Dynamic_Positioning_System(2002)_E

Dynamic_Positioning_System(2002)_E
Dynamic_Positioning_System(2002)_E

Guidelines on Surveys for Dynamic Positioning System

(2002)

China Classification Society

CONTENTS Chapter 1 GENERAL

1.1General requirements

1.2Class notation

1.3Definitions

1.4Plans and documents

1.5Failure mode and effect analysis

Chapter 2 SURVEYS AND TESTS

2.1 Construction surveys

2.2 Surveys for maintenance of class

2.3 Surveys for marine products

Chapter 3 SYSTEM ARRANGEMENT

3.1 General requirements

3.2 Dynamic positioning control station

3.3 Arrangement of control system

3.4 Arrangement of control panels

3.5 Arrangement of cables and piping systems

Chapter 4 THRUSTER SYSTEM

4.1 General requirements

4.2 Thruster arrangement

Chapter 5 POWER SYSTEM

5.1 General requirements

5.2 Number and capacity of generators

5.3 Power management system

5.4 Main switchboard arrangement

Chapter 6 CONTROLLER AND MEASURING SYSTEM 6.1 General requirements

6.2 Composition of the controller and measuring system

6.3 Computer system

6.4 Manual thruster control

6.5 Joystick thruster control

6.6 Automatic thruster control

6.7 Thruster control mode selection

6.8 Position reference systems

6.9 Sensor systems

6.10 Display and alarm

6.11 Communication system

6.12 Unbroken power source

Chapter 7 ENVIRONMENTAL CONDITIONS 7.1 General requirements

Chapter 8 SPARE PARTS

8.1 General requirements

Chapter 1 GENERAL

1.1General requirements

1.1.1 The Guidelines applies to the installation of dynamic positioning system onboard vessels or on mobile drilling unit at sea (hereinafter referred to as “vessels”).

1.1.2 Dynamic positioning system arranged on vessels in accordance with the Guidelines can be assigned appropriate class notation.

1.1.3 In addition to the Guidelines, relevant provisions of the Administration of flag States and / or of the Administration, where intending to operate within the sea areas under their jurisdiction, are to be noted.

1.1.4 Where the vessels with dynamic positioning system do not apply for class notations, their design and equipment may be referred to the requirements of the Guidelines.

1.1.5 The Society is to give appropriate consideration to those newly designed dynamic positioning vessel or relevant equipment. If the new design complies with the intention of the Guidelines, it is to be approved.

1.1.6 The Guidelines is based on the following suppositions, i.e. operation and maintenance of the dynamic positioning system, the guidelines is to be carried out by qualified crew.

1.2Class notation

1.2.1 In accordance with the different redundancy degree of the dynamic positioning system, the Society, upon request by owners, is to assign class notations① to the followings:

DP – 1 Vessels with dynamic positioning system can keep the position and heading of the vessels under the specified environmental conditions. And at the same time, independent, concentrated manual control of vessels position and automatic heading control is to be fitted.

DP – 2 Vessels with dynamic positioning system can automatically keep the position and heading of the vessel when single failure (excluding loss of a cabin or cabins) appears under the specified environmental conditions and in specified operating fields.

DP – 3 Vessels with dynamic positioning system can automatically keep the position and heading of the vessel when any failure (including entirely loss of a cabin caused by fire or flood) appears under the specified environmental conditions and in specified operating fields.

1.2.1The class of the dynamic positioning system is to include the following sub-systems and

their back-up systems:

(1)dynamic system;

(2)controller;

(3)measuring system;

(4)thruster system;

(5)remote thruster system;

① For the equipment and system not in compliance with the class requirements, the Society shall, upon request, issue a fitness declaration indicating the whole or partial vessel / system in compliance with the Guidelines. The society shall not monitor or trace the vessel’s status after issuing fitness declaration.

(6)control panel.

1.3Definitions

1.3.1 For the purpose of the Guidelines:

(1)Dynamic positioning vessel means a vessel which automatically maintains its position

(fixed location or predetermined track) exclusively by means of thruster force.

(2)Dynamic positioning system means the complete installation necessary for dynamically

positioning a vessel, comprising the sub-systems:

① power system;

② thruster system, and;

③ DP-control system and measuring system.

(3)Power system means all components and systems necessary to supply the DP system

with power. The power system includes:

① prime movers with necessary auxiliary systems including piping;

② switchboards; and

③ distributing system (cabling and cable routine).

(4)Controller means all concentrated control hardware and software necessary to supply

DP of the vessel. The controller is to generally be composed of one or more computers.

(5)Thruster system means all thrusters and control units, and main propellers and rudders

concurrently for the use of dynamic position and other propellers.

(6)Position reference system means the system to measure the ship’s position and heading.

(7)Redundancy means ability of a components or system to maintain or restore its

function, when a single failure occurs. Redundancy can be achieved for instance by

installation of multiple components, systems or alternative means of performing a

function.

(8)Environment means environmental status including wind, wave and current. Ice load

may not be considered.

(9)Computer system means one or more computers, associated software, peripherals and

interfaces, and a computer network with its protocol.

(10)Single failure means a failure appearing in a part or a system that will result in

following one or two affections:

① function loss of a part or a system;

② degradation of the function to the degree of lowering safety of vessels, crew and

environment.

(11)Reliability means the ability of system or a component to perform its required function

without failure during a specified time interval.

1.4Plans and documents

1.4.1 In addition to the plans and documents submitted for approval as requested by main class, the following plans and documents are to be submitted in triplicate to the Society for examination:

(1)Technique indication of DP system, including the following:

① performance of measuring system and controller, the type of thruster, the

controlling method of thruster and thrusting allocation scheme;

② the curves of thrusting output and power input, thrusting force and response time of

direction change, anticipated reduction of thrusting force resulting from interaction

effects;

③ for class notations of DP-2 and DP-3, the principle indication of on-line

“consequence analysis” is to be submitted.

(2)Ultimate status of environment (wind speed, current and wave) (to be indicated either

in the form of figure or in writing).

(3)Sensor and referenced system framing figure (position / environmental status).

(4)Functioning figure of the controlling system.

(5)Single line arrangement and indication of cables between each equipment unit

(dynamic, control and indication).

(6)Calculations of maximum general power load required for DP.

(7)Failure mode and effect analysis (FMEA) reports (including redundancy test

procedure).

(8)Arrangement of control station.

(9)Item list of indication and alarm of the controller.

(10)Mooring and navigation test program (submitted for approval to the site survey

location).

1.4.2 The following are to be submitted in triplicate to the Society for reference:

(1)Operation Manual of positioning system, including:

① operation indication;

② maintenance indication;

③ emergency indication.

1.5Failure mode and effect analysis (FMEA)

1.5.1 The purpose of FMEA is to indicate the different failure mode of the equipment related to DP system functionality. There may be various failure modes in some equipment of the system, which may cause different effects on DP system. Thus, special attention is to be paid to them.

1.5.2 Failure mode and effect analysis are to be carried out to the whole DP system. Failure mode and effect analysis are to be as concrete as possible to include all main components of the system. The following are to generally be included but not be limited:

(1)the indication of all main components of the system and the show of functioning

framing figure of the effects between them:

(2)all major failure mode;

(3)the main cause that can be anticipated of each failure mode;

(4)the transient effect that each failure makes to vessel positioning;

(5)the method for detecting failure;

(6)the effect that the failure causes to residual ability of the system;

(7)the analysis to probable common failure mode.

1.5.3 When FMEA is being compiled, each single failure mode affecting other components of the system and to the whole DP system is to be indicated.

1.5.4 When redundancy is considered unnecessary or impossible to some components of the system, further consideration of reliability and machinery maintenance is to be given to these components.

1.5.5 The test of system redundancy under each failure mode can substitute FMEA analysis report. The redundancy test procedure is to be based on imitated failure mode. The test is to be carried out under the condition as far as practicable. Detailed redundancy test procedure is to be submitted for examination.

Chapter 2 SURVEYS AND TESTES

2.1 Construction surveys

2.1.1 To check certificates of marine products of relevant equipment.

2.1.2 To assure that the equipment and arrangement of DP system is in compliance with the approved plans and related specifications of the Society.

2.1.3 Where there is redundancy in DP system and independence is required, the concrete consequences for FMEA of different sub-systems are to be verified by means of tests (in accordance with the redundancy test procedure specified in 1.5.5).

2.1.4 All sensors, peripheral equipment and reference system are to be tested before the test of the whole DP system. Alarm system and logical conversion are to be calibrated in accordance with the failure of analogue sensors.

2.1.5 The following tests are to be carried out to thruster:

(1)function test to control of each thruster alarm system;

(2)test of signal exchanges between each thruster and DP system computer;

(3)test of different control methods of the thruster.

2.1.6 Test is to be carried out to the power control apparatus.

2.1.7 The following tests are to be carried out to the whole set of DP system:

(1)Tests to conversion method, back-up system and alarm system with all operation and

through different analogue failure status.

(2)Test to manual override function under normal operation and failure status conditions.

(3)Continuous site test for at least 6 to 8 hours to the whole set of automatic system, the

failure happened is to be recorded and analyzed.

(4)Under specific environmental conditions, the whole DP system is to be tested for at

least 2 hours. Whether condition is to make average load level on thruster reach 50 %

or higher. Where the environmental condition can not satisfy the requirements

mentioned above, the specific test my be carried out on an appropriate occasion.

2.2 Surveys for maintenance of class

2.2.1 The apparatus such as generator and thruster system related to DP system is to be tested in accordance with the requirements of the main class

2.2.2 When annual surveys are carried out, they are to be ensured that the DP system has normally been maintained in good working order.

2.2.3 The tests are to be carried out in renewal surveys in accordance with the requirements of 2.1.5, 2.1.6 and 2.1.7 (1) to (3).

