线性代数实验报告

线性代数实验报告
线性代数实验报告

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

用MATLAB解决线性代数问题实验报告

实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 实验目的: 学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似 对角化问题,以及解决投入产出分析等应用问题。 实验内容: 矩阵转置:A=[1 2;3 4];B=[4 3;2 1]; >> A',B' ans = 1 3 2 4 ans = 4 3 3 1 矩阵加减:A-B ans= -3 -1 1 3 矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans= 8 5 20 13 ans= 4 6 6 4 矩阵除法:A\B,B./A ans=

-6 -5 5 4 ans= 4 1.5 0.6667 0.25 特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵 ones(m,n)||生成m行n列的元素全为一的矩阵 eye(n)||生成n阶单位矩阵 rand(m,n)||生成m行n列[0 ,1]上均匀分布随 机数矩阵 zeros(2,3) ans = 0 0 0 0 0 0 >> ones(3,3) ans = 1 1 1 1 1 1 1 1 1 >> eye(3)

ans = 1 0 0 0 1 0 0 0 1 >> rand(2,4) ans = Columns 1 through 3 0.9501 0.6068 0.8913 0.2311 0.4860 0.7621 Column 4 0.4565 0.0185 矩阵处理:trace(A)||返回矩阵的迹 diag(A)||返回矩阵对角线元素构成的向量 tril(A)||提取矩阵的下三角部分 triu(A)||提取矩阵的上三角部分 flipud(A)||矩阵上下翻转 fliplr(A)||矩阵左右翻转 reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9]; >> t=trace(A),d=diag(A),u=triu(A)

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

线性代数实验题04-交通网络的流量分析

数学实验报告 学号: , 姓名: , 得分: 实验内容:实验题:交通网络流量分析问题(线性方程组应用) 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。 问题:某城市有下图所示的交通图,每条道路都是单行线,需要调查每条道路每小时的车流量。图中的数字表示该条路段的车流数。如果每个交叉路口进入和离开的车数相等,整个图中进入和离开的车数相等。 求(1)建立确定每条道路流量的线性方程组; (2)分析哪些流量数据是多余的; (3)为了唯一确定未知流量,需要增添哪几条道路的流量统计。 解: (1)由题意得:x1+ x7=400 x1+ x9= x2+300 x2+100=300+ x11 x3+ x7=350+ x8 x4+ x10= x9+ x3 x11+500= x4+ x12 x8+ x5=310 x6+400= x10+ x5 x12+150= x6+290

整理得: x 1+ x 7=400 x 1- x 2+ x 9=300 x 2+ x 11=200 x 3+ x 7- x 8=350 -x 3+x 4+ x 10- x 9=0 -x 4+x 11- x 12=-500 x 5 +x 8=310 - x 5+x 6- x 10=-400 -x 6+ x 12= 140 将方程组写成矩阵向量形式为AX = b 1 0 0 0 0 0 1 0 0 0 0 0 400 x 1 1 -1 0 0 0 0 0 0 1 0 0 0 300 x 2 0 1 0 0 0 0 0 0 0 0 1 0 200 x 3 A= 0 0 1 0 0 0 1 -1 0 0 0 0 b= 350 X= x 4 0 0 -1 1 0 0 0 0 -1 1 0 0 0 x 5 0 0 0 -1 0 0 0 0 0 0 1 -1 -500 x 6 0 0 0 0 1 0 0 1 0 0 0 0 310 x 7 0 0 0 0 -1 1 0 0 0 -1 0 0 -400 x 8 0 0 0 0 0 -1 0 0 0 0 0 1 140 x 9 x 10 x 11 x 12 在MATLAB 环境中,首先输入方程组的系数矩阵A 和方程组右端向量b A=[1,0,0,0,0,0,1,0,0,0,0,0;1,-1,0,0,0,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0;0,0,1,0,0,0,1,-1,0,0,0,0;0,0,-1,1,0,0,0,0,-1,1,0,0;0,0,0,-1,0,0,0,0,0,0,1,-1;0,0,0,0,1,0,0,1,0,0,0,0;0,0,0,0,-1,1,0,0,0,-1,0,0;0,0,0,0,-1,0,0,0,0,0,1] b = [400;300;200;350;0;500;310;-400;140] 解得 x 1=- x 9+500 x 2=200 x 3=- x 9+ x 10- x 12

数值分析实验报告

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p Λ 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a Λ 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots +

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

数值线性代数第二版徐树方高立张平文上机习题第一章实验报告(供参考)

上机习题 1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。 Sol : (1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y 用回代法解y Ux =,得x 求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码 %算法(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end

U=triu(A); L=tril(A); L=L-diag(diag(L))+diag(ones(1,n)); end %算法计算列主元三角分解:列主元Gauss消去法) function [L,U,P]=GaussCol(A) n=length(A); for k=1:n-1 [s,t]=max(abs(A(k:n,k))); p=t+k-1; temp=A(k,1:n); A(k,1:n)=A(p,1:n); A(p,1:n)=temp; u(k)=p; if A(k,k)~=0 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else break; end end L=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n));

