Mn4+ BaSiF6 red phosphor Hydrothermal synthesis dependence properties reaction conditions

Mn4+  BaSiF6 red phosphor Hydrothermal synthesis dependence  properties   reaction conditions
Mn4+  BaSiF6 red phosphor Hydrothermal synthesis dependence  properties   reaction conditions

Mn 4t-activated BaSiF 6red phosphor:Hydrothermal synthesis and dependence of its luminescent properties on reaction conditions

Qiang Zhou a ,Yayun Zhou a ,Fengqi Lu b ,Yong Liu a ,Qin Wang c ,Lijun Luo a ,Zhengliang Wang a ,*

a

Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions,Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan,School of Chemistry &Environment,Yunnan Minzu University,Kunming,650500,China b

MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials,College of Materials Science and Engineering,Guilin University of Technology,Guilin,541004,PR China c

College of Chemistry and Chemical Engineering,Yunnan Normal University,Kunming,Yunnan,650500,PR China

h i g h l i g h t s

The crystal structure of BaSiF 6:Mn 4thas been veri ?ed using Rietveld re ?nement. The optimum hydrothermal reaction condition for BaSiF 6:Mn 4thas been con ?rmed.

The white LED based on YAG:Ce e BaSiF 6:Mn 4tmixture presents warmer white light than that only with YAG:Ce.

a r t i c l e i n f o

Article history:

Received 24August 2015Received in revised form 6November 2015

Accepted 12December 2015Available online xxx Keywords:

Optical materials Heat treatment Crystal structure Luminescence

a b s t r a c t

In this work,a series of BaSiF 6:Mn 4tred phosphors were synthesized through a hydrothermal route.The crystal structure and morphology were characterized by powder X-ray diffraction (XRD)with Rietveld re ?nement,scanning electron microscopy (SEM),and energy dispersive spectrometer (EDS)in detail.The in ?uence of reaction conditions,including the concentration of KMnO 4and HF,reaction temperature and time,on the photoluminescence properties were investigated systematically.It can emit intense red light (~636nm)under blue light (~458nm)illumination.The white LED device based on YAG:Ce e BaSiF 6:Mn 4tmixture shows warm white light with low color temperature and high correlated color index,which reveals its potential application in WLED.

?2015Published by Elsevier B.V.

1.Introduction

Over the past decade,white light-emitting diode (WLED)fabricated with yellowish Y 3Al 5O 12:Ce 3t(YAG:Ce)phosphor has attracted great research interest due to its low energy cost,long lifetime and environmental friendly characteristics [1e 3].The YAG:Ce phosphor can effectively absorbs blue light excited from GaN chip to emit white light [4,5].However,the white light pro-duced from this system lacks red light component,which causes it “cold ”for indoor lighting application [6,7].To overcome this drawback,considerable efforts have been devoted to developing red phosphors to “neutralize ”the “cold ”white light by mixing red

phosphor with YAG:Ce phosphor on GaN chip [8,9].For instance,rare-earth ions Eu 2tor Ce 3tactivated red-emitting phosphors have been developed and applied in WLEDs system [10e 12].However,the quantum yield of these red phosphors is desired to be improved and the preparation process of these phosphors has to suffer harsh synthesis conditions.

As a typical transition-metal ion,Mn 4twas also intensively researched as an activator for aforementioned red phosphor since its distinct outer 3d 3electron distributions,which results in its typical 2E /4A 2transition with broad excitation among blue re-gion,sharp emission in red and near-infrared region [13e 15].Among all the Mn 4tactivated phosphors,?uorosilicate with octa-hedral coordination host,for instance BaSiF 6,exhibits intense broad excitation band (~460nm)and sharp emissions (~630nm)[16].Current research on Mn 4tactivated red phosphors have been

*Corresponding author.

E-mail address:wangzhengliang@https://www.360docs.net/doc/9b13996741.html, (Z.