2.2.4 Where a major alteration is added to hardware or software of the DP system (meaning adding position reference system, installing more or different thruster(s) or adding different

control methods), the survey is to be carried out in accordance with concrete conditions to ensure the system in compliance with the requirements of the Guidelines.

2.3 Surveys for marine products

2.3.1 Each DP system (including controller and measuring system) assigned class notation in accordance with 1.2.1 of the Guidelines is to be subjected to survey of marine products in accordance with the Rules for Survey of Marine Products by the Society, and can obtain certificate of marine products.

2.3.2 The relevant components in dynamic system and thruster system are to obtain a certificate of marine products in accordance with the requirements on the main class.

Chapter 3 SYSTEM ARRANGEMENT

3.1 General requirements

3.1.1 The Chapter specifies general type requirements of system arrangement except otherwise specified. These requirements apply to all the vessels with DP additional class notations. Specific requirements for each sub-system are to be specified in sub-system.

3.1.2 In accordance with different additional class notations, the design of DP arrangement is to satisfy the requirements of table 3.1.2.

3.1.3 Redundant components and systems are to be immediately available and with such capacity that the DP operation can be continued for such a period that the work in progress can be terminated safely. The transfer to the redundant component or system is to be automatic as far as possible, and operator intervention is to be kept to a minimum. The transfer is to be smooth and within acceptable limitations of the operation.

3.1.4 Under special environmental condition for operation such as near offshore platform, the DP system is to be so designed that it has remote control of the length and tension of single chain when position mooring equipment is used to help main automatic position. In accordance with the operation conditions, the consequence of chain fracture or thruster failure is to be analyzed.

3.2 Dynamic positioning control station (DP-control station)

3.2.1 DP-control station for DP operating and controlling is to be fitted on DP vessels. The relevant indicators, alarms, control panel and communication system are to be fitted in the control station.

3.2.2 The location of the DP-control station is to be chosen to suit the main activity of the vessel. The DP-control station is to be located with a good view of the surroundings.

3.2.3 For class notation DP-3, back-up DP-control station with back-up computer is to be fitted. The separation between the control station and main control station is to meet the requirement of A-60 Class. In emergency conditions, the operator is to easily move from main DP-control station to back-up DP-control station.

3.2.4 Consideration is to be given to the environmental condition of the DP-control station. If the normal DP operation can be kept upon necessary measures, these measures are to have redundancy for class notations DP-2 and DP-3.

3.3 Arrangement control system

3.3.1 The control system is to include both automatic and manual control modes. Automatic control mode is to include control of position and heading. Set-points for control of position and heading is to be independently selectable. Manual control mode is to include control of thrusters by individual control devices for pitch / speed and azimuth of each thruster, and an integrated remote thruster control by use of joystick.

3.3.2 Class notation DP-1 is to include an automatic control mode and control mode composed of selective integrated joystick and lever controls. Class notations DP-2 and DP-3 are to include at least two independent auto control system and a manual control mode composed of selective integrated joystick and lever controls.

3.3.3 In addition to the requirements of 3.3.2, class notation DP-3 is to include back-up control system fitted in back-up DP control station. The back-up control system is to include auto control mode, and is to be connected to a location reference system. The operation of the location reference system is to not be connected to the main control system.

3.3.4 The back-up control system is to be selected by the switch located at the back-up control station. Where a switch is also fitted at the main control station with the same function as that at the back-up control station, it is allowed when the main control station fails to operate properly the selection of the back-up control system by back-up control station is not hindered.

3.4 Arrangement of control panels

3.4.1 The information sources like displays, indicators, etc. are to provide information in a readily usable form. The operator is to be provided with immediate information of the effect of his actions. Generally, feedback signals or other confirmations of actions carried out are to be displayed, not only the initial command.

3.4.2 Easy switch-over operational modes are to be provided. Active mode is to be positively indicated. Positive indications of the operational status of the different sub-systems are to be given.

3.4.3 Indicators and controls are to be arranged in logical groups, and to be coordinated with the geometry of the vessel when this is relevant.

3.4.4 If control of a sub-system can be carried out from alternate control stations, positive indication of the station in charge is to be provided.

3.4.5 Precautions are to be taken to avoid inadvertent operation of controls if this may result in a critical situation. Such precautions may be proper location of handles etc, recessed or covered switches, or logic requirements to operation.

3.4.6 Interlocks are to be arranged, if erroneous sequence of operation may lead to a critical situation or damage of equipment.

3.4.7 Controls and indicators placed in the wheelhouse are to be sufficiently illuminated. Lights for such purpose are to be provided with dimming facilities.

3.5 Arrangement of cables and piping systems

3.5.1 For class notation DP-2, the critical DP systems for fuel, lubrication, hydraulic oil, cooling

water and pneumatic circuit, cables are to be located with due regard to fire hazards and mechanical damage.

3.5.2 For class notation DP-3, redundant piping system (piping for fuel, lubrication, hydraulic oil, cooling water and pneumatic circuit) is not to be routed together through the same compartments. Where this is unavoidable, such pipes could run together in ducts of A-60 class. Cables for redundant equipment or systems are not to be routed together through the same compartments. Where this is unavoidable, such cables could run together in cable ducts of A-60 class. Cable connection boxes are not allowed in such ducts.

Chapter 4 THRUSTER SYSTEM

4.1 General requirements

4.1.1 The thrusters mentioned in the Guidelines are pipe tunnel thrusters, azimuth thrusters, with fixed or variable pitch blades, with electric, direct diesel, or hydraulic drive. Other types of thrusters will be considered specially in each case.

4.1.2 Except otherwise specified in the Guidelines, the design and manufacture of the thrusters including prime mover, gear box shafting and propeller are to comply with the applicable requirements of PART THREE of the Rules and Regulations for the Construction and Classification of Sea-Going Steel Ships by the Society.

4.1.3 Control and monitoring of the thrusters are to meet the requirements of Chapter 6.

4.2 Thruster arrangement

4.2.1 The thruster location is to minimize interference between thrusters, thruster and hull.

4.2.2 Thruster intake depth is to be sufficient to reduce the probability of ingesting floating debris and of vortex formation.

4.2.3 The number and capacity of the thrusters are to meet the following requirements:

(1)In the specified environmental conditions, the thruster system is to provide adequate

thrust in longitudinal and lateral directions and provide yawning moment for heading control.

(2)For class notation DP-2 and DP-3, in the arrangement of redundant thrusters, any one of

the thrusters fails, the thruster system is to still provide adequate thrust in longitudinal

and lateral directions and provide yawning moment for heading control.

4.2.4 The values of the thruster forces used in the consequence analysis are to be corrected for interference between thrusters and other effects which will reduce the effective force.

Chapter 5 POWER SYSTEM

5.1 General requirements

5.1.1 Except otherwise provided in the Guidelines, power system is to comply with the applicable requirements of PART FOUR of the Rules and Regulations for the Construction and Classification of Sea-Going Steel Ships by the Society.

5.2 Number and capacity of generators

5.2.1 When starting thrusters on dedicated generators, especially when one generator fails to work, transient voltage drop caused in bus-bar system is not to be in excess of 15 % of the rated voltage.

5.2.2 If the total installed thruster capacity exceeds the total installed power, interlocks or thrust limitations are to be arranged to prevent overloading the power plant.

5.2.3 The high reactive load demands which may occur in DP thruster operation are to be considered when selecting number and type of generators.

5.3 Power management system

5.3.1 For vessels with class notations DP-2 and DP-3, an automatic power management system is to be arranged. This system is to perform load dependent starting of additional generators, and may also include load dependent stop of running generators. The system is to block starting of large consumers when there is not adequate running generator capacity, and to start up back-up generators as required, and hence to permit requested consumer start to proceed.

5.3.2 The alarm is to be given when total power load exceeds the preset percentage of the total capacity of the working generators. The set value of the alarm can be adjusted between 50% and 100% of the working capacity, is to be determined in accordance with number of the working generators and influence of failure of one generator.

5.3.3 The measures are to be taken for the power supplied thruster system before the load reaches the alarm value specified in 5.3.2, so that the other generators can automatically start, coordinate and distribute load.

5.3.4 Sudden overload caused by stop of one or more generators is not to create black-out. Reduction in thruster load, i.e. pitch or speed reductions, must be introduced in the period it takes to start and bring a new generator on the line. If this function is taken care of by the DP-computer system, the effect is to be coordinated with the power management system.

5.4 Main switchboard arrangement

5.4.1 For class notation DP-2 and DP-3, the main switchboard is to be so arranged that it will not accept total black-out as the consequence of any single failure. Single failure is defined as any system or component break-down of technical nature. For vessel with class notation DP-3, single failure is to also include the failures caused by flood and fire incidents. The immediate consequence of this is that physical separation of redundant components / systems must be used to limit the failure effects of flood and fire.

5.4.2 When considering single failures of switchboards, the possibility of direct short circuit of the main bus-bar has to be considered.

5.4.3 A bus-bar system consisting of at least two sections will be accepted. It is accepted that the

sections are connected with bus-tie breakers, provided that these are circuit breakers capable of breaking the maximum short circuit currents in the system.

5.4.4 For class notation DP-2, it is accepted that the bus-bar sections are arranged in one switchboard. For vessel with class notation Dp-3, it is required that each bus-bar section is isolated from the other(s) by A-60 partitions. There is to be a bus-tie breaker on each side of the A-60 partitions.

5.4.5 For vessel with class notations DP-2 and DP-3, it is to be possible to operate with separated bus-bar sections. Protection against black-out due to overload caused by thruster is to be effective in isolated bus-bar sections.

5.4.6 Bus-bar sections may be connected together during starting of large motors in order to meet requirements for voltage deviations.

