单闭环无静差直流调速系统

单闭环无静差直流调速系统
单闭环无静差直流调速系统

8.3.4 单闭环无静差直流调速系统

上面介绍的采用比例调节器的单闭环调速系统,其控制作用需要用偏差来维持,属于有静差调速系统,只能设法减少静差,无法从根本上消除静差。对于有静差调速系统,如果根据稳态性能指标要求计算出系统的开环放大倍数,动态性能可能较差,或根本达不到稳态,也就谈不上是否满足稳态要求。采用比例积分调节器代替比例放大器后,可以使系统稳定且有足够的稳定裕量。但是采用PI调节器之后的系统稳态性能是否满足当时并未提及。通过下面的讨论我们将看到,将比例调节器换成比例积分调节器之后,不仅改善了动态性能,而且还能从根本上消除静差,实现无静差调速。

积分调节器和积分控制规律

图8.34所示为用线性集成电路运算放大器构成的积分调节器(简称I调节器)的原理图。根据运算放大器的工作原理,我们可以很容易地得到

(8.75)

式中,——积分调节器的积分时间常数。

式(8.75)表明积分调节器的输出电压是输入电压对时间的积分。当积分调节器在输入和输出都为零时,突加一个阶跃输入,其输出将随时间线性增大(如图8.35所示),即

(8.101)

其上升的速度取决于积分时间常数。在积分调节器中,只要在调节器输入端有Uin作用,电流i不为零,电容C就不断积分,输出Uex也就不断线性变化,直到运算放大器饱和为止。

图8.34 积分调节器

图8.35 阶跃输入时积分调节器的输出特性

从以上分析可知,积分调节器具有下述特点“

(1)积累作用。只要输入端有信号,哪怕是微小信号,积分就会进行,直至输出达到饱和值(或限幅值)。只有当输入信号为零,这种积累才会停止。

(2)记忆作用。在积分过程中,如果突然使输入信号为零,其输出将始终保持在输入信号为零瞬间前的输出值。

(3)延缓作用。即使输入信号突变,例如为阶跃信号,其输出却

不能跃变,而是逐渐积分线性渐增的。这种滞后特性就是积分调节器的延缓作用。

积分调节器的积累作用和记忆作用是使采用积分调节器和单闭环调速系统完全消除静差的根本原因,这就是积分控制规律。在采用比例调节器的调速系统中,调节器的输出是功率变换器的控制电压Uct,且。只要电动机在运行,就必须有Uct,也就必须有调节器的输入偏差电压,这是采用比例调节器的调速系统有静差的根本原因。如果采用积分调节器,输出电压Uct是输入偏差电压的积分,即

(8.76)

只要,积分就不会停止,Uct将继续变化,系统就不会进入稳态运行。只有当时,积分停止,Uct才停止变化,保持在一个恒定值上,使系统在偏差为零时保持恒速运行。

上述分析表明,比例调节器的输出只取决于输入偏差量的现状,而积分调节器的输出则不仅取决于输入偏差量的现状,而且包含了输入偏差量的全部历史。只要历史上有过,即使现在,其积分仍有一定数值,仍能产生足够的控制电压Uct,保证系统能在稳态下运行。这就是积分控制规律与比例控制规律的根本区别。

采用积分调节器虽然能使调速系统在稳态时没有静差,但是由于积分调节器的延缓作用,使其输出相对于输入有明显的滞后,输出电压的变化缓慢,使调速系统的动态响应很慢。采用比例调节器时虽然有静差,但动态响应却较快。因此,如果既要稳态准,又要响应快,可

将两种控制规律结合起来,这就是比例积分控制。

比例积分调节器和比例积分控制规律

前面在进行单闭环调速系统的动态分析时我们已经给出了比例积分调节器(简称PI调节器)的原理图和传递函数[见图8.43和式(8.96)]。根据运算放大器的基本原理可以得出它的输入与输出间的关系为

(8.77)由此可见,PI调节器的输出电压Uex由比例和积分两个部分组成,在零初始状态和阶跃输入信号作用下,其输出电压的时间特性示于图8.36。由图可以看出比例积分作用的物理意义。当突加输入电压时,由于开始瞬间电容C相当于短路,反馈回路只有电阻R1,使输出电压突跳到。此后,随着电容C被充电,开始体现积分作用,不断线性增长,直到达到输出限幅值或运算放大器饱和。这样,当单闭环调速系统采用比例积分调节器后,在突加输入偏差信号的动态过程中,在输出端Uct立即呈现,实现快速控制,发挥了比例控制的长处;在稳态时,又和积分调节器一样,又能发挥积分控制的作用,,Uct保持在一个恒定值上,实现稳态无静差。因此,比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。比例部分能