Wang).Contents lists available at ScienceDirect

Materials Chemistry and Physics

jo urn al homepag e:

https://www.360docs.net/doc/9b13996741.html,/locate/matchemphys

https://www.360docs.net/doc/9b13996741.html,/10.1016/j.matchemphys.2015.12.0150254-0584/?2015Published by Elsevier B.V.

Materials Chemistry and Physics xxx (2015)1e 6

focused on developing controllable fabrication methods,charac-terizing the resultant products and exploring their potential ap-plications[17e20].For example,Pan et al.reported a one-step hydrothermal route for the fabrication of single phase BaSiF6:Mn4tred phosphor[21].In this report,they principally demonstrated the chemical reaction mechanism for the prepara-tion of red phosphor.But for the phosphors synthesized by the hydrothermal method,the general synthesis parameters,such as the synthesis temperature,time,and concentration of precursors play an important role on the photo-luminescent(PL)properties of the as-synthesized phosphors.Therefore,from a practical point of view,the synthesis conditions of the Mn4tactivated red phosphor with strong absorption in blue region and emission in red region should be researched and discussed comprehensively.

In this work,we present a complete investigation of the syn-thesis parameters,including the concentration of KMnO4and HF, synthesis temperature and time,on the photoluminescence prop-erties(PL)of BaSiF6:Mn4tred phosphors.The composition and morphology were studied.The PL properties of the as-prepared products have been found to be highly dependent on the concen-tration of HF and KMnO4,and the reaction time.The obtained pink powder phosphors emit intensely red light under blue light illu-mination.The WLED prepared from YAG:Ce and BaSiF6:Mn4tmixture shows higher luminous ef?ciency(LE)and lower corre-lated color temperature(CT)than that only with YAG:Ce.

2.Experimental section

2.1.Materials and synthesis

All starting materials in this work,including HF,Ba(NO3)2, (NH4)2SiF6,KMnO4and Al(OH)3were of analytical grade and used without any puri?cation.The grade purity for Y2O3and CeO2is 99.99%.The BaSiF6:Mn4tproduct was synthesized via a one-pot hydrothermal reaction from Ba(NO3)2and(NH4)2SiF6in HF and KMnO4mixed solutions.In a typical synthesis,1.314g Ba(NO3)2, 0.836g(NH4)2SiF6and distilled water were mixed thoroughly under magnetic stirring and then transferred into a Te?on cup containing50ml HF and KMnO4mixed solution.The Te?on-lined autoclave was tightly sealed and placed in an oven at a tempera-ture for8h.After the autoclave was cooled down naturally to room temperature,the resulting pink solid powders were carefully taken out of the cup,washed with distilled water and methanol for several times,and dried at60 C for6h.

Yellow phosphor YAG:Ce was synthesized according to the reference[22].The stoichiometric mixture of Y2O3,Al(OH)3and CeO2were ground and?red at1300 C for8h in reducing atmo-sphere(N2:H2?95:5).The light-emitting diodes(LEDs)were fabricated by combing GaN chips(~460nm)with the mixture of phosphors and epoxyresin(the mass ratio is1:1).

2.2.Characterization

The crystal structure of these samples was initially characterized using XRD with a Panalytical X'pert Pro Multi-purpose X-ray diffractometer using Cu K a radiation(l?0.15406nm)and a graphite monochromator operating at40kV and30mA from15 to70 with a scanning step of0.02 at4 minà1.Rietveld analysis was carried out using Topas Academic software.The as-prepared products for mor-phologies and structures were observed by SEM(FEI Quanta200 Thermal FE Environment scanning electron microscopy)with an attached energy-dispersive X-ray spectrometer(EDS).The valence state of a typical product was examined by a Scanning XPS Micro-probe system(Phi5000Versaprobe-II,Ulvac-Phi)with an Al target working at15kV.PL spectra were recorded on a Cary Eclipse FL1011M003(Varian)spectro?uorometer,and the xenon lamp was used as excitation source.The electro-luminescence of LEDs was recorded on a high accurate array spectrometer(HSP6000).All the measurements were performed at room temperature.