5.4.7 The on-line power reserve, i.e. the difference between on-line generator capacity and generated power at any time is to be displayed on panel meters or other type of continuous indicators in the DP control center. For split-bus power arrangements, indications are to be provided for individual bus-bar sections. The reserve power indicators may be omitted in systems where it is impossible to overload the power plant by thruster operation.

Chapter 6 CONTROLLER AND MEASURING SYSTEM

6.1 General requirements

6.1.1 Except otherwise specified in this Chapter, controller and measuring system is to comply with applicable requirements of Automatic Control and Remote Control in PART SEVEN of the Rules and Regulations for the Construction and Classification of Sea-Going Steel Ships by the Society.

6.2 Composition of the controller and measuring system

6.2.1 The controller and measuring system comprise the following equipment:

(1)computer system;

(2)manual thruster controls;

(3)joystick thruster controls;

(4)automatic thruster controls;

(5)position reference systems;

(6)sensor systems;

(7)display and alarm;

(8)communication.

6.3 Computer system

6.3.1 For class notation DP-1, the computer of the DP control system need not be redundant.

6.3.2 For class notation DP-2, the DP control system is to consist of at least two independent computer systems. Common facilities such as self-checking routines, data transfer arrangements and plant interfaces are not to be capable of causing the failure of both / all systems.

6.3.3 For class notation DP-3, the DP control system is to consist of at least two independent computer systems with self-checking and alignment facilities. Common facilities such as self-checking routines, data transfer arrangements and plant interfaces are not to be capable of causing the failure of both / all systems. In addition, one back-up DP control system is to be arranged. An alarm is to be initiated if any computer fails or is not ready to take control.

6.3.4 For class notations DP-2 and DP-3, the DP control is to include a software function, normally known as “consequent analysis”, which continuously verifies that the vessel will remain in position even if the worst case failure occurs. This analysis is to verify that the thrusters remaining in operation after the worst case failure can generate the same resultant thruster force and moment as required before the failure. The consequence analysis is to provide an alarm if the occurrence of a worst case failure would lead to a loss of position due to insufficient thrust for the prevailing environmental conditions. For operations which will take a long time to safely terminate, the consequence analysis is to include a function which simulates the thrust and power remaining after the worst case failure, based on manual input of weather trend.

6.3.5 For class notations DP-2 and DP-3, redundant computer systems are to be arranged with automatic transfer of control after a detected failure in one of the computer systems. The

automatic transfer of control from one computer system to another is to be smooth and within the acceptable limitations of the operation.

6.3.6 For class notation DP-3, the back-up DP control system is to be in a room, separated by an A-60 class division from the main DP control station. During DP operation, this back-up control system is to be continuously updated by input from the sensors, position reference system, thruster feedback, etc., and to be ready to take over control.

6.4 Manual thruster control

6.4.1 Manual operation of each thruster: start, stop, azimuth and pitch / speed control is to be arranged in the DP center (start / stop of high voltage motors may be excluded in the DP center).

6.4.2 Running / stop, pitch / speed, and azimuth for each thruster is to be displayed at the DP manual control stand.

6.4.3 Manual thruster control is to be accessible at all times, also during all failure conditions in automatic and joystick control systems.

6.4.4 Each thruster is to be fitted with an independent stop gear in the DP center.

6.5 Joystick thruster control

6.5.1 Joystick thruster control system is an integrated control system of thrusters, propellers, and rudders. The joystick is to enable the command of longitudinal thrust, transverse thrust, a turning moment, and all combinations of these thrust components.

6.5.2 The joystick system may exclude certain thrusters or rudders which are not necessary to obtain an adequate thrust level in all directions.

6.5.3 The joystick controller is to include selectable automatic heading control.

6.6 Automatic thruster control

6.6.1 The automatic thruster control is to consist of a computer system, comprising one and more computers with processing units, input / output devices, and memory.

6.6.2 Class notation DP-1 is to comply with the following requirements:

(1)The computer system executing automatic thrust control is to produce commands for

pitch / speed and azimuth for all thrusters. The commanders are to be transmitted to the

individual thrusters control units via the circuits for selection of command source.

(2)The computer system is to perform self-check routines that are to bring the computer

system to a stop when critical failure conditions are detected.

(3)When stopped, either by automatic or manual means the computer system is to set

speed / pitch commands to zero.

6.6.3 Class notation DP-2 is to comply with the following requirements:

(1)The computer systems executing automatic thrust control are to produce command

output to the thrusters after the occurrence of any single failure within the computer

system or its associated equipment. The requirement may be realized by at least two

parallel computing systems, one of which is to be selected as the on-line system and

the other system or systems are to be in stand-by condition. This selection is to be

possible by manual means.

(2)The computer systems are to perform self-check routines for detection of failure.

(3)If the on-line system detects a failure, an automatic transfer of on-line function to a

stand-by system is to take place.

(4)If a failure of a stand-by system, or any of the sensors or position references selected

for this system, is detected, an alarm is to be given.

(5)There is to be an identification of the on-line system at the operator panel.

6.6.4 Class notation DP-3:

(1)Computer systems are to satisfy the requirements of class notation DP-2.

(2)There is to be an automatic back-up system located separated from the main system by

an A-60 partition.

(3)If a triple-computer system is chosen for the main system, one of these computers may

serve as the back-up, provided that the necessary independence as required for the

back-up is achieved.

(4)There is to be at least one position reference system and one compass connected to the

back-up system, independent of the condition of the main system.

(5)The back-up system is to be activated by the operator, either at the main DP center or

at the back-up station. The nature of the switching is to be such that no single failure

will render the back-up inoperable together with the main system.

6.7 Thruster control mode selection

6.7.1 The thruster control mode is to be selectable by a simple device located in the DP control center. The control mode selector may consist of a single selector switch, or individual selectors for each thruster.

6.7.2 The control mode selector is to be so arranged that it is always possible to select manual controls after any single failure in the DP control mode.

6.7.3 For class notations DP-2 and DP-3, the mode selector is to be such that no single failure will deselect all thrusters from the automatic control mode.

6.7.4 The mode selector may consist of a single switch also for class notation DP-3 even if this may be damaged by a fire, or other hazards, provided that the back-up computer system is still selectable.

6.8 Position reference systems

6.8.1 As a general rule, a DP system is to include at least two independent reference systems. For class notations DP-2 and DP-3, at least three position reference systems are to be installed and simultaneously available to the DP system during operation. When two or more position reference systems are required, they are not both / all to be of the same type, but based on different principles and suitable for the operating conditions.

6.8.2 The system is to allow for smoothing and mutual adjustment of the inputs originating from various position reference systems and transfer between reference systems is to be bumpless.

6.8.3 Position reference systems are to provide position data with adequate accuracy with

respect to the intended DP operations. When a vessel deviates from the predetermined course or from the operating area decided by the operator, audible and visual alarms are to be given. Position reference systems are to be monitored. When the signals provided are incorrect or declined obviously, the alarm is to be given.

6.8.4 For class notation DP-3, a position reference system is to be connected to the back-up control center, and to be separated from other position reference systems with A-60 class.

6.8.5 When acoustic position system is used, the machine and water acoustic interference on transmission channel of the water acoustic monitor is to be reduced to the least.

6.8.6 When tensioning system is used, the wire and tensioning device is to apply to the environment at sea.

6.8.7 When the signals from the position reference system are changed by vessel motion (rolling and pitching), the location is to automatically be revised.

6.9 Sensor systems

6.9.1 Vessel sensors are to measure at least vessel heading, vessel motion, wind speed and direction.

6.9.2 Sensors are to be as far as possible provided with failure monitors (overheating, power

loss).

6.9.3 Input from sensors is to be monitored in order to detect possible faults, notably relative to temporal evolution of the signal. As regards the analogue sensors, an alarm is to be triggered in the event of connecting line wire break, short circuit and low insulation.

6.9.4 Any failure of automatic change-over between sensors is to activate visual and audible alarms at the control room.

6.9.5 Sensors used for the same purpose connected to redundant systems are to be arranged independently so that failure of one does not affect the others.

6.9.6 For class notation DP-3, one of each type of sensor is to be connected directly to the back-up control system and separated by an A-60 class division from the other sensors..

6.10 Display and alarm

6.10.1 DP control center is to display the information from power system, thruster system and DP control system, so as to ensure these systems in normal operation. The information needed for safe operation of DP system may be obtained at any time.

6.10.2 The display system, especially that located at the DP control center, is to comply with the principle of human engineering. The DP control system is to be easy to select control methods such as manual control, stick control, or computer control of thrusters. The control method of the operation is to also be displayed clearly. The display system is to comply with the following principles:

(1)isolating redundant devices so as to reduce the possibility of failure;

(2)easy to maintain;

(3)preventing negative influence from environment and electromagnetic interference.

6.10.3 For the vessels with class notations DP-2 and DP-3, operator control devices are to be so

designed that no misoperation will lead to ultimate limit state.

6.10.4 When the failures occur to the DP system and the equipment it controls, audible and visual alarms are to be given. The happening and status of these failures are to be permanently recorded.

6.10.5 The DP system is to prevent failures from one system to another. Redundant units are to be so arranged that they can separate one unit while starting another unit.

6.10.6 Under practicable conditions, each DP control center is to be fitted with alarm and display / status display as specified in table 6.10.6.