够迅速响应控制作用,积分控制则最终消除稳态偏差。作为控制器,比例积分调节器兼顾了快速响应和消除静差两方面的要求;作为校正装置,它又能提高系统的稳定性。所以,PI调节器在调速系统和其他自动控制系统中得到了广泛应用。

图8.36 阶跃输入时PI调节器的输出特性

采用PI调节器的单闭环无静差调速系统

图8.37绘出了采用PI调节器的单闭环无静差调速系统,其中除调节器外,其余与图8.33基本相同。

图8.37 采用PI调节器的单闭环无静差调速系统

下面分析这个系统的工作情况。

(1)稳态抗扰误差分析

前面从原理上定性地分析了比例控制、积分控制和比例积分控制规律,现在再用误差分析的方法定量地讨论有静差和无静差问题。

单闭环调速系统的动态结构图如图8.38(a)所示。图中A表示调节器,视调节器不同有不同的传递函数。当时,只有扰动输入量IdL,这时的输出量就是负载扰动引起的转速偏差(即速降),可将动态结构图改画成图8.38(b)的形式。

图8.38 带有调节器的单闭环调速系统的动态结构图

(a)一般情况(b)时

利用结构图的运算法则,可以得到采用不同调节器时,输出量与扰动量IdL之间的关系如下。

①当采用比例调节器时,比例放大系数为Kp,这时系统的开环放大系数,有

(8.78)

突加负载时,。利用拉氏变换的终值定理可以求出负载扰动引起的稳态速度偏差(即稳态速降)为

(8.79)

②当采用积分调节器或比例积分调节器时,调节器的传递函数分别

为和,按照上面的方法可以得到这两种情况下转速偏差的拉氏变换表达式:

当采用积分调节器时,有

(8.80)

当采用比例积分调节器时,有

(8.81)突加负载时,,利用拉氏变换的终值定理可以求出负载扰

动引起的稳态误差都是

因此,积分控制和比例积分控制的调速系统,都是无静差的。

上述分析表明,只要调节器上有积分成分,系统就是无静差的,或者说,只要在控制系统的前向通道上的扰动作用点以前含有积分环节,当这个扰动为突加阶跃扰动时,它便不会引起稳态误差。如果积分环节出现在扰动作用点以后,它对消除静差是无能为力的。

由于无静差调速系统稳态情况下没有速度偏差,在调节器输入端的偏差电压为零,即

因此,可以得到下面的关系:

(8.82)

在设计系统时,可以利用式(2.74)来计算转速反馈系数

(8.83)

式中,nmax——电动机调压调速时的高最转速;

——相应的给定电压的最大值。

(2)动态速降(升)

采用比例积分控制的单闭环无静差调速系统,只是在稳态时无差,动态还是有差的。下面我们来看一下无静差调速系统的抗扰调节过程。

在知道负载扰动大小的情况下,通过求解式(8.81),我们可以求得转速降落的时间解,这是定量计算的方法,现在我们只是进行

定性的分析。

设系统的给定电压为,当负载转矩为TL1时,系统稳定运行于转速n1,对应的晶闸管整流输出电压为Udol,速度反馈电压为Unl,PI调节器输入偏差电压,系统处于稳定运行状态。当电动机负载在t1时刻,突然由TL1增加到T12,如图8.39(a)所示,电动机轴上转矩失去平衡,电动机转速开始下降,偏离n1而产生转速偏差。通过测速发电机反馈到输入端产生电压偏差

,这个偏差电压加在PI调节器的输入端,于是开始了消除偏差的调节过程。这一调节过程可以分作比例调节过程和积分调节过程。

比例调节过程:在的作用下,PI调节器立即输出比例调节部分

,它使晶闸管整流输出电压增加,如图8.39(c)曲线①所示。这个电压使电电动机转速迅速回升,其大小与偏差电压

成正比,越大,也越大,调节作用也就越强,电动机转速回升也就越快。当转速回升到原来的转速n1以后,也减到零。这表明与偏差成比例的调节作用与偏差共存亡,偏差不存在,比例调节作用便因之结束。