3.Results and discussion

3.1.Phase identi?cation and morphology

Fig.1presents the XRD patterns of the as-synthesized BaSiF6 and BaSiF6:Mn4tat180 C for8h with different KMnO4concen-tration.Curve a is the XRD pattern of BaSiF6without Mn4t,which is in accordance with the JCPDS card(No.15-0736,a?b?7.185?, c?7.01?,space group R-3m).This result shows the obtained sample is of single phase[23].XRD patterns of the BaSiF6:Mn4tsamples are also similar with that of the BaSiF6,and no impurity peaks can be observed.This indicates that these samples are also of single phase,and the introduction of Mn4tion does not change the crystal structure of this BaSiF6host.

To further analyze the crystal structure of these samples,the Rietveld re?nements of BaSiF6and BaSiF6:Mn4twere performed on Topas Academic software.The XRD patterns of the experimental, calculated and difference results are shown in Fig.2,meanwhile the ?nal re?ned structural parameters are summarized in Tables1and 2.According to the re?nement results,Mn4tcan occupy the crystal site of Si4tto coordinate with six Fàanions forming stable MnF62àoctahedra,which resulted from the same valence state and similar ionic radius between Mn4t(0.53?,CN?6)and Si4t(0.40?, CN?6).The unit cell volume of BaSiF6:Mn4t(313.82?3)is a little larger than that of BaSiF6(313.77?3),which is due to the larger radius of the doping Mn4tions.

The morphology of the as-prepared products was conducted on SEM and representative results are shown in Fig.3a.It can be easily found that,the product consists of a large number of quasi-uniform micrometer rods,and their surfaces are smooth.Closely inspecting the tips of these rods,each rod has diameter about1m m and length around5m m.Fig.3b is the corresponding EDS pro?le,in which the existence of Mn element can be clearly recognized.This further veri?es that Mn4tions have occupied the lattice sites of Si4tions to activate BaSiF6emitting red light under blue light illumination. Furthermore,O element cannot be found from the EDS spectrum, which implies that MnO2is not produced in the hydrothermal reaction.

203040506070

JCPDS 15-0736 (BaSiF

6

) b

c

d

e

R

e

l

a

t

i

v

e

l

y

I

n

t

e

n

s

i

t

y

(

a

.

u

.

)

2-Theta (o)

a

Fig.1.XRD patterns of the resulting BaSiF6:Mn4tproducts prepared from different KMnO4concentration:0(a),2(b),4(c),8(d)and12mmol Là1(e)at180 C for6h.

Q.Zhou et al./Materials Chemistry and Physics xxx(2015)1e6 2

3.2.In ?uence of reaction conditions on PL properties

To comprehensively investigate the in ?uence of synthesis pa-rameters,such as the concentration of KMnO 4and HF,reaction

temperature and time,on the PL properties of BaSiF 6:Mn 4tprod-ucts,a series of experiments have been done.Fig.4exhibits the excitation and emission spectra of BaSiF 6:Mn 4tred phosphor fabricated from different KMnO 4concentration (0.1,0.5,2,4,6,8,10,12mmol L à1).In Fig 4a,it can be easily found that the shape of these excitation spectra is similar,which were consisted of two broadband excitation peaks locating in the UV (~356nm)and blue (~458nm)region respectively.According to the Tanabe e Sugano diagram,they are attributed to the spin-allowed transitions from ground state 4A 2to excited state 4T 2and 4T 1of Mn 4trespectively [24].It should be noted that the stronger excitation band matches very well with the blue emission of GaN chip (~460nm).

Fig.4b shows their corresponding emission spectra under 458nm light excitation.There are three emission peaks located in the range from 600to 660nm,which strongly indicates that the emitted light is red.The ?rst peak (~612nm)is due to anti-Stokes vibronic side bands of the excited state 2E of Mn 4tand the latter (~636nm and 651nm)peaks are identi ?ed as its 2E g /4A 2tran-sition [25],in which the middle emission peak locating at 636nm is the strongest.Moreover,Fig 4b displays the in ?uence of KMnO 4concentration on the emission property of BaSiF 6:Mn 4tphosphors.It can be clearly observed that the emission intensity increases with the KMnO 4concentration until it reaches 8mmol L à1,at which the BaSiF 6:Mn 4tphosphor emits the strongest red light.Its