Alarm and display of control center Table 6.10.6

System Monitored parameters Alarm Display Engine lubricating oil pressure - low X Engine coolant temperature – high X CPP hydraulic oil pressure – low and high X CPP hydraulic oil temperature - high X CPP pitch X Thruster RPM X Thruster direction X

Thruster motor / SCR coolant leakage X Thruster motor SCR temperature X Thruster motor short circuit X Thruster motor exciter power available X Thruster motor supply power available X Thruster motor overload X Thruster power system Thruster motor high temperature X

Status of automatically controlled circuit breakers X Bus bar voltage X Bus bar frequency X Power factors X Bus bar current and power levels X

High power consumers – current levels X Power distribution system Back-up power availability X

Excursion outside operating envelope X Control system failure X Position sensor failure X Vessels target and present position and heading X

Wind speed and direction X System performance Selected reference system X

Thruster location (pictorial) X Percentage thrust X Available thrusters on stand-by DP alert through consequence analyzer X X Specific requirements for DP-2 & DP-3 Position information of individual position reference systems concerned

X

6.10.7 Where alarm and display items arranged in accordance with the requirements in 6.10.6 are not practicable and necessary, the alarm and display items may be reduced in accordance with the actual condition, but it is to be subjected to the consent of the Society.

6.11 Communication system

6.11.1 A two way communication device is to be fitted between DP control center and following locations:

(1) wheelhouse;

(2) main engine control room;

勘察设计费取费标准(2002)

勘察费总则 1.0.1 工程勘察收费是指勘察人根据发包人的委托,收集已有资料、现场踏勘、制订勘察纲要,进行测绘、勘探、取样、试验、测试、检测、监测等勘察作业,以及编制工程勘察文件和岩土工程设计文件等收取的费用。 1.0.2 工程勘察收费标准分为通用工程勘察收费标准和专业工程勘察收费标准。 1通用工程勘察收费标准适用于工程测量、岩土工程勘察、岩土工程设计与检测监测、水文地质勘察、工程水文气象勘察、工程物探、室内试验等工程勘察的收费。 2专业工程勘察收费标准分别适用于煤炭、水利水电、电力、长输管道、铁路、公路、通信、海洋工程等工程勘察的收费。专业工程勘察中的一些项目可以执行通用工程勘察收费标准。 1.0.3 通用工程勘察收费采取实物工作量定额计费方法计算,由实物工作收费和技术工作收费两部分组成。专业工程勘察收费方法和标准,分别在煤炭、水利水电、电力、长输管道、铁路、公路、通信、海洋工程等章节中规定。 1.0.4 通用工程勘察收费按照下列公式计算 1、工程勘察收费=工程勘察收费基准价×(1±浮动幅度值) 2、工程勘察收费基准价=工程勘察实物工作收费+工程勘察技术工作收费 3、工程勘察实物工作收费=工程勘察实物工作收费基价×实物工作量×附加调整系数 4、工程勘察技术工作收费=工程勘察实物工作收费×技术工作收费比例 1.0.5 工程勘察收费基准价 工程勘察收费基准价是按照本收费标准计算出的工程勘察基准收费额,发包人和勘察人可以根据实际情况在规定的浮动幅度内协商确定工程勘察收费合同额。 1.0.6 工程勘察实物工作收费基价

工程勘察实物工作收费基价是完成每单位工程勘察实物工作内容的基本价格。工程勘察实物工作收费基价在相关章节的《实物工作收费基价表》中查找确定。 1.0.7 实物工作量 实物工作量由勘察人按照工程勘察规范、规程的规定和勘察作业实际情况在勘察纲要中提出,经发包人同意后,在工程勘察合同中约定。 1.0.8 附加调整系数 附加调整系数是对工程勘察的自然条件、作业内容和复杂程度差异进行调整的系数。附加调整系数分别列于总则和各章节中。附加调整系数为两个或者两个以上的,附加调整系数不能连乘。将各附加调整系数相加,减去附加调整系数的个数,加上定值1,作为附加调整系数值。 1.0.9 在气温(以当地气象台、站的气象报告为准)≥35℃或者≤-10℃条件下进行勘察作业时,气温附加调整系数为1.2。 1.0.10 在海拔高程超过2000m地区进行工程勘察作业时,高程附加调整系数如下: 海拔高程 2000~3000m为1.1 海拔高程 3001~3500m为1.2 海拔高程 3501~4000m为1.3 海拔高程4001m以上的,高程附加调整系数由发包人与勘察人协商确定。 1.0.11 建设项目工程勘察由两个或者两个以上勘察人承担的,其中对建设项目工程勘察合理性和整体性负责的勘察人,按照该建设项目工程勘察收费基准价的5%加收主体勘察协调费。 1.0.12 工程勘察收费基准价不包括以下费用:办理工程勘察相关许可,以及购买有关资料费;拆除障碍物,开挖以及修复地下管线费;修通至作业现场道路,接通电源、水源以及平整场地费;勘察材料以及加工费;水上作业用船、排、平台以及水监费;勘察作业大型机具搬运费;青苗、树木以及水域养殖物赔偿费等。 发生以上费用的,由发包人另行支付。 1.0.13 工程勘察组日、台班收费基价如下: 工程测量、岩土工程验槽、检测监测、工程物探 1000元/组日

六大经典网络营销成功案例

十大经典网络营销成功案例 互联网营销就是说以国际互联网络为基本,运用智能化的信息内容和互联网媒体的易用性来輔助品牌的校园营销目标保持的这种新式的网络营销方法。 1、理论的互联网营销 网络营销概念的近义词包含:网上营销、互联网推广、网络营销、网络营销等。这种语汇说的全是相同含意,含糊地说,互联网营销就是说以互联网技术为关键方式进行的活动营销。 互联网营销具备较强的理论性特点,从实践活动中发觉互联网营销的通常方式和规律性,比裂缝的基础理论探讨更有现实意义。因而,怎样界定互联网营销我觉得并非最关键的,重要是要了解互联网营销的真实实际意义和目地,也就是说清醒认识互联网技术这类新的营销推广自然环境,运用各种各样互联网技术专用工具为公司活动营销出示合理的适用。这都是为啥互联网营销科学研究务必高度重视互联网营销好用方式的缘故。 2、范畴的互联网营销 范畴的互联网营销就是指机构或本人应用场景对外开放方便快捷的互联网,对商品、服务所做的一连串生产经营,进而超过考虑机构或本人要求的过程。互联网营销是这种新式的商业服务营销方式。 下边例举了12个有关互联网营销的成功案例: 案例一:脑白金体网络事件营销 一、执行公司:上海欧赛斯文化创意有限公司。 二、推广周期:2014.1~2014.2。 三、推广目的:网络事件营销,四大平台炒作,形成热点话题,打造全网影响力

四、项目手段:高创意爆点、新媒体活动、四大平台运作、从线上延续到线下等一系列口碑运作 五、项目效果 ①脑白金在传统媒体上演了营销奇迹,对于那句“今年过节不收礼,收礼只收脑白金”的广告语,国内从老到幼几近无人不知,网络上流行的“脑白金体”则把这一奇迹延续到数字媒体上。 ②2013年底脑白金在四大数字营销平台推出#脑白金体#整合营销活动,活动上线第一天即吸引10万粉丝热捧,当天活动整体曝光量超过1000万人次,充分利用了新媒体平台的裂变传播效应。 ③上线3天就登微博热门话题榜,活动转发数30万,各类脑白金体版本300多,3天曝光量超过3000万次,神一样的数据,神一样的话题,无论是论坛还是微博上,“脑白金体”创意狂欢活动是当之无愧的当红炸子鸡。 实例二:卡地亚LOVE 卡地亚LOVE作为奢侈品包包中备受宠溺的系列产品,自始至终因其精美简洁的设计方案处世亲睐。针对“爱”的界定,卡地亚也从没终止探寻的脚步。HowFarWouldYouGoForLove?阐释着爱无止境的迷人含意。 艺术创意论述:以“爱”为主题风格,“人”为质粒载体。大家常常在不经意间中纪录着自身的感情,相片、文本、影象。而Blog、album、SNS、BBS等这种WEB2.1的网上平台就是所有人纪录感情的关键质粒载体,因此卡地亚给到每一爱惜感情的人多次先机,用爱的吊瓶系紧你的那份真情!

工程勘察设计收费标准2002修订版

目录 国家计委、建设部关于发布《工程勘察设计收费管理规定》的通知 (2) 工程勘察设计收费管理规定 (3) 工程勘察收费标准 (5) 1 总则 (5) 2 工程测量 (6) 3 岩土工程勘察 (10) 4 岩土工程设计与检测监测 (15) 5 水文地质勘察 (18) 6 工程水文气象勘察 (22) 7 工程物探 (24) 8 室内试验 (27) 9 煤炭工程勘察 (30) 10 水利水电工程勘察 (31) 11 电力工程勘察 (36) 12 长输管道工程勘察 (41) 13 铁路工程勘察 (42) 14 公路工程勘察 (44) 15. 通信工程勘察 (45) 16 海洋工程勘察 (48) 工程设计收费标准 (52) 1 总则 (52) 2 矿山采选工程设计 (55) 3 加工冶炼工程设计 (59) 4 石油化工工程设计 (62) 5 水利电力工程设计 (64) 6 交通运输工程设计 (67) 7 建筑市政工程设计 (72) 8 农业林业工程设计 (76) 9 附表 (78)

国家计委、建设部关于发布《工程勘察设计收费 管理规定》的通知 计价格[2002]10号 国务院各有关部门,各省、自治区、直辖市计委、物价局,建设厅: 为贯彻落实《国务院办公厅转发建设部等部门关于工程勘察设计单位体制改革若干意见的通知》(国办发[1999]101号),调整工程勘察设计收费标准,规范工程勘察设计收费行为,国家计委、建设部制定了《工程勘察设计收费管理规定》(以下简称《规定》),现予发布,自2002年3月1日起施行。原国家物价局、建设部颁发的《关于发布工程勘察和工程设计收费标准的通知》([1992]价费字375号)及相关附件同时废止。 本《规定》施行前,已完成建设项目工程勘察或者工程设计合同工作量50%以上的,勘察设计收费仍按原合同执行;已完成工程勘察或者工程设计合同工作量不足50%的,未完成部分的勘察设计收费由发包人与勘察人、设计人参照本《规定》协商确定。 附件:工程勘察设计收费管理规定 二00二年一月七日

