽然现在有少数合成革企业对溶剂进行回收,但也仅仅局限于对干法生产线上部分DMF的回收。 因此,无毒、无污染、节能的水是溶剂最好的替代品,是经济、社会、资

超支化聚合物

超支化分子(hyperbranched molecular)是最近十几年发展起来的, 在聚合物科学领域引起人们广泛兴趣的一种具有特殊大分子结构的聚合物。早在1952年, Flory就提出了可以由多官能团单体制备高度支化的聚合物。但在过去的几十年中, 高度支化的聚合物并没有引起人们的注意。直到20世纪80年代中期, 杜邦公司的瓦Kim等人有目的地合成了一种超支化聚合物, 并申请了第一项关于这方面的专利, 而且于1988年在美国洛杉矶召开的全美化学会议上公布了这一成果。在早期, 主要是对树枝形聚合物的研究。第一代树枝形聚合物图是通过缩聚反应得到的, 需严格控制反应过程使其结构具有极好的对称性、分子的体积和形状。但是, 因其结构比较规整和完善, 就需要在合成的每一步, 核心分子末端的活性基团必须反应完全, 且每一步的产物需经过彻底的纯化, 因此得到的产物产率很低, 这就大大限制了树枝形大分子的工业化生产。超支化聚合物的结构不要求很完美, 具有一定的相对分子质量分布, 并且与树枝形聚合物相似, 一般可采用一步聚合的方法来合成, 所以易于工业化生产。这两类聚合物在结构上都高度支化, 而且都带有大量官能性的端基, 与线性同系物相比都具有较高的溶解性和较低的粘度, 因此现在一般将这两类聚合物通称为树枝状聚合物。超支化聚合物与线性聚合物在结构上也有很大的差别。线性聚合物中线性部分占大多数, 支化点很少, 分子链容易缠结, 体系的粘度随着相对分子质量的增大而迅速增加。而超支化聚合物中主要是支化部分, 支化点较多, 支化部分至少呈的几率增长。分子具有类似球形的紧凑结构, 流体力学回转半径小, 分子链缠结少, 所以相对分子质量的增加对粘度影响较小而且分子中带有许多官能性端基, 对其进行修饰可以改善其在各类溶剂中的溶解性, 或得到功能材料。摘抄自“超支化聚合物合成及其端基改性”,寇玉霞等,武汉化工学院化工与制药学院,上海涂料第42卷第2期2004.4