CIE

Fig.2.Experimental (crosses)and calculated (red solid line)XRD patterns and their difference (black solid line)for BaSiF 6(a)and BaSiF 6:Mn 4t(b)at room temperature.The blue ticks indicate the Bragg re ?ection positions.The inset ?gures shows the projections viewed from [010](For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

Table 1

Crystal data of BaSiF 6from the Rietveld re ?nement.atom site x

y

z

occupancy U iso (?2)Ba 3a 00010.73(3)Si 3b 0

1/2

10.84(5)F

18h

0.2182(2)

0.1091(1)

0.3587(2)

1

0.99(4)

Space group:R m,a ?7.1913(0)?,c ?7.0058(1)?,a ?b ?90 ,g ?120 ,Z ?3,cell volume:313.77(0)?3.R wp ~4.71%,R p ~3.27%,R Bragg ~1.12%.

Table 2

Crystal data of BaSiF 6:Mn 4tfrom the Rietveld re ?nement.atom site x

y

z

occupancy U iso (?2)Ba 3a 0001

0.63(2)Si 3b 001/20.92(0) 1.24(6)Mn 3b 0

1/2

0.08(0) 1.24(6)F

18h

0.2190(0)

0.1095(0)

0.3584(2)

1

0.90(4)

a b g volume:313.82(0)?3.R wp ~4.07%,R p

~2.91%,R Bragg ~1.22%.

Fig.3.SEM image (a)and EDS pro ?le (b)of the as-prepared BaSiF 6:Mn 4tproduct.

Q.Zhou et al./Materials Chemistry and Physics xxx (2015)1e 63

(Commission Internationale de l ’Eclairage,International Commis-sion on Illumination)chromaticity coordinates are x ?0.64,y ?0.30,which are close to “ideal red ”of the NTSC (National Television Standard Committee,x ?0.67,y ?0.33).Continually increase KMnO 4concentration to 12mmol L à1,the emission contrarily dropped,this is an obvious concentration quenching phenomenon in BaSiF 6crystal lattice [26].Relationship between the KMnO 4concentration and relative emission intensity is inser-ted in Fig.4b.

Different HF concentration,from 10%to 40%was employed to further investigate the luminescent property of BaSiF 6:Mn 4t.Fig.5shows a series of emission spectra of these BaSiF 6:Mn 4tphosphors under 458nm light excitation.When a low concentration,10%is employed,only a negligible emission peak at 636nm can be observed.However,with the addition of HF,the emission intensity at 636nm sharply increased.When the highest concentration,40%HF,is used,the emission intensity reaches strongest,which is about 104,30,2.5times higher than that of other three samples.That is because higher HF concentration is bene ?cial for the formation of

stable MnF 62à

group.Otherwise,it may be hydrolyzed into MnO 2,which results in the product color dark red and emission intensity decreasing.This phenomenon suggests that the emission property of this BaSiF 6:Mn 4tred phosphor is highly dependent on the employed HF concentration,which plays an important role in obtaining high brightness BaSiF 6:Mn 4tred phosphor.The rela-tionship between HF concentration and relative emission intensity is inserted in Fig.5.

In the above section,we concluded the optimum concentration of KMnO 4and HF for the fabrication of BaSiF 6:Mn 4tred phosphor.However,for a hydrothermal synthesis,reaction temperature and time also play an important role in obtaining high brightness red phosphor.Fig.6exhibits the effect of reaction temperature on the emission intensity of BaSiF 6:Mn 4twith the optimum concentration of starting materials.Obviously,when the reaction temperature is higher than 100 C,the emission intensities of these red phosphors are very close.This means the synthesis temperature in ?uenced mildly on the formation of BaSiF 6:Mn 4tcrystals when the synthesis temperature is higher than the boiling point of the reaction mixture.However,when a lower temperature,such as 90 C was adopted,the emission intensity diminished sharply.This may because low reaction temperature (<100 C)is not favorable for the substitution of Mn 4tfor Si 4tions.Similarly,Fig.7shows in ?uence of reaction time (2h,6h,12h and 20h)on the emission property of BaSiF 6:Mn 4tphosphor.With the increase of the reaction time from 2h to 6h,the emission intensity rises sharply,which means that longer reaction time leads to the stronger red light intensity.Continually extended the reaction time,the emission intensity dropped dramatically.Therefore,according to the above investi-gation,the optimum reaction condition is:8mmol L à1KMnO 4,40%HF,reacted at 180 C for 6h.