史上最经典的十大成功营销案例盘点

史上最经典的十大成功营销案例盘点 内容简介:一些经典的营销案例总是能给我们带来一些启发!下面是十个比较经典的成功营销案例,这些经典案例能让我们学习一些什么东西呢?跟世界工厂网小编一起去看看吧! 【移位营销】 上海工业缝纫机股份有限公司的传统产品缝纫机针,因成本高难以维持。决定把公司在上海难以生产的缝纫机转移到生产成本低的内地去建立生产基地。这样,一包针的生产成本降到0.3元,大大增强了市场竞争力,从而夺回了失去的市场。 【限量营销】 日本汽车公司推出一款式样古典、风格独特的“费加路”新车,非常抢手。该公司没有因此拼命上产量、扩规模,而是公开宣布每年只生产2万辆,进行限量销售,结果订单激增到30多万辆。为公正起见,公司对所有订购者实行摇奖抽签,中奖者才能成购得此车的幸运儿。其结果造成产品供不应求的市场紧俏气氛,使企业始终保持优势。 【逆向营销】

山东济宁新华毛皮总厂在困境中不随波逐流。有一年,我国毛皮生产出口压缩,内销不畅。许多厂家停止收购,竞相压价抛售。该厂经过调查分析,审时度势,逆向营销,贷款400万元以低廉价格在量收购。数月以后,市场需求回升,毛皮价格上涨,该厂赚了一笔可观的利润。 【文化营销】 格兰仕集团生产的微波炉是新兴产品,为了挖掘潜在市场,该集团在全国各地开展大规模的微波炉知识推广活动,全方位介绍微波炉知识。此外,还编出目前世界上微波食谱最多最全的《微波炉使用大全及菜谱900例》,连同《如何选购微波炉》一书免费赠送几十万册,使格兰仕这个深入人心。市场占有率遥遥领先。 【启动营销】 海信集团经过深入调查,了解到彩电在农村具有很大的发展潜力。因此,该集团制定全面启动农村市场的营销战略,并迅速付诸实施。针对农村的特殊状况,他们开发生产灵敏度高、电源适应范围宽、可靠性好、耗电量少、价格适宜的彩电,最大限度地满足了农民对产品价格、可靠性能的特殊需求,从而开拓了广阔的农村市场,取得显着经济效益。 【定位营销】

十大经典营销策划案例

一.《英雄》:一部糟糕电影的辉煌纪录 有史以来中国电影市场最成功的票房,有着糟糕动作片的一切特征——弱智的故事情节、失真的动作设计、装腔作势的台词,但这部糟糕的电影,上市20天就创下了超过2亿元的票房,而本年度风靡全球的《哈利·伯特》,在中国创下的票房仅为6300万元。 让《英雄》成功的,不是由于电影的精彩,而是由于营销策划、市场推广的创新。《英雄》组成了阵容强大的明星剧组,早在2001年初,新画面公司就开始借助团队的明星效应,持续制造新闻。在媒体的支持下,这些“新闻广告”高强度持续进行了两年时间,终于让大量中国人按捺不住,走进影院观看这个中国有史以来营销最成功的电影——也许还是最糟糕的动作片之一。这些人中间,包括几乎从来不看电影的笔者。 《英雄》以令人赞叹的耐心、丝丝相扣的营销策划和长达2年的新闻公关,列本年度十大营销创新案例之首。《英雄》必将以营销的创新写入中国电影史,但未来的电影观众必把它忘得一干二净。 《英雄》入选,是为了表彰发行商新画面公司对电影营销的突破性贡献。 点评:《英雄》所获得空前成功,将把电影营销策略和营销组织性推进到了前所未有的程度。《英雄》以后中国电影将越来越倾向于大制作、倾向于告别艺术电影、倾向于向好莱坞靠拢。 二.“力波”啤酒:喜欢上海的理由 力波啤酒曾是上海最受欢迎的本土啤酒之一。1996年三得利登陆上海后,力波因为营销手段落后、口味不佳,在三得利的进攻中阵地屡屡失陷,还曾因攻击三得利水源质量,被三得利告上法庭,即丢了官司,更丢了市场。 2001年开始,力波啤酒开始了自己的抗争历程,力波创作的广告歌曲《喜欢上海的理由》很快风靡上海,在广告歌的推动下,力波的销量迅速回升。 2002年6月亚洲太平洋酿酒公司接手力波,并成功推出超爽啤酒、改变产品瓶体;力波还利用韩日世界杯的机会,和众多饭店联盟,推广看足球、喝力波的营销活动。世界杯之后,力波继续和餐馆终端联盟,推出“好吃千百种,好喝有一种”的广告攻势,引导消费者改变消费行为。 力波啤酒入选,是因为它对本土意识的巧妙利用、连续不断发动的创新推广方式,以及这些活动在改变消费者消费行为、提升销量、增加品牌美誉度等方面的良好效果。 点评:力波的成功,体现了地方情节在啤酒、香烟等产品消费上的重要作用,尽管已有很多啤酒作为地方品牌存在,却极少有啤酒主动打上地方标签;立波的成功为啤酒、香烟等产品如何巧妙利用地方情绪提供了最好的案例。力波和餐饮终端联合推进的策略,则反映了终端在营销战中的地位的不断上升。三.氧立得:护心养脑,还是氧立得好

市场营销十大经典案例

市场营销案例:想想小的好处 背景:1960年代,大众汽车旗下的甲壳虫品牌销量不佳。DDB广告公司开创了一种前所未有的运作模式:让一名文案和美术指导搭档,展开这项广告运动。于是,“想想小的好处”(Think Small)这一大众汽车史上革命性的广告便出台了,一辆小小的汽车停在广告画面的中央,周围是广阔的空间,还有一句引人遐想的“我们的小汽车”。 突破:以小搏大。美国圣地亚哥州立大学市场营销学教授迈克尔·贝尔奇(Michael Belch)如此评价:“打破传统,往往意味着一种文化的创新。”曾在《广告时代》担任编辑的约拿·布鲁姆(Jonah Bloom)认为,“小也是性感的一种表现,它意味着有坚持特立独行的胆量。” 贡献:充分相信自己的产品。简单真诚以及适当的冒险,能够产生以小搏大的效应。Avis租车公司“因为是第二名,所以我们更加努力”的广告运动,与这个有异曲同工之妙。 市场营销案例:美腿裤袜 背景:为了帮助恒适公司(Hanes)推广其美腿裤袜(Beauty Mist pantyhose),Mullen广告公司邀请著名的橄榄球四分卫运动员乔·拿马斯 (Joe Namath)担任代言人。拍摄于1974年的电视广告中出现了两条穿着裤袜的美腿(看起来活像拿马斯的腿),配有这样的旁白:“我不穿美腿裤袜,但如果它能够让我的腿这么好看,想想将能够给你们带来多少美丽!”广告片播出后不久,美国市场裤袜的销量首次超过了长袜。 突破:名人效应。拿马斯不是第一个做广告的名人,但这种反差极大的名人代言活动,为广告赢得了成功。 贡献:开启了运动员代言的时代。拳击手乔治·福尔曼(George Foreman)、篮球巨星迈克尔·乔丹(Michael Jordan)等运动员,都身兼多项代言。 市场营销案例:绝对伏特加 背景:绝对伏特加酒(Absolut Vodka)与市场上的其他竞争品牌在口感等方面的差别并不大,但是该公司的广告代理公司TBWA匠心独运,在酒瓶的形状及品牌名称上下功夫,创造了一系列令人惊艳的广告,带来了绝对伏特加的销售井喷。这个广告运动沿用了30多年,直到今天依然颇具生命力。 突破:完完全全来自广告的力量。这些广告让数以百万计的美国消费者,在口感辨识度较低的情况下,依然购买并忠诚于这个品牌。布鲁姆认为,“这也证实了广告能够在市场竞争中创造真正的价值。” 贡献:占位非常重要。这个广告运动为品牌赢来了极大的光环,绝对伏特加公司依然延续这个营销举措,并不断推陈出新。

工程勘察收费标准2002版

工程勘察收费标准2002版 工程勘察收费标准 1 总则 1.0.1 工程勘察收费是指勘察人根据发包人的委托,收集已有资料、现场踏勘、制订勘察纲要,进行测绘、勘探、取样、试验、测试、检测、监测等勘察作业,以及编制工程勘察文件和岩土工程设计文件等收取的费用。 1.0.2 工程勘察收费标准分为通用工程勘察收费标准和专业工程勘察收费标准。 1通用工程勘察收费标准适用于工程测量、岩土工程勘察、岩土工程设计与检测监测、水文地质勘察、工程水文气象勘察、工程物探、室内试验等工程勘察的收费。 2专业工程勘察收费标准分别适用于煤炭、水利水电、电力、长输管道、铁路、公路、通信、海洋工程等工程勘察的收费。专业工程勘察中的一些项目可以执行通用工程勘察收费标准。 1.0.3 通用工程勘察收费采取实物工作量定额计费方法计算,由实物工作收费和技术工作收费两部分组成。 专业工程勘察收费方法和标准,分别在煤炭、水利水电、电力、长输管道、铁路、公路、通信、海洋工程等章节中规定。 1.0.4 通用工程勘察收费按照下列公式计算 , 工程勘察收费,工程勘察收费基准价×(1?浮动幅度值) , 工程勘察收费基准价,工程勘察实物工作收费,工程勘察技术工作收费 , 工程勘察实物工作收费,工程勘察实物工作收费基价×实物工作量×附加调整系数 , 工程勘察技术工作收费=工程勘察实物工作收费×技术工作收费比例