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

数值线性代数第二版徐树方高立张平文上机习题第三章实验报告

数值线性代数第二版徐树方高立张平文上机习题第三章实验报告

第三章上机习题 用 你所熟悉的的计算机语言编制利用QR 分解 求解线性方程组和线性最小二乘问题的通用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说明各方法的优劣; (2)求一个二次多项式+bt+c y=at 2 ,使得在残向量 的2范数下最小的意义下拟合表3.2中的数据; (3)在房产估价的线性模型 11 1122110x a x a x a x y ++++= 中,11 2 1 ,,,a a a 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表3.3和表3.4给出的28组数据,求出模型中参数的最小二乘结果。

(表3.3和表3.4见课本P99-100) 解 分析: (1)计算一个Householder 变换H : 由于T T vv I ww I H β-=-=2,则计算一个Householder 变换H 等价于计算相应的 v 、β。其中 ) /(2,||||12v v e x x v T =-=β。 在实际计算中, 为避免出现两个相近的数出现的情形,当0 1 >x 时, 令 2 12 221||||)(-x x x x v n +++= ; 为便于储存,将v 规格化为1 /v v v =,相应的,β变为)/(22 1 v v v T =β 为防止溢出现象,用∞ ||||/x x 代替 (2)QR 分解: 利用Householder 变换逐步将n m A n m ≥?,转化为上三 角矩阵A H H H n n 11 -=Λ,则有

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

数值线性代数二版徐树方高立张平文上机习题第三章实验报告

- 1 - 第三章上机习题 用你所熟悉的的计算机语言编制利用QR 分解求解线性方程组和线性最小二乘问题的 通用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说明各方法的优劣; (2)求一个二次多项式+bt+c y=at 2 ,使得在残向量的2范数下最小的意义下拟合表3.2中的数据; (3)在房产估价的线性模型 111122110x a x a x a x y ++++= 中,1121,,,a a a 分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表3.3和表3.4给出的28组数据,求出模型中参数的最小二乘结果。 (表3.3和表3.4见课本P99-100) 解 分析: (1)计算一个Householder 变换H : 由于T T vv I ww I H β-=-=2,则计算一个Householder 变换H 等价于计算相应的v 、β。其中)/(2,||||12v v e x x v T =-=β。 在实际计算中, 为避免出现两个相近的数出现的情形,当01>x 时,令2 12221||||) (-x x x x v n +++= ; 为便于储存,将v 规格化为1/v v v =,相应的,β变为)/(221v v v T =β 为防止溢出现象,用∞||||/x x 代替 (2)QR 分解: 利用Householder 变换逐步将n m A n m ≥?,转化为上三角矩阵A H H H n n 11 -=Λ,则有

?? ? ???=0R Q A ,其中n H H H Q 21=,:),:1(n R Λ=。 在实际计算中,从n j :1=,若m j <,依次计算)),:((j m j A x =对应的)1()1()~ (+-?+-k m k m j H 即对应的j v ,j β,将)1:2(+-j m v j 储存到),:1(j m j A +,j β储存到)(j d ,迭代结束 后再次计算Q ,有??? ? ?? ??=-~001 j j j H I H ,n H H H Q 21=(m n =时1-21n H H H Q =) (3)求解线性方程组b Ax =或最小二乘问题的步骤为 i 计算A 的QR 分解; ii 计算b Q c T 11=,其中):1(:,1n Q Q = iii 利用回代法求解上三角方程组1c Rx = (4)对第一章第一个线性方程组,由于R 的结果最后一行为零,故使用前代法时不计最后一行,而用运行结果计算84x 。 运算matlab 程序为 1 计算Householder 变换 [v,belta]=house(x) function [v,belta]=house(x) n=length(x); x=x/norm(x,inf); sigma=x(2:n)'*x(2:n); v=zeros(n,1); v(2:n,1)=x(2:n); if sigma==0 belta=0; else alpha=sqrt(x(1)^2+sigma); if x(1)<=0 v(1)=x(1)-alpha; else v(1)=-sigma/(x(1)+alpha); end belta=2*v(1)^2/(sigma+v(1)^2); v=v/v(1,1); end end

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

(精选)线性代数-考研笔记

第一章行列式 性质1 行列式与它的转置行列式相等。 性质2互换行列式的两行(列),行列式变号。 推论如果行列式的两行(列)完全相同,则此行列式等于零。 性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。第行(或者列)乘以,记作(或)。 推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第行(或者列)提出公因子,记作(或)。 性质4行列式中如果两行(列)元素成比例,此行列式等于零。 性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和: = 性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。 引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即 定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 或 推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。 范德蒙德行列式 克拉默法则