积分调节过程:PI调节器积分部分的调节作用主要是在调节过程的后一段。积分部分的输出电压正比于偏差电压的积分,即

,它使晶闸管整流输出电压,因而正比于

的积分。或者说,积分作用使晶闸管整流输出电压增量增长的速度与偏差电压成正比。开始阶段,较小,也较小,

增长得十分缓慢;当最大时,增长得最快;在调节过程的末

段,电动机转速开始回升,减小,的增长也变慢,当完全

等于零时,便停止增长,之后就一直保持这个数值不变,如图8.39(c)曲线②所示。积分调节作用虽不再增长,但它却记住了以往积累的调节结果。正因为如此,整流输出电压在最后被保持在比原

来数值高出的新的数值上。是比例调节和积分调节的综合效果,示于图8.39(c)中的曲线③,的变化如图8.39(d)所示,图8.39(b)为转速n的变化过程。

图8.39 负载变化时PI调节器的调节过程

可以看出,不管负载怎样变化,积分调节作用一定要把负载变化的影响完全补偿掉,使转速回升到原来的转速,这就是无静差调节过程。

从以上分析可以看出,电压的增长速度与偏差电压一一对应,只要有偏差,整流输出电压就要增长,而且的增长是积累的。因此可以说,偏差存在的时间越久,电压增长量就越大。调节过程结束后的新电压稳态值不但取决于偏差的大小,还取决于偏差存在的时间。增长的那一部分电压,正好补偿由于负载增加引起的那部分主回路电阻R上的压降。

在整个调节过程中,比例部分在开始和中间阶段主要作用,由于

的出现,阻止转速n的继续下降,帮助转速的顺利回升,随着转速接近稳态值,比例部分作用变小。积分部分在调节过程的后期主要作用,而且依靠它最后消除转速偏差。在动态过程中最大的转速降落叫做动态速降(如果突减负载,则为动态速升),这是一个重要的动态性能指标,它表明了系统抗扰的动态性能。

总之,采用PI调节器的单闭调速系统,在稳定运行时,只要不变,转速n的数值也保持不变,与负载的大小无关;但是在动态调节过程中,任何扰动都会引起动态速度变化。因此系统是转速无静差系统。需要指出,“无静差”只是理论上的,因为积分或比例积分调节器在稳态时电容器C两端电压不变,相当于开路,运算放大器的放大系数理论上为无穷大,才能达到输入偏差电压,输出电压为

任意所需值。实际上,这时的放大系数是运算放大器的开环放大系数,其数值很大,但仍是有限的,因此仍然存在着很小的Δn,只是在一般精度要求下可以忽略不计而已。

原版单闭环直流调速系统

单闭环直流调速系统的设计与仿真 单回路的直流调速系统的设计和仿真 内容摘要:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性 能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。 通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。 关键词:稳态性能稳定性开环闭环负反馈静差 The design and simulation of Single loop dc speed control system Abstract :In the higher demand for performance of speed, if the open loop dc system's steady performance does not meet the requirements, can use speed inverse feedback to improve steadystate precision, but although the speed inverse feedback system adopts proportion regulator,it still have off, in order to eliminate static, can use integral regulator to replace proportion regulator. Based on the theoretical analysis of the single closed loop system which is made up of controllable power, the regulator which is made up of operational amplifier, a rectifier triggered by thyristor , motor model and tachogenerators module, compare the difference of the open loop system and the closed loop system,the original system and the this paper compares the theory of open loop system and the closed-loop system, the difference of primitive system and calibrated system, conclude the optimal model of the dc motor speed control system. Then use this theory to design a practical control system, and verify the validity with MATLAB simulation. Key words: steady-statebehaviour stability open loop Close-loop feedback offset

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

转速单闭环调速系统设计

目录 第1章概述 (1) 1.1 转速单闭环调速系统设计意义 (1) 1.2 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 2.1 原系统的工作原理 (2) 2.2 原系统的动态结构图 (3) 2.3 闭环系统的开环放大系数的判断 (3) 2.4 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 3.1 调节器的选择 (5) 3.2 PI调节器的设计 (5) 3.3 校正后系统的动态结构图 (8) 3.4 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (1)

转速单闭环调速系统设计 1、概述 1.1 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负 反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高静态指标, 就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要 想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环 调节系统。 1.2 转速单闭环调速系统的设计要求