1.0.5 工程勘察收费基准价 工程勘察收费基准价是按照本收费标准计算出的工程勘察基准收费额,发包人和勘察人可以根据实际情况在规定的浮动幅度内协商确定工程勘察收费合同额。 1.0.6 工程勘察实物工作收费基价 工程勘察实物工作收费基价是完成每单位工程勘察实物工作内容的基本价格。工程勘察实物工作收费基价在相关章节的《实物工作收费基价表》中查找确定。 1.0.7 实物工作量 实物工作量由勘察人按照工程勘察规范、规程的规定和勘察作业实际情况在勘察纲要中提出,经发包人同意后,在工程勘察合同中约定。 1.0.8 附加调整系数 附加调整系数是对工程勘察的自然条件、作业内容和复杂程度差异进行调整的系数。附加调整系数分别列于总则和各章节中。附加调整系数为两个或者两个以上的,附加调整系数不能连乘。将各附加调整系数相加,减去附加调整系数的个数,加上定值1,作为附加调整系数值。 1.0.9 在气温(以当地气象台、站的气象报告为准)?35?或者?-10?条件下进行勘察作业时,气温附加调整系数为1.2。 1.0.10 在海拔高程超过2000m地区进行工程勘察作业时,高程附加调整系数如下: 海拔高程 2000,3000m为1.1 海拔高程 3001,3500m为1.2 海拔高程 3501,4000m为1.3 海拔高程4001m以上的,高程附加调整系数由发包人与勘察人协商确定。 1.0.11 建设项目工程勘察由两个或者两个以上勘察人承担的,其中对建设项目工程勘察合理性和整体性负责的勘察人,按照该建设项目工程勘察收费基准价的5%加收主体勘察协调费。 1.0.12 工程勘察收费基准价不包括以下费用:办理工程勘

工程勘察设计收费标准2002

山东省邮电规划设计院有限公司文件 鲁邮电规设[2002]14号 关于执行《工程勘察设计收费标准 (2002年修订本)》的通知 各专业所: 国家计委、建设部以计价格[2002]10号文发布了《工程勘察设计收费标准(2002年修订本)》(以下简称《收费标准》),并要求自三月一日起施行。由于该标准为一多行业、综合性收费标准,为便于理解和执行,特做如下解释和规定。 一、通信工程勘察收费 详见《收费标准》P54—P56,通信管道及光(电)缆线路工程和微波、卫星及移动通信设备安装工程收取勘察服务费。其中通信管道及光(电)缆线路工程勘察收费计算方法解释如表一(代替《收费标准》中表15.4—1):

表一通信管道及光电缆线路工程勘察收费计算 以通信管道项目 增量部分收费单价= 增量部分收费单价 其它说明: 1、通信工程勘察的坑深均按照地面以下3m以内计,超过3m 的收费另议; 2、通信管道穿越桥、河及铁路的,穿越部分附加调整系数为1.2;

3、长途架空光(电)缆线路工程利用原有杆路架设光(电)缆的,附加调整系数为0.8。 4、收费基价计算值×附加调整系数×阶段工作量比例即为应收勘察费。 二、工程设计收费 通信、建筑工程设计收费见《收费标准》P82:建筑市政工程设计。其中电信工程各阶段设计收费比例为:初步设计60%,施工图设计40%,一阶段设计没有规定,参照通信工程勘察,暂按80%计取。 《收费标准》P62总则中列出了工程设计收费的计算公式,其中工程设计收费基价计算见表二(代替《收费标准》P88附表一)。 表二工程设计收费基价表单位:万元

表中计费额为经过批准的建设项目初步设计概算中建筑安装工程费、设备与工器具购置费和联合试运转费之和,以单项工程概算投资额为准确定计费额分档。单项工程划分参见《邮电基本建设工程设计文件编制和审批办法》附录一:工程项目划分表,表中未包含的数据通信以一个业务区(本地网)为一个单项工程。建筑工程多专业(建筑、结构、设备)合并为一个单项工程。 专业调整系数通信、建筑均为1,工程复杂程度调整系数建筑工程依据收费标准表7.3-1确定,通信工程除市话线路、管道、直埋光缆工程按1.15计取外,其它均取1.0;改扩建和技术改造建设项目附加调整系数收费标准规定为 1.1-1.4,具体取值根据工程设计复杂程度在顾客要求评审中确定。其他附加调整系数取定及其他设计收费计算详见《收费标准》P62总则。 三、其他 1、勘察、设计收费中浮动幅度值暂不考虑。 2、自本文发布之日起交付出版的设计一律执行新的收费标准,原邮电部颁发的《通信行业工程勘察设计收费工日定额》(1992年)同时废止。 3、各部门要认真组织学习《工程勘察设计收费标准(2002年修订本)》中相关内容,尤其是《工程勘察设计收费管理规定》

十大网络营销经典案例

十大网络营销经典案例 网络营销现今已成为一种极为重要的营销方式,许多企业都通过运用网络营销而是自己得到了飞跃。那么,现在就让我们评选一下网络营销的十大经典案例。 1. 王老吉——绝佳的创意 “王老吉,你够狠!捐一个亿”,一个名为“封杀王老吉”的帖子得到网友热捧,帖子号召大家“买光超市的王老吉,上一罐买一罐”,“让它从大家面前彻底消失!”王老吉通过在汶川大地震间的绝妙网络营销方案,使得自己的知名度迅速提升,当之无愧的名列榜首。 2. 可口可乐——不抛弃不放弃的精神 可口可乐凭借其敏锐的嗅觉,发现了2008北京奥运会蕴含的巨大商机,在火炬全球传递前夕,可口可乐与腾讯网合作联合推出奥运火炬在线传递活动。为此,他们设计了8888条路线,并通过网站招募了8888名第一棒火炬在线传递大使。2008年3月24日,北京奥运圣火在雅典古奥林匹亚遗址点燃,同时“可口可乐奥运火炬在线传递”启动。如此手段,不愧为全球饮料巨头。 3. iPhoneGirl——咸鱼也能翻身 “一位英国消费者购买了一部iPhone手机后,惊讶的发现,在iTunes上激活了这部全新的iPhone之后,手机的主屏幕上显示的是一张可爱的中国小妹的照片,除了桌面这张照片外,手机里面还有好几副这样的照片,包括工厂的生产线,iPhoneGirl的称号就此诞生,并且这个笑容征服了许多苹果迷,这个女孩出来以后,直接在业内引起了轰动。富士康血汗工厂的形象立刻得以改善。 4. 盛大-起点中——侯小强带来的改变 2008年9月9日,盛大老板陈天桥在旗下的“起点中文网”举办“30省市作协主席小说巡展”。作家们的作品一贴上网,就受到网络写手们的蔑视与奚落。很快韩寒和河北省作协副主席谈歌之间的口水仗成为众人关注的焦点。后者以前者曾经的一句戏言为蓝本,说出了“要是我当韩寒他爹,那下一秒就把他打死”。引发了两者间激烈的争战。韩寒还针对河南省作协副主席郑彦英的参赛作品《从呼吸到呻吟》,讽为“标题党”。又掀起韩郑之间一场好斗。此后,北京作家赵凝也加入战团声援传统作家,战火有愈演愈烈之势。 9月22日,谈歌发表声明,退出骂仗。韩寒却不依不饶,再度写博《驯化与孵化》,直指体制内作家被豢养的事实。此言一出,骂仗基本偃旗息鼓。” 盛大把侯小强征召到起点后,起点在公关的力度和广度都达到了一个前所未有的程度。以作协主席的案例为例,不仅在网络里风生水起,而且央视也讨论了

口碑营销经典案例分析

口碑营销经典案例分析 口碑营销一直备受市场营销关注,在如今社会化和互联网高速发展的时代,消费者的沟通更倾向于网络,人们之间信息交流、资源互换频繁出现,使得企业产品、服务透明化,企业的形象也被放大很多倍,这时候口碑越来越受到重视,口碑营销也在企业营销策略中举足轻重。今天,带大家分享几个值得学习的口碑营销案例,希望对于企业策划人员有所启示: 1.加多宝“红动伦敦畅饮加多宝” 红动伦敦畅饮加多宝2012年4月,加多宝“红动伦敦精彩之吉”活动在广州拉开序幕,加多宝“红动伦敦之星”评选同期启动。之后“红动伦敦畅饮加多宝”系列活动随即以“城市接力”的形式,在全国十大城市依次展开主题活动。无论是社会名流、奥运冠军还是普通百姓,都可以将自己对于奥运的祝福写在上面,并将寄语带到伦敦。在伦敦奥运即将开幕之前的7月8日,当一面庄严壮丽的红动大旗在两个巨型加多宝红罐造型的热气球牵动下,于鸟巢上空冉冉升起的时候,全场人群欢呼雀跃。在红旗的辉映下,现场的每一位国人都突然感觉到,自己和伦敦奥运的距离其实是如此之近。伦敦时间7月22日上午,由国家体育总局体育文化发展中心和加多宝集团联合发起的“红动伦敦畅饮加多宝”在伦敦新地标——伦敦眼举行了一次别开生面的为伦敦奥运祝福的活动。本次活动是更名后的加多宝品牌首次在海外惊艳亮相,这无疑展现了加多宝集团的雄厚实力和在全球范围内推广凉茶文化的坚定信心。 评述:口碑营销的特点就是以小搏大,在操作时要善于利用各种强大的势能来为己所用。加多宝的此次体育营销正是借势伦敦奥运会,不断激发中国国民的爱国热情,也拉进了普通民众和伦敦奥运会的距离,让群众获得参与感,使国民的爱国感情得到抒发,从而树立加多宝的正面红色形象,也符合产品定位。使得消费者将加多宝和正能量联系起来,不断扩大口碑宣传。 2.星巴克数字化营销星巴克自然醒专辑微信无疑是今年最火的移动社交应用,星巴克一直走在科技与时尚的前沿,自然要在微信这个新兴平台中进行尝试。今年9月,星巴克