Furthermore,the in ?uence of temperature on the PL properties of this optimum product is shown in Fig.8.Obviously,with the temperature increasing,it can be found that the emission peak position does not shift.Up to 160 C,over 100%of the integral emission intensity can be preserved compared with that at 20 C.Actually,the BaSiF 6:Mn 4tred phosphor is very stable chemically and it cannot be decomposed until 457 C (Fig.9).

300

350

400450500550

0100

200300400500600I n t e n s i t y (a .u .)Wavelength (nm)

12 mmol.L -1 8 mmol.L -1 4 mmol.L -1 2 mmol.L -1 0.5 mmol.L -1 0.1 mmol.L -1

a

λem = 636 nm

I n t e n s i t y (a .u .)Wavelength (nm)

Fig.4.The excitation (a)and emission (b)spectra of BaSiF 6:Mn 4tred phosphors ob-tained from 40%HF with different concentration of KMnO 4at 180 C for 6h,insert is the relationship between KMnO 4concentration and relative emission intensity (For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

Fig.5.Emission spectrum of red phosphor BaSiF 6:Mn 4tobtained at 180 C for 6h with 8mmol ,L à1KMnO 4and 10%(a),20%(b),30%(c)and 40%(d)HF,the inserted ?gure is the relationship between HF concentration and relative emission intensity (For inter-pretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

Q.Zhou et al./Materials Chemistry and Physics xxx (2015)1e 6

4

3.3.Application in WLEDs

Fig.10displays the electro-luminescent spectra (EL)of the GaN chip,the LED based on BaSiF 6:Mn 4t,YAG:Ce,YAG:Ce e BaSiF 6:Mn 4tmixture under 20mA current excitation.The emission band at ~460nm of curve a can be attributable to the emission of GaN https://www.360docs.net/doc/9b13996741.html,pared with curve a,the emission peaks at 636nm in curve b is due to the emission of red phosphor excited by the emission of GaN LED chip.Bright red light (seeing the insert of Fig.10b)and the emission of GaN chip can be observed by naked eyes,this is bene ?cial for obtaining a WLED by merging it with YAG:Ce phos-phor.Curve c and d are the EL spectra of the WLEDs fabricated from

YAG:Ce,and the YAG:Ce e BaSiF 6:Mn 4tmixture.The obvious red emission on Fig.10d means that the addition of BaSiF 6:Mn 4tred phosphor is favorable for obtaining a warm WLED.The perfor-mance of the WLEDs is summarized in Table 3.It should be noted that the colour rendering index (CRI)and correlated colour tem-perature (CCT)levels of the prepared WLED were obviously improved after the addition of BaSiF 6:Mn 4tred phosphor.

4.Conclusion

In summary,a series of BaSiF 6:Mn 4tred phosphors with micro-rod morphology were synthesized by a hydrothermal route.The in ?uence of synthesis parameters,including KMnO 4and HF con-centration,the synthesis temperature and reaction time on its PL properties has been systematically investigated.The optimized reaction condition is:8mmol $L à1KMnO4and 40%HF,reacted

at

Fig.6.Emission spectrum of BaSiF 6:Mn 4t

red phosphors obtained from 40%HF and 8mmol ,L à1KMnO 4for at 90 C (a),100 C (b),150 C (c),180 C (d)and 200 C for 6h,the inserted ?gure is the relationship between reaction temperature and relative emission intensity (For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

0100

200300400500600I n t e n s i t y (a .u .)