不可逆单闭环直流调速系统静特性的研究

实验三不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图1-7。 四.实验设备及仪表 1.教学实验台主控制屏。 2.NMCL—31A组件 3.NMCL—33组件 4.NMEL—03组件 5.NMCL—18组件 6.电机导轨及测速发电机(或光电编码器)、直流发电机M01 7.直流电动机M03 8.双踪示波器 9.万用表 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。 5.系统开环连接时,不允许突加给定信号U g起动电机。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的 调试(主电路未通电) (a)用示波器观察 NMCL—33的双脉冲观 察孔,应有双脉冲,且间 隔均匀,幅值相同;观察 每个晶闸管的控制极、阴 极电压波形,应有幅值为 1V~2V的双脉冲。 (b)触发电路输出 脉冲应在30°~90°范围 内可调。可通过对偏移电 压调节单位器及ASR输 出电压的调整实现。例 如:使ASR输出为0V, 调节偏移电压,实现 α=90°;再保持偏移电压 不变,调节ASR的限幅 电位器RP1,使α=30°。 2.求取调速系统在 无转速负反馈时的开环 工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且U g调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d,输出电流i d以及被测

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in 时,由于比例部分的作用,输出量立即响应,突跳到U ex (t )=K P U in ,实现了快速响应;随后U ex (t )按积分规律增长,U ex (t )=K P U in +(t/τ)U in 。在t =t 1时,输入突降为0,U in =0,U ex (t )=(t 1/τ)U in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P 和1/τ的参数的确定 5.1各环节的参数: 直流电动机:额定电压U N =220V ,额定电流I dN =55A,额定转速n N =1000r/min,电动机电动势系数C e =0.192V ? min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s =44,滞后时间常数T s =0.00167s 。

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告 姓名: 专业班级: 学号: 同组人: 实验一 不可逆单闭环直流调速系统静特性的研究 一、实验目的 1、了解转速单闭环直流调速系统的组成。 2、加深理解转速负反馈在系统中的作用。 3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。 4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。 二、实验系统组成及工作原理 采用闭环调速系统,可以提高系统的动静态性能指标。转速单闭环直流调速系统是常用的一种形式。图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。 图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。 在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。 图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。 RP 给定 图1-1 不可逆转速单闭环直流调速系统

三、实验注意事项 1. 直流电动机M03参数为:P N =185W ,U N =220V ,I N =1.1A ,n =1500r/min 。 2. 直流电动机工作前,必须先加上直流激励。 3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g 起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW 起动电机。 4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A 。 5. 单闭环连接时,一定要注意给定和反馈电压极性。 四、实验内容 1、晶闸管--电动机系统开环机械特性及控制特性的测定 (1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR ,可将给定电压U g (开环时给定电压称为U g ,闭环后给定电压称为U n *)直接接到触发单元GT 的输入端(U ct ),电动机和测功机分别加额定励磁。 (2)测定开环系统控制特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,在0~1500r/min 之间记录几组 (3)测定开环机械特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,然后合上负载开关SL ,改变负载变阻器R g 的阻值,使主回路电流达到额定电流I N ,此时即为额定工作点(n =n N =1500r/min ,I d =I N =1A )。然后减小负载变阻器R g 阻值,使主回路负载从额定负载减少至空载,记录几组转速 n 和负载转矩T 的数据,并在图1-3所示坐标系中画出开环机械特性曲线。 U g e 图1-2 开环控制特性曲线 图1-3 开环机械特性曲线

直流电机闭环调速

第1章前言 1.1 课题的研究意义 现代化的工业生产过程中,几乎无处不使用电力传动装置,尤其是在石油、化工、电力、冶金、轻工、核能等工业生产中对电动机的控制更是起着举足轻重的作用。因此调速系统成为当今电力拖动自动控制系统中应用最广泛的一种系统。随着生产工艺、产品质量要求不断提高和产量的增长,使得越来越多的生产机械要求能实现自动调速,而且,当今控制系统已进入了计算机时代,在许多领域已实现了智能化控制。对传统的过程工业而言,利用先进的自动化硬件及软件组成工业过程自动化调速系统,大大提高了生产过程的安全性、可靠性、稳定性。提高了产品产量和质量、提高了劳动生产率,企业的综合经济效益,同时,也大大促进了综合国力的增强。对可调速的传动系统,可分为直流调速和交流调速。 直流调速系统凭借优良的调速特性,调速平滑、范围宽、精度高、过载能力大、动态性能好、易于控制以及良好的起、制动性能等优点,能满足生产过程自动化系统中各种不同的特殊运行要求,所以在电气传动中获得了广泛应用。为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。 本次设计是基于51系列单片机对直流电动机单闭环调速系统进行设计,能实现对直流电动机转速控制的功能,实现控制目的同时还配有显示装置,能实时反映当下直流电机的转速值,以优化整个系统的完整性。 通过这次设计,可以使我对51系列单片机的应用和直流电机闭环调节系统进行进一步的学习,增强知识的整合度使相关知识融汇贯通,为以后的工作奠定一定的知识基础。 1.2 直流电机调速的发展 由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展快,在许多场合正逐渐取代直流调速系统。但是就目前