市场营销经典策划和案例分析

CS战略与房地产营销自20世纪80年代中期开始,我国的房地产市场需求急剧扩大,房地产业也随之得到飞速发展。随着市场经济的深入发展,消费者不断成熟老练,房地产市场上的竞争越来越激烈,已完全进入买方市场时代。因此,为了使企业能在激烈的市场竞争中生存发展,摆脱旧思维、旧理念,建立新的开发、经营管理策略,便成为业界共识。导人CS战略,帮助发展商走出困境、决胜市场带来一缕曙光。 一、CS战略与营销学 CS(Customer Satisfaction——顾客满意)战略,是指围绕着顾客满意这一目标而展开的一系列对于产品、服务的策划活动。具体地说是指企业为了使顾客能完全满意自己的产品或服务,从而综合、客观地测定顾客的满意程度,并据此来改善产品、服务及企业文化的一种经营战略。 CS的雏形是20世纪80年代北欧斯堪的纳维亚航空公司提出的“服务与管理”的企业理念,此后传人美国,发展为“对顾客满意度”的调查。1986年美国首次以CS为标准,发布了消费者对汽车行业满意度的排行榜,对全美企业界震动很大,自此,CS开始席卷全球。日本一些房地产开发商和建筑公司导入CS,将商品房的外观和居室功能、设计布局是否便利顾客的工作、学习和生活,以及顾客对房屋施工质量是否称心如意

等,向业主、用户进行调查。企业据此制定下一步开发决策,确定项目,制订经营和服务的计划与方案并付诸实施,成为CS战略。回顾营销学的发展史,营销战略中导入CS是和其发展趋势相一致的,其中值得关注的是从4P到4C,从CI到CS的演变。1960年,美国的麦卡锡提出了著名的4P营销组合,即产品(Product)、地点(place)、价格(Price)、促销(promotion),在营销循环中确立了其崇高的影响力。1990年美国Robert.F.Lauterbon发表《4P退休,4C登场》专文,引起了营销及传媒的极大关注和热烈讨论。 4C营销观念认为: (一)把产品先搁到一边,首先研究消费者的需求与欲望(Consumer want and needs),不要再卖你所制造的产品,而要卖某人确定想购买的产品; (二)暂时忘掉定价策略,先去了解消费者要满足其需要与欲望所须付出的代价(Cost);(三)忘掉渠道策略,应当思考如何给消费者方便(Convenience),以购得商品; (四)最后要忘掉促销。现在的新名词是沟通(Communications)。当然,4P营销组合在现今仍是一种基本的营销策略,但它在很大程度上还是 以生产观念为基础,以企业为中心。而4C营销理念更进一步体现了以消费者为核心的现代营销理念,实

工程勘察设计收费标准(2002年修订本)

工程勘察设计收费标准(2002年修订本) 国家计委、建设部关于发布《工程勘察设计收费管理规定》的通知 工程设计收费标准 目录 1 总则 (2) 2 矿山采选工程设计 (5) 3 加工冶炼工程设计 (9) 4 石油化工工程设计 (12) 5 水利电力工程设计 (14) 6 交通运输工程设计 (17) 7 建筑市政工程设计 (22) 8 农业林业工程设计 (26) 9 附表 (28)

1 总则 1.0.1工程设计收费是指设计人根据发包人的委托,提供编制建设项目初步设计文件、施工图设计文件、非标准设备设计文件、施工图预算文件、竣工图文件等服务所收取的费用。 1.0.2工程设计收费采取按照建设项目单项工程概算投资额分档定额计费方法计算收费。 铁道工程设计收费计算方法,在交通运输工程一章中规定。 1.0.3工程设计收费按照下列公式计算 1 工程设计收费=工程设计收费基准价×(1±浮动幅度值) 2 工程设计收费基准价=基本设计收费+其他设计收费 3 基本设计收费=工程设计收费基价×专业调整系数×工程复杂程度调整系数×附加调整系数 1.0.4工程设计收费基准价 工程设计收费基准价是按照本收费标准计算出的工程设计基准收费额,发包人和设计人根据实际情况,在规定的浮动幅度内协商确定工程设计收费合同额。 1.0.5基本设计收费 基本设计收费是指在工程设计中提供编制初步设计文件、施工图设计文件收取的费用,并相应提供设计技术交底、解决施工中的设计技术问题、参加试车考核和竣工验收等服务。 1.0.6其他设计收费 其他设计收费是指根据工程设计实际需要或者发包人要求提供相关服务收取的费用,包括总体设计费、主体设计协调费、采用标准设计和复用设计费、非标准设备设计文件编制费、施工图预算编制费、竣工图编制费等。 1.0.7工程设计收费基价 工程设计收费基价是完成基本服务的价格。工程设计收费基价在《工程设计收费基价表》(附表一)中查找确定,计费额处于两个数值区间的,采用直线内插法确定工程设计收费基价。 1.0.8工程设计收费计费额 工程设计收费计费额,为经过批准的建设项目初步设计概算中的建筑安装工程费、设备与工器具购置费和联合试运转费之和。

最新-十大营销经典案例 精品

十大营销经典案例 1在广阔的中国营销版图上,成长中的本土企业与强大的中国公司之间,开始了越来越多的正面较量。 各路英豪战江湖,狭路相逢勇者胜。 本站精选了十大经典案例,为中国市场给出了《成功营销》的解读。 剑走偏锋统一润滑油高端突围案例主体:北京统一石化有限公司市场地位:市场赶超者市场意义:"多一些润滑,少一些摩擦”的成功有其历史背景的偶然性,但从统一调整自己的市场定位及产品结构这一“蓄谋已久”的战略来看,它又是必然的。 高端市场,本土企业心中的痛,统一有广泛的示范意义。 市场效果:2019年1月至6月,统一以上级别的润滑油销售量占企业全部产品的40%,上年同期只有14%;以下级别润滑油的销售从上年同期的23%降至15%。 统一润滑油2019年实现销售12亿元的目标已经完成,今年的目标锁定为20亿元。 案例背景:2019年,中国汽车保有量超过2100万辆,而在未来五年内,中国汽车保有量将达到5000万辆,车用润滑油品的需求量剧增。 在需求量逐年上升的同时,用油档次也将实现跨越式发展。 到2019年,高端用油占整个车用油的比重将上升到48%左右。 而中国现在有4500家润滑油工厂,这些润滑油厂的产品级别非常低,生产的产品以中端和低端为主,很少有高端产品,国内4500家润滑油厂生产的高端用油总销量只占目前高端市场的20。 其它80高端市场都被美孚、壳牌等国外品牌所占据。 排名在前五名的品牌在高端市场份额也不过占2%到5%。 在这种市场环境中,突破高端,成为国产润滑油能否在明天立足的关键。 “统一”润滑油2019年营销事件回放2002年11月18日,统一润滑油首次参加中央电视台黄金段位招标,中标额6000多万,为2019年统一强势品牌的塑造之旅举行了一个盛大的“奠基仪式”。 2019年年初,"统一石化"将这一年定位于自己的品牌营销年,提出了"成为

电影营销10个经典案例

电影营销十大经典案例 电影营销十大经典案例 来源:文化创意产业周刊作者:刘亚力董玲玲李淼/文王晓莹/图代小杰/制表日期:2007-5-21 16:43:01 第七届华语电影传媒大赏于上周在香港举行了颁奖典礼,影片《疯狂的石头》在获得的八项提名中一举夺得了最佳影片等四项大奖,成为本届传媒大赏最大的赢家。“石头”这个在网上营销的影片再次为世人所瞩目,中国电影营销方式逐渐多样化。业内人士不会忘记在去年的威尼斯电影节上,当身着桃红色曳地晚礼服、美丽动人的章子怡出现时,前往迎接的电影节执行主席马可·穆勒向章子怡单膝跪下,口称:“欢迎皇后娘娘。”如此惊艳一跪,业内人士惊呼:中国电影会吆喝了,好名已经在外了! 1《爱情呼叫转移》 冰糖葫芦串起12位大明星 里面有点小哲理,幽默之外还有点小收获,作为一部群星贺岁的商业电影,《爱情呼叫转移》2000万元的票房无疑是场大成功。正如影片的编剧所说,徐峥好似一根棍儿,串起了12个美女糖葫芦,而这12位女明星本身就是电影最大的卖点。用请一位热门女星当主角的费用,交换12位女星每人一两天的客串,成本降下来,眼球却吸引来,《爱情呼叫转移》的明星阵容几乎囊括了当下最热点的女星。 在美国票房只占一部电影收入比例的40%,剩下的60%来自于其他可经营的空间或衍生品的收益。“迪斯尼的一个产品能卖多少次?能卖多少个国家?不夸张地讲,一个电影做好了有上千种盈利点,而《爱情呼叫转移》目前做到了几十种。电影必须按产业化的思路推进,产业开发的空间和价值远比单一的电影产品的收益大得多。” 2《达·芬奇密码》 四两拨千斤 《达·芬奇密码》在全球首映拿下2.24亿美元的票房佳绩,这和营销策略有关。“除了用媒体做宣传广告,我们用的是四两拨千斤的品牌综合推广。”索尼哥伦比亚国际影片发行公司张苗谈起来头头是道,“我们收到的宣传效果是投入3000万—4000万元的效果,而实际上我们只投了不到1/10甚至1%的钱”。 “我把奔驰汽车的顾客带进了电影院,而爱立信把《达·芬奇密码》的电影海报带到了各个手机零售店。这种品牌的互动,宣传渠道的共享,特别适用于市场广大的中国。”张苗在品牌营销方面的独特创意,正好契合了他“《达·芬奇密码》可以为任何商品解开财富密码”的想法。 电影《达·芬奇密码》的宣传几乎是无孔不入,和手机、汽车、食用油、互联网、出版社等多个行业捆绑在一起。 3《夜宴》 借光世界杯 2006年夏天,在去年球迷们热切盼望世界杯之际,王中军要把《夜宴》推向这场体育盛宴。央视体育部《豪门盛宴》的主持人张斌也想到了《夜宴》与他的体育盛宴有某种相通之处。一拍即合,“这个夏天,这个王国,故事关于:激情、欲望、背叛、复仇;豪门盛宴,我们的夜宴”。《豪门盛宴》分别在18:50和1:00播出,随着《夜宴》片花和足球场的镜头交替出现,球迷们过足了体育盛宴和《夜宴》带来的视觉盛宴的瘾,在影片放映的时候,哪能不去看看呢! 据说,王中军在央视做了这么长时间的世界杯“晚宴”的广告,没有花钱,属于资源互换,谁让章子怡那张脸和球星的脸一样具有品牌价值呢,这叫做王中军的“1+1>2”的营销战略。 《夜宴》国内票房破亿,谁说没有世界杯的功劳呢! 4《恋爱中的宝贝》 炒作情人节当日票房 在2004年2月15日的北京的娱乐新闻中,“《恋爱中的宝贝》北京票房以130万元票房成绩,开创了“2·14”一天影片票房的最新纪录”这样的字眼遍布网上,还有的媒体爆出情侣们要体验“被当场击倒的爱情”,要看“爱情病毒片”,在这样的炒作中,《恋爱中的宝贝》票房在飙升。“炒作情人节单日最高票房,这是利用档期进行营销,《恋爱中的宝贝》获得了1500万元的不俗票房。”清华大学新闻与传播学院副院长尹鸿表示。 同期上映的影片包括《大城小事》、《花好月圆》等六七部影片,其中《恋爱中的宝贝》占票房的50%以上。由于要看《恋爱中的宝贝》的观众太多,新东安影城又增加了两个专场。 观众与其说是被《恋爱中的宝贝》中的爱情击倒,不如说是被130万元的情人节单天票房最新纪录击倒! 5《头文字D》 赛车场锁住观众眼球