Wavelength (nm)

Fig.7.Emission spectrum of BaSiF 6:Mn 4t

red phosphors obtained from 40%HF and 8mmol ,L à1KMnO 4at 180 C for 2h (a),6h (b),12h (c)and 24h (d).The inserted ?gure is the relationship between reaction temperature and relative emission intensity (For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

I n t e n s i t y (a .u .)

Wavelength (nm)

Fig.8.Temperature-dependent thermal luminescence spectra of the BaSiF 6:Mn 4tred phosphor and the relative intensity of the emission spectrum by integrating the spectral area (For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

100

200

300

400

500600700

60

657075808590

95100105W e i g h t (%)

Temperature (o

C)

Fig.9.Thermogravimetrics (TG)as synthesized BaSiF 6:Mn 4tunder N 2atmosphere.The thermal stability the red phosphor behavior of BaSiF 6:Mn 4tis investigated by thermogravimetrics analysis (TG:PerkinElmer STA 8000,at a heating rate of 10K/min).

Q.Zhou et al./Materials Chemistry and Physics xxx (2015)1e 65

180 C for 6h.The resulting BaSiF 6:Mn 4tphosphor shows intense red emission with broadband excitation in blue region.The WLED based on this BaSiF 6:Mn 4tred phosphor presents warmer white light than that of the only one YAG:Ce component.Therefore,it is considered as a good candidate for improving the optical perfor-mance of indoor lighting WLEDs.Acknowledgments

This work was ?nancially supported by the National Natural

Science Foundation of China (21261027),the Natural Science Foundation of Yunnan Province,(2014FB147),Graduate Innovation Foundation of Yunnan Minzu University (2015YJCXY277),and Program for Innovative Research Team (in Science and Technology)in University of Yunnan Province (2011UY09)and Yunnan Provin-cial Innovation Team (2011HC008).

References

[1]W.T.Chen,H.S.Shen,R.S.Liu,J.P.Att ?eld,J.Am.Chem.Soc.134(2012)

8022e 8025.

[2]Q.Dai,M.E.Foley,C.J.Breshike,A.Lita,G.F.Strouse,J.Am.Chem.Soc.133

(2011)15475e 15486.

[3]Z.Y.Zhao,Z.G.Yang,Y.R.Shi,C.Wang,B.T.Liu,G.Zhu,Y.H.Wang,J.Mater.

Chem.C 1(2013)1407e 1412.

[4]H.M.Zhu,C.C.Lin,W.Q.Luo,S.T.Shu,Z.G.Liu,Y.S.Liu,J.T.Kong,E.Ma,Y.G.Cao,

R.S.Liu,X.Y.Chen,https://www.360docs.net/doc/9b13996741.html,mun 5(1e 10)(2014)4312.

[5] C.C.Yang,H.Y.Tsai,K.C.Huang,Opt.Rev.20(2013)232e 235.

[6]K.A.Denault,N.C.George,S.R.Paden,S.Brinkley, A.A.Mikhailovsky,

J.Neuefeind,S.P.DenBaars,R.Seshadri,J.Mater.Chem.22(2012)18204e 18213.

[7]Q.H.Zeng,P.He,M.Pang,H.B.Liang,M.L.Gong,Q.Su,Solid State Commun.

149(2009)880e 883.

[8]P.H.Chuang,C.C.Lin,H.Yang,R.S.Liu,J.Chin.Chem.Soc.60(2013)801e 806.[9]K.A.Denault, A.A.Mikhailovsky,S.Brinkley,S.P.DenBaars,R.Seshadri,

J.Mater.Chem.C 1(2013)1461e 1466.

[10]P.Pust, A.S.Wochnik, E.Baumann,P.J.Schmidt, D.Wiechert, C.Scheu,

W.Schnick,Chem.Mater 26(2014)3544e 3549.

[11]X.Q.Piao,K.Machida,T.Horikawa,H.Hanzawa,Y.Shimomura,N.Kijima,

Chem.Mater 19(2007)4592e 4599.

[12]Y.Q.Li,N.Hirosaki,R.J.Xie,T.Takeda,M.Mitomo,Chem.Mater 20(2008)

6704e 6714.