课程设计——单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

题目:单闭环不可逆直流调速系统设计

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ·························································································································- 1 -第二章英文摘要 ·····························································································错误!未定义书签。第三章课程设计的目的和意义 ··································································································- 1 -1.电力拖动简介····················································································································- 1 - 2.课程设计的目的和意义 ·······································································································- 2 -第四章课程设计内容··················································································································- 2 -第五章方案确定 ·························································································································- 3 - 5.1方案比较的论证·············································································································- 3 - 5.1.1总体方案的论证比较···························································································- 3 - 5.1.2主电路方案的论证比较·······················································································- 4 - 5.1.3控制电路方案的论证比较 ···················································································- 6 -第六章主电路设计 ·····················································································································- 7 - 6.1主电路工作设备选择 ·····································································································- 7 -第七章控制电路设计··················································································································- 8 -第八章结论······························································································································· - 11 -第九章参考文献 ······················································································································· - 11 -

带电流截止负反馈转速单闭环直流调速系统设计

目录 摘要 (2) 1主电路的设计 (2) 1.1变压器参数的设计与计算 (2) 1.2平波电抗器参数的设计与计算 (3) 1.3晶闸管元件参数的计算 (3) 1.4保护电路的设计 (4) 2反馈调速及控制系统 (4) 2.1闭环调速控制系统 (4) 2.2带电流截止负反馈闭环控制系统 (5) 2.3调节器设定 (8) 2.4控制及驱动电路设计 (9) 3参数计算 (10) 3.1基本参数计算 (10) 3.2电流截止负反馈环节参数计算与设计 (12) 3.3调节器的参数设计与计算 (12) 3.4调节器串联校正设计 (15) 4总电气图 (16) 5心得体会 (18) 参考资料 (18)

带电流截止负反馈转速单闭环直流调速 系统设计 摘要 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。在直流电动机中,带电流截止负反馈直流调速系统应用也最为广泛,其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。本次课设就带电流截止负反馈转速单闭环直流调速系统进行参数的设计。 1主电路的设计 1.1变压器参数的设计与计算 变压器副边电压采用如下公式进行计算: ??? ? ?? -+= N sh T d I I CU A nU U U 2min max cos αβ V U C I I U A n V U V U N sh T d 110) 105.05.09848.0(9.034.21 22205 .0105 .0109 .034 .22 1,220222 min max =??-??+==========则取已知αβ 因此变压器的变比近似为:45.3110 3802 1===U U K 一次侧和二次侧电流I 1和I 2的计算 I 1=1.05×287×0.861/3.45=75A I 2=0.861×287=247A

单闭环直流调速系统

第十七单元晶闸管直流调速系统 第二节单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统得原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR、触发器CF、晶闸管变流器U、测速发电机TG等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n成正比得转速反馈电压Ufn。 转速给定电压Ugn与Ufn比较,其偏差电压ΔU=Ugn—Ufn送转速调节器ASR输入端。 ASR输出电压作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Ud。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统、 1.转速负反馈调速系统工作原理及其静特性 设系统在负载TL时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl。 当电动机负载TL增加时,电枢电流Id也增加,电枢回路压降增加,电动机转速下降,则Ufn也相应下降, 而转速给定电压Ugn不变,ΔU=Ugn—Ufn增加。 转速调节器ASR输出电压Uc增加,使控制角α减小,晶闸管整流装置输出电压Ud增加,于就是电动机转速便相应自动回升,其调节过程可简述为: T L↑→Id↑→Id(R∑+Rd)↑→n↓→Ufn↓→△U↑→Uc↑→α↓→Ud↑→n↑。 图17-41所示为闭环系统静特性与开环机械特性得关系。