硬脂酸改性超支化聚酯无氟水性聚氨酯拒水剂的制备及性能

复合材料学报 第33卷 第7期 7月 2016年Acta Materiae Com p ositae Sinica Vol .33 No .7 Jul y 2016 DOI :10.13801/j . cnki.fhclxb.20151008.003收稿日期:2015-07-02;录用日期:2015-09-18;网络出版时间:2015-10-08 17:02 网络出版地址:https://www.360docs.net/doc/9213573908.html, /kcms /detail /11.1801.TB.20151008.1702.006.html 通讯作者:葛震,副研究员,研究方向为水性高分子材料三 E -mail :g zandls y @https://www.360docs.net/doc/9213573908.html, 引用格式:梁柱,葛震,姚维尚,等.硬脂酸改性超支化聚酯无氟水性聚氨酯拒水剂的制备及性能[J ].复合材料学报,2016,33(7):1429-1436.LIANG Z ,GE Z ,YAO W S ,et al.Pre p aration and p ro p erties of fluoride -free water re p ellents of waterborne p ol y urethane stearic acid modified h yp erbranched p ol y ester [J ].Acta Materiae Com p ositae Sinica ,2016,33(7):1429-1436(in Chinese ). 硬脂酸改性超支化聚酯无氟水性聚氨酯 拒水剂的制备及性能 梁柱1,葛震1,*,姚维尚1,王胜鹏2,宋金星2,罗运军1 (1.北京理工大学材料学院,北京100081;2.浙江传化股份有限公司,杭州311215) 摘 要: 以端羟丙基硅油(数均分子量2000)二三羟甲基丙烷(TMP )二N -甲基二乙醇胺(N -MDEA )和甲苯二异氰酸酯(TDI )等为原料合成水性聚氨酯(WPU )三为了引入疏水支链结构,采用硬脂酸对端羟基超支化聚酯进行端基改性,得到硬脂酸封端的超支化聚酯三将WPU 与硬脂酸改性超支化聚酯(SA -HBPE -3)进行复配,并应用于织物三采用红外光谱对改性前后的WPU 及SA -HBPE -3的结构进行表征三通过静态水接触角二吸水率及应用测试,研究了SA -HBPE -3含量对SA -HBPE -3/WPU 胶膜耐水性二表面能及拒水性能的影响规律三结果表明:随着SA -HBPE -3含量从0增至30wt%,SA -HBPE -3/WPU 胶膜的吸水率降至6.63%,涂覆处理织物的静态水接触角升 至135.3?三SA -HBPE -3的引入提高了SA -HBPE -3/WPU 胶膜的耐水性和涂覆织物的拒水性三当SA -HBPE -3含量为20wt%时,拒水效果达到最优值90分三 关键词: 拒水剂;超支化聚酯;水性聚氨酯;复配;织物;静态水接触角 中图分类号: TQ314.2 文献标志码: A 文章编号: 1000-3851(2016)07-1429-08 拒水整理是织物功能整理的一个重要方面三在 拒水剂中,氟类拒水剂以其优异的拒水效果得到青 睐[ 1-2] 三然而,氟类拒水剂存在环境危害性和人体积累毒性三随着人们安全环保意识的增强,无氟拒 水剂的研制成为拒水织物整理剂的研究热点[ 3-4] 三水性聚氨酯(WPU ) 具有环保二节能和使用安全等优点,已广泛应用于造纸二织物整理二皮革涂饰和 器漆等行业[ 5] 三在织物整理方面,WPU 织物整理剂能够赋予织物较优异的耐水洗性[ 6-8] 三然而,WPU 在实际应用中还存在许多不足,如拒水性差二 耐候性较弱等三有机硅是一类主链为Si O 键的聚合物,具有优异的柔韧性二耐候性和耐高低温性,且表面能低三有机硅含有大量疏水Si CH 3结构,经有机硅类拒水剂整理的织物可获得良好的拒水效果,特别适用于合成纤维及其混纺织物三并且,有机硅处理织物能够提升织物手感等级三常用的有机硅拒水剂基本上是含有聚二甲基硅氧烷的乳液[ 9] 三将有机硅引入到WPU 中,制备有机硅-聚氨酯共聚物,能够实现2种材料优势互补[ 10] 三如张怀文等[11] 以端氨丙基聚二甲基硅氧烷低聚物为扩链剂, 制备有机硅-聚氨酯嵌段共聚物,当有机硅含量大于46%时,胶膜水接触角大幅度提高三 超支化聚酯因其独特的支化结构,表现出低黏 度二高溶解性和高化学反应活性等特点[ 12] 三超支化聚酯含有大量活性端基,对其进行端基改性,可以 赋予超支化聚酯独特的功能三如刘晶如等[13] 以长 链烷基酸为改性剂,对端羟基超支化聚酯进行改性,有效提高超支化聚酯的热稳定性三在织物整理方面,超支化聚合物已有广泛应用三在织物染色中,经超支化聚合物处理的织物能显著提高活性染 料对织物的上染能力三徐厚才等[14]以聚酰胺- 胺树形分子对棉织物进行前处理,然后进行染色三结果表明,随着树形分子用量增加,能够促进染料的上染过程三德国Rudolf 公司曾利用树状大分子的特 性,开发一种无氟拒水剂,其末端有大量 CH 3,经高温处理,超支化聚合物末端的 CH 3定向排列在织物表面,形成有序结晶三这种拒水剂比较持久 稳定,是一种全新的无氟拒水剂[ 15] 三本文综合超支化聚酯和有机硅改性WPU 的优 点,以硬脂酸改性超支化聚酯(SA -HBPE -3) 与有