如果线性方程组①的系数行列式不等于零,即 , 那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素 用方程组右端的常数项代替后所得到的阶行列式,即 定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。 定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。 定理5 如果齐次线性方程组的系数行列式 定理如果,则它的系数行列式必为零 第二章矩阵级其运算 定义1 由个数排成的行列的数表,称为行列矩阵; 以数为元的矩阵可简记作或矩阵也记作。 行数和列数都等于的矩阵称为阶矩阵或阶方阵。阶矩阵也记作。 特殊定义: 两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。 特殊矩阵 阶单位矩阵,简称单位阵。特征:主对角线上的元素为,其他元素为; 对角矩阵,特征:不在对角线上的元素都是0,记作

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

数值线性代数第二版徐树方高立张平文上机习题第三章实验报告.doc

第三章上机习题 用你所熟悉的的计算机语言编制利用QR分解求解线性方程组和线性最小二乘问题的通 用子程序,并用你编制的子程序完成下面的计算任务: (1)求解第一章上机习题中的三个线性方程组,并将所得的计算结果与前面的结果相比较,说 明各方法的优劣; (2)求一个二次多项式y=at 2+bt+c ,使得在残向量的 2 范数下最小的意义下拟合表中的 数据; 表 t i -1 0 y i 1 1 (3)在房产估价的线性模型 y x0 a1x1 a2 x2 a11x11 中, a1 ,a2 ,, a11分别表示税、浴室数目、占地面积、车库数目、房屋数目、居室数目、房 龄、建筑类型、户型及壁炉数目,y 代表房屋价格。现根据表和表给出的28 组数据,求出模型中参数的最小二乘结果。 (表和表见课本P99-100 ) 解分析: (1)计算一个 Householder 变换 H: 由于H I 2ww T Ivv T,则计算一个Householder 变换 H 等价于计算相应的、 v 。 其中 v x || x || 2 e1 , 2 /( T ) v v 。 在实际计算中, 为避免出现两个相近的数出现的情形,当x1 0 时,令v1 - ( x22 x n2 ) ; x1 || x ||2 为便于储存,将v 规格化为 v v / v1,相应的,变为2v2 /(v T v) 1 为防止溢出现象,用x / || x || 代替 (2) QR分 解: 利用 Householder 变换逐步将 A m n , m n 转化为上三角矩阵H n H n 1 H 1 A ,则有

R A Q,其中Q H1H 2 H n, R (1: n,:) 。 ~ 在实际计算中,从j 1: n ,若j m ,依次计算x A(( j : m, j )) 对应的( H j)( m k 1) ( m k 1) 即对应的 v j,j,将 v j (2 : m j 1) 储存到 A( j 1: m, j) ,j储存到 d ( j) ,迭代结束 后再次计算 Q ,有 H j I j 1 0 H n( n m 时 Q H 1H 2 ~ , Q H1H 2 H n-1 )0 H j (3)求解线性方程组Ax b 或最小二乘问题的步骤为 i计算 A 的QR分解; ii计算 c1Q1T b ,其中 Q1Q (:,1: n) iii利用回代法求解上三角方程组 Rx c1 (4)对第一章第一个线性方程组,由于 R 的结果最后一行为零,故使用前代法时不计最后一行,而用运行结果计算 x84。 运算 matlab 程序为 1 计算 Householder变换[v,belta]=house(x) function [v,belta]=house(x) n=length(x); x=x/norm(x,inf); sigma=x(2:n)'*x(2:n); v=zeros(n,1); v(2:n,1)=x(2:n); if sigma==0 belta=0; else alpha=sqrt(x(1)^2+sigma); if x(1)<=0 v(1)=x(1)-alpha; else v(1)=-sigma/(x(1)+alpha); end belta=2*v(1)^2/(sigma+v(1)^2); v=v/v(1,1); end end

线性代数笔记

线性代数笔记 第一章行列式 (1) 第二章矩阵 (2) 第三章向量空间 (8) 第四章线性方程组 (11) 第五章特征值与特征向量...................................... 错误!未定义书签。第一章行列式 1.3。1 行列式的性质 给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。 性质1 转置的行列式与原行列式相等。即 (这个性质表明:行列式对行成立的性质,对列也成立,反之亦然) 性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。 可以证明:任意一个奇数阶反对称行列式必为零。 性质3行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 推论3 若行列式某两行(列),完全相同,则行列式的值为零. 性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。 性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意性质中是指某一行(列)而不是每一行。 性质 6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。 范德蒙德行列式 例10 范德蒙行列式…… . =(x2-x1)(x3—x1)(x3—x2)

1。4 克莱姆法则 定理1.4.1 对于n阶行列式 定理1.4。2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解: 定理1.4。3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解. 推论如果齐次方程组有非零解,则必有系数行列式D=0. 第二章矩阵 一、矩阵的运算 1、矩阵的加法 设A=(a ij)m×n,B=(b ij)m×n,则 A+B=(a ij+b ij)m×n 矩阵的加法适合下列运算规则: (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) (3)A+0=0+A=A

相关文档
最新文档