粉丝经济时代:社交媒体十大营销经典案例

粉丝经济时代:社交媒体十大营销经典案例标准化管理部编码-[99968T-6889628-J68568-1689N]

粉丝经济时代:社交媒体十大营销经典案例新互联网时代,也被称之为“粉丝经济”时代,拥有了粉丝就拥有了客户,在米在这方面玩的风生水起。微博与微信这两大社交媒体平台作为粉丝经济的重要载体,已经成为兵家的必争之地,是新媒体营销的主战场。 以下是粉丝经济时代,社交媒体营销案例,可供商家做他山之石。 1.“加多宝”说:“对不起”虽然输了官司,但在微博平台上,用自嘲的文案,配以幼儿哭泣的图片,在新媒体民意上算是占了“王老吉”上风,获得了大批粉丝的拥护。 2.褚橙励志,橙箱定制褚时健与本来生活网合作,一方面邀请80后名人在传统媒体“致敬80后”,一方面推出个性化定制版褚橙“幽默问候箱”,赠送给社交媒体大V以及各领域达人。平媒和新媒体形成交叉传播,创造销售佳绩。 3.麦包包做海报,帮你换个包 麦包包官方微信(mbaobaovip)推出“不如换个包”互动游戏,抓住女生情绪容易波动的特点,提供海报生成器,请用户生成自己的海报,并可以分享给朋友,并有机会赢取红包。在互动性、激励性和趣味性上都堪称活动营销的典范。4.限量红米:抢不到,急死你

过去一年多来,小米旗下最抢手的产品,当属红米无疑。红米最初发布,选择了官方认证的QQ空间,发布前精准定位人群,聚拢人气,社交平台又开展精湛活动。半小时预约人数过百万。此后小米一直运用限量限时的饥渴营销策略,一时间,红米变得炙手可热,受到众多年轻人的追捧。 5.招商银行抛出漂流瓶 使用微信“漂流瓶”的用户,每捡十次,就有可能捡到一个招商银行的漂流瓶,回复之后招商银行便会通过“小积分,微慈善”平台为自闭症儿童提供帮助。既做了慈善,又提升企业品牌形象,一举两得。 6.《小时代》,属于年轻人的新时代 不去褒贬这部电影的好坏,在宣传方面,人人网的“青春纪念册,结合主创人员的微博,还有招聘网站等多个层面,对准15-25岁的青少年,真正做到了新媒体的精准营销。 7.唯品会:微信闪购 借助刚刚开通的微支付平台,唯品会将会推出微信闪购功能,预计移动端销售额将会大幅提升。 8.肯德基:投票选炸鸡借助热播韩剧,肯德基在微博各个地方站上展开“炸鸡大PK”投票,结合官网,请出明星,掀起全国各地社会大众普遍参与的热潮。

知名品牌市场营销经典案例汇编20

营销——2004年度十大败笔 1三元牛奶:失守大本营 案例主体:北京三元牛奶 失败关键:大本营失守,成本操纵乏力 市场结局:三元差不多在 大本营北京退居第三,而在巅峰时期,三元曾占据了北京市场的8成。 此消彼长。 中国奶业的市场规模在近年已没了爆发性的增幅,而在面对要紧的对手——蒙牛、伊利的凌厉攻势下,竞争乏力,三元2004年在大本营的失利是必定的。而最近,产品涨价——三元希望借此来摆脱亏损困境的险招,有可能成为三元新一轮市场份额下滑的开端。 营销事件回放: 2004年,北京市场的乳业格局差不多发生巨大变化。 2004年10月,北京三元牛奶差不多在大本营北京市场上退居第三,排在蒙牛、伊利之后,而在巅峰时期,三元曾占据了北京市场的8成,即使是2003年,三元也有超过50%的市场份额。 大本营失守以及成本操纵乏力,使得三元利润大幅下滑。三

元股份第三季度的季报披露,2004年1~9月,该公司的营业利润为负5439万元。2004年12月22日,郭维健因业绩缘故,辞去三元股份董事总经理职位。 此消彼长。 市场规模在近年已没有太大的增幅,而面对要紧对手——蒙牛、伊利的凌厉攻势,竞争乏力,三元在大本营的失利是必定的。 败笔解析: 品牌力不如对手 国家统计局的资料显示,近几年来,我国城镇居民乳品消费增长幅度都在20%以上,而通过几年的高速增长后,增幅将相对放缓。在这种背景下,蒙牛、伊利等行业巨头加大了营销力度。 不管是广告投入依旧促销力度,以及公关事件的炒作,蒙牛、伊利等企业都不遗余力、相互攀比,但与蒙牛、伊利等清晰的品牌定位、强大的品牌塑造攻势相比,三元要差专门多。营销专家李光斗认为,近几年,三元品牌定位比较模糊,摇摆在“北京人的牛奶”和“新奇牛奶”等概念之间。而品牌定位的模糊,导致品牌传播效果的减弱,刺激企业减少品牌传播活动。2004年,即使是在三元的大本营——北京市场上也专门少能够看到三元 的广告。 三元品牌的忠诚度降低就在情理之中了。 价格缺乏竞争力 通过对消费者的调查,李光斗发觉:乳品属于价格敏感型商品。

《工程勘察设计收费标准》(2002年修订本)

工 程 勘 察 设 计 收 费 标 准 (2002年修订本) 国家发展计划委员会建设部

国家计委、建设部关于发布 《工程勘察设计收费管理规定》的通知 计价格[2002]10号 国务院各有关部门,各省、自治区、直辖市计委、物价局,建设厅: 为贯彻落实《国务院办公厅转发建设部等部门关于工程勘察设计单位体制改革若干意见的通知》(国办发[1999]101号),调整工程勘察设计收费标准,规范工程勘察设计收费行为,国家计委、建设部制定了《工程勘察设计收费管理规定》(以下简称《规定》),现予发布,自2002年3月1日起施行。原国家物价局、建设部颁发的《关于发布工程勘察和工程设计收费标准的通知》([1992]价费字375号)及相关附件同时废止。 本《规定》施行前,已完成建设项目工程勘察或者工程设计合同工作量50%以上的,勘察设计收费仍按原合同执行;已完成工程勘察或者工程设计合同工作量不足50%的,未完成部分的勘察设计收费由发包人与勘察人、设计人参照本《规定》协商确定。 附件:工程勘察设计收费管理规定 二00二年一月七日 主题词:勘察 收费 规定 通知 附件: 工程勘察设计收费管理规定 第一条 为了规范工程勘察设计收费行为,维护发包人和勘察人、设计人的合法权益,根据《中华人民共和国价格法》以及有关法律、法规,制定本规定及《工程勘察收费标准》和《工程设计收费标准》。 第二条 本规定及《工程勘察收费标准》和《工程设计收费标准》,适用于中华人民共和国境内建设项目的工程勘察和工程设计收费。 第三条 工程勘察设计的发包与承包应当遵循公开、公平、公正、自愿和诚实信用的原则。 依据《中华人民共和国招标投标法》和《建设工程勘察设计管理条例》,发包人有权自主选择勘察人、设计人,勘察人、设计人自主决定是否接受委托。 第四条 发包人和勘察人、设计人应当遵守国家有关价格法律、法规的规定,维护正常的价格秩序,接受政府价格主管部门的监督、管理。 第五条 工程勘察和工程设计收费根据建设项目投资额的不同情况,分别实行政府指导和市场调节价。建设项目总投资估算额500万元及以上的工程勘察和工程设计收费实行政府指导价;建设项目总投资估算额500万元以下的工程勘察和工程设计收费实行市场调节价。 第六条 实行政府指导价的工程勘察和工程设计收费,其基准价根据《工程勘察收

相关文档
最新文档