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。 由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。 然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。同时利用纳米材料来提高涂膜的光学、热学和力学性能。纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。[1] 1.2 水性聚氨酯的基本特征及发展历史 1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。1975年研究者们向聚氨酯分子链中引入亲水成分,从而提高了水性聚氨酯的乳液稳定性和涂膜性能,其应用领域也随之拓广。进入21世纪以来,随着水性聚氨酯乳液应用范围的进一步拓宽,世界范围内日益高涨的环保要求,进一步加快了水性聚氨酯工业发展的步伐。[2] 相对于国外,国内的水性聚氨酯发展较晚。我国水性聚氨酯的研究开始于上世纪七十年代,1976年沈阳皮革研究所最早研制出用于皮革涂饰用的水性聚氨

水性聚氨酯的研究综述

水性聚氨

前言 聚氨酯( PU ) 是聚氨基甲酸酯的简称, 它是聚合物内含有相当数量的氨基甲酸酯( —NHCO— )的高分子化合物。自从1937 年德国Bayer 教授首次 合成聚氨酯以来, 聚氨酯以其软硬度可调节范围广、耐低温、柔韧性好、附着力强等优点逐渐被人们所认识。其弹性体、泡沫塑料、涂料及粘接剂等均已获得广泛应用。 但由于溶剂型聚氨酯含有大量有机溶剂, 严重污染环境, 特别是溶剂型双组分聚氨酯中的残留异氰酸酯单体, 毒性极高。随着人们环保意识的增强和各国政府环保立法, 急需一种可以替代传统有机溶剂型的新型聚氨酯材料。水性聚氨酯是以水替代有机溶剂作为分散介质, 有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯 , 它不仅具有溶剂型聚氨酯的一些重要性能特征。同时还具有不燃、无毒、无污染、节省能源及易贮存, 使用方便等优点。因此备受关注, 成为当今聚氨酯领域发展的重要方向。

目录 一、水性聚氨酯的定义及分类 二、水性聚氨酯的制备原理 三、水性聚氨酯的制备方法 四、水性聚氨酯的防水性能及应用 五、水性聚氨酯的其他应用 六、展望

1水性聚氨酯的定义及分类 水性聚氨酯是指聚氨酯以水为介质, 体系中不含或含很少的有机溶剂。 以外观分, 水性聚氨酯可以分为3 类: 聚氨酯水溶液、聚氨酯分散液、聚氨酯乳液。三者之间的区别在于聚氨酯大分子粒子在水中的分散形态的不同,并没有不可逾越的界限, 实际应用中我们所说的水溶性聚氨酯是指聚氨酯水分散体或聚氨酯乳液。

表 1 按外观分各类水性聚氨酯的特性 以亲水性基团的电荷性质分, 水性聚氨酯可分为阴离子型水性聚氨酯、阳离子型水性聚氨酯和非离子型水性聚氨酯。其中阴离子型最为重要, 分为羧酸型和磺酸型2 大类。 以合成单体分水性聚氨酯可分为聚醚型、聚酯型和聚醚、聚酯混合型。依照选用的二异氰酸酯的不同, 水性聚氨酯又可分为芳香族和脂肪族, 或具体分为TDI 型、HDI 型等等。以产品包装形式分水性聚氨酯可分为单组分水性聚氨酯和双组分水性聚氨酯。 2 水性聚氨酯的制备原理 水性聚氨酯的制备原理水性聚氨酯的基本合成反应与一般聚氨酯一样, 只是一些单体中含有亲水基团, 整个合成过程可分为两个阶段。第一阶段为预逐步聚合, 即由低聚物二醇、扩链剂、水性单体、