图中①②③④曲线就是不同Ud之下得开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性得A点上、 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降、 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器得输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性得B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性得C,D点上。 将A,B,C,D点连接起来得ABCD直线就就是闭环系统得静特性、 由图可见,静特性得硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性与开环机械特性虽然都表示电动机得转速-电流(或转矩)关系,但两者就是不同得, 闭环静特性就是表示闭环系统电动机转速与电流(或转矩)得静态关系,它只就是闭环系统调节作用得结果,就是在每条机械特性上取一个相应得工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不就是沿着静特性AB直线变化得。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起得电动机转速变化外,还有其她许多扰动会引起电动机转速得变化,例如交流电源电压得变化、电动机励磁电流得变化等,所有这些扰动与负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速得影响。也就就是说在闭环系统中,对包围在系统前向通道中得各种扰动(如负载变化、交流电压波动、电动机励磁电流得变化等)对被调量(如转速)得影响都有强烈得抑制作用、但就是对于转速负反馈调速系统来说,转速给定电压Ugn得波动与测速发电机得励磁变化引起得转速反馈电压Ufn变化,闭环系统对这种给定量与检测装置得扰动将无能为力。为了使系统有较高得调速精度,必须提高转速给定电源与转速检测装置得精度。

单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 1.方案分析与认证 1.1转速控制调速指标与要求 直流电动机具有良好的起、制动性能,宜于在大X围内实现平滑调速,在许多需要调速的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。 为了进行定量的分析,可以针对前两项要求定义两个调速指标,叫做“调速X围”和“静差率”。这两个指标合成调速系统的稳态性能指标。一个调速系统的调速X围,是指在最低速时还能满足所需静差率的转速可调X围。在直流电动机变压调速系统中,一般以电动机的额定转速作为最高转速,若额定负载下的转速降落为,则按照上面分析的结果,该系统的静差率应该是最低速时的静差率,即,于是,最低转速为,而调速X围为,将上式的式代入,得,表示变压调速系统的调速X围、静差率和额定速降之间所满足的关系。 晶闸管-电动机系统是开环系统,调节控制电压就可以改变电动机的转速,如果负载的生产工艺对运行时的静差率要求不高,这样的开环调速系统都能实现一定X围内的无级调速,但是,许多需要调速的生产机械常常对静差率有一定的要求,例如龙门刨床,由于毛坯表面粗糙不平,加工时负载大校场有波动,但是,为了保证共建的加工精度和加工后的表面光洁度,加工过程中的速度却必须稳定,也就是说,静差率不能太大,一般要求,调速X围D=20~30,静差率s≤5%。又如热连轧机,各机架轧辊分别由单独的电动机拖动,钢材在几个机架内连续轧制,要求各机架出口线速度保持严格的比例关系,使被轧金属的每秒流量相等,才不致造成钢材拱起或拉断,根据工艺要求,须使调速X围D=3~10时,保证静差率s≤0.2%~0.5%。在这些情况下,开环调速系统往往不能满足要求。 任何一台需要控制转速的设备,其生产工艺对消速性能都有一定的要求。例如,最高

单闭环直流调速系统的设计与Matlab仿真(一)资料

课题:一、单闭环直流调速系统的设计与 Matlab仿真(一) 作者: 学号: 专业: 班级: 指导教师:

摘要 在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。 通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。 本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。 另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。 摘要:Matlab 开环闭环负反馈静差稳定性 V-M系统

目录 摘要 (2) 一、设计任务 (4) 1、已知条件 (4) 2、设计要求 (4) 二、方案设计 (5) 1、系统原理 (5) 2、控制结构图 (6) 三、参数计算 (7) 四、PI调节器的设计 (9) 五、系统稳定性分析 (11) 六、小结 (12) 七、参考文献 (13)

1、已知条件 已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。图中直流电机的参数:Pnom=2.2KW,nnom=1500r/min,Inom=12.5A,Unom=220V,电枢电阻Ra=1欧,V-M系统主回路总电阻R=2.9欧,V-M系统电枢回路总电感L=40mH,拖动系统运动部分飞轮力矩GD2=1.5N.m2,测速发动机为永磁式,ZYS231/110xi型,整流触发装置的放大系数Ks=44,三相桥平均失控时间Ts=0.00167s。 2、设计要求: (1)生产机械要求调速范围D=15 (2)静差率s≤5%, (3)若U*n=10V时,n=nnom=1500r/min,校正后相角稳定裕度γ=45o,剪切频率ωc≥35.0rad/s,超调量σ≤30%,调节时间ts≤0.1s

相关文档
最新文档