水性聚氨酯合成、改性及应用前景

水性聚氨酯合成、改性及应用前景 摘要:随着水性聚氨酯合成与改性工艺的不断进步,水性聚氨酯的应用也得到了极大地提升,反过来由于水性聚氨酯涂料的优异性能以及其极好的应用前景近些年来有关于水性聚氨酯的合成与改性研究也是如火如荼。本文主要介绍了水性聚氨酯涂料的合成方法,综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性,并对水性聚氨酯涂料的发展进行了展望。 关键字:水性聚氨酯;合成;改性;丙烯酸酯;有机硅。 水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。如耐水性差、耐溶剂性不良、硬度低、表面光泽差等缺点,由于水性聚氨酯的这些缺点,我们需要对其进行改性,目前常见的改性方法有丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性等,本文将对水性聚氨酯的合成与改性进行阐述。 一、水性聚氨酯的合成 水性聚氨酯的制备可采用外乳化法和自乳化法。目前水性聚氨酯的制备和研究主要以自乳化法为主。自乳化型水性聚氨酯的常规合成工艺包括溶剂法(丙酮法)、预聚体法、熔融分散法、酮亚胺等。丙酮法是先制得含端基的高粘度预聚体,加入丙酮、丁酮或四氢呋喃等低沸点、与水互溶、易于回收的溶剂,以降低粘度,增加分散性,同时充当油性基和水性基的媒介。反应过程可根据情况来确定加入溶剂的量,然后用亲水单体进行扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散于水中,乳化后减压蒸馏回收溶剂,即可制得PU 水分散体系。

超支化聚合物涂料

超支化聚合物涂料 苏慈生(天津理工大学,300191) 摘要:介绍了超支化聚合物的发展、特性,合成的简捷性及在涂料中的应用前景。 关键词:超支化聚合物;超支化聚酯;超支化聚酯酰胺;涂料;发展 超支化聚合物是树状大分子同系物,是从一个中心核分子出发,由支化单体(ABx) 逐级扩散伸展开来的结构,或者是由中心核、数层支化单元和外围基团通过化学键连接而成的。早在1952 年Flary 就首先在理论上提出由ABx 型单体(x ≥2 ,A 、B 为反应基团) 分子间缩聚,制备高度支化聚合物的可能,同时还就其特性作了一些预测。直到20 世纪80 年代才相继合成出此类聚合物,并深入地对其合成、性质及应用进行了研究。至今主要品种有超支化聚酯、酰胺、醚、芳烃、有机硅等,有些已经商品化,如超支化聚酯Boltron20 , Boltron 30 ,Boltron 40 , Perstorp Speciality Chemicals AB 。超支化聚合物的特性是其分子结构规整,分子体积、形状和末端官能可在分子水平上设计与控制,因此成为高分子科学中的热门课题之一,也引起了涂料界的关注。树状大分子、超支化聚合物和传统的线型聚合物的分子结构模型如图1 所示。 图1 树枝状大分子、超支化聚合物、线型聚合物的分子结构模型 1 超支化聚合物的特性概述 树枝状大分子和超支化聚合物均可由ABx 单体合成,二者既有相同之处,也有区别。前者分子具有高度规整的分支结构,分子中无缺陷,呈园球形,后者的分子规整性较前者差,呈椭球形。二者分子的表面均密布着大量有反应活性的末端官能团。其次,前者是分步合成的,在进行下一步合成之前需分离提纯, 其所合成的高度规整分子结构,可作为模型分子供理论研究,后者是由一釜法合成的,制备较简便、经济、易于工业化。再有一点是超支化聚合物的相对分子质量分布较树状大分子宽,具有多分散性。该不足之处可以采用多官能度的核分子,在降低核分子浓度, 以及采取缓慢滴加单体的条件下,是可以改进的。试验证明这是减少分散性和增加分支度的有效方法。经研究发现超支化聚合物与树状大分子在结构和性能上的相似性,加之其在工业上的易合成性,使得超支化聚合物可以满足实际应用的需要。由AB2 单体合成的超支化聚合物分子结构见图2 。

相关文档
最新文档