[13]Y.Arai,T.Takahashi,S.Adachi,Opt.Mater.32(2010)1095e 1101.

[14]M.G.Brik,A.M.Srivastava,N.M.Avram,Opt.Mater 33(2011)1671e 1676.[15]Q.Y.Shao,H.Y.Lin,J.L.Hu,Y.Dong,J.Q.Jiang,https://www.360docs.net/doc/9b13996741.html,pd 552(2013)

370e 375.

[16]T.Arai,S.Adachi,J.Appl.Phys.110(1e 10)(2011)063514.

[17] D.Sekiguchi,J.Nara,S.Adachi,J.Appl.Phys.113(1e 6)(2013)183516.

[18]H.D.Nguyen, C.C.Lin,M.H.Fang,R.S.Liu,J.Mater.Chem.C 2(2014)

10268e 10272.

[19]S.J.Lee,J.Jung,J.Y.Park,H.M Jang,Y.R.Kim,J.K.Park,Mater.Lett.111(2013)

108e 111.

[20]J.H.Oh,H.Kang,Y.J.Eo,H.K.Park,Y.R.Do,J.Mater.Chem.C 3(2015)607e 615.[21]X.Y.Jiang,Y.X.Pan,S.M.Huang,X.A.Chen,J.G.Wang,G.K.Liu,J.Mater.Chem.

C 2(2014)2301e 2306.

[22] A.Ikesue,T.Kinoshita,K.Kammata,K.Yoshida,J.Am.Ceram.Soc.78(1995)

225e 228.

[23] B.F.Hoskins,A.Linden,P.C.Mulvaney,T.A.O'Donnell,Inorg.Chim.Acta 88

(1984)211.

[24]L.Lv,X.Jiang,S.Huang,X.Chen,Y.Pan,J.Mater.Chem.C 2(2014)3879e 3884.[25]Y.Arai,S.Adachi,J.Lumin.131(2011)2652e 2660.

[26]Z.Wang,P.Cheng,Y.Liu,Y.Zhou,Q.Zhou,J.Guo,Opt.Mater 37(2014)

277e 280

.

Fig.10.Electro-luminescent spectra of the GaN LED chip (a),the LED based on BaSiF 6:Mn 4t(b),YAG:Ce (c)and BaSiF 6:Mn 4t-YAG:Ce mixture (d)under 20mA current excitation,the inserted photograph are the images of the LEDs (For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this article).

Table 3

Performance of the GaN-based WLEDs coated with:(1)YAG:Ce,(2)YAG:Ce and BaSiF 6:Mn 4tat 20mA forward current and 5V reverse voltage.No.of LEDs samples CCT(K)CRI LE (lm/W)CIE (x ,y )1628376.045.21(0.313,0.366)2

5903

82

51.73

(0.323,0.359)

Q.Zhou et al./Materials Chemistry and Physics xxx (2015)1e 6

6

AE插件说明大全

由于网上的插件种类繁多,且全是E文版,之前我在EMUEL上下了一个不过里面几十个每头没脑的E文插件让我很茫然,所以找了下面这个插件功能介绍给大家选择性安装! Digieffects.Aurorix.v2.8.for.Adobe.After.Effects 类别:插件 说明:AE的插件包,包括26个插件,其中有3D灯光、地震、快速万花筒、分形图像、聚灯光、飞动星云等很酷的特效。 Digieffects.Berserk.v1.8.for.Adobe.After.Effects 类别:插件 说明:AE的插件包,包括20个获奖的插件,其中有雪景、调整色块化、晶格化、水波纹、调整胶片工具、老电影等很眩目的特效。 : Digieffects.Cinelook.Broadcast.v1.6.for.Adobe.After.Effects 类别:插件 说明:AE的插件,可以把你的录像作品制作出如同电影一样的效果。 Digieffects.Delirium.v1.6.for.Adobe.After.Effects 类别:插件 说明:AE的插件,Delerium包含30多种特效,包括粒子系统和三维效果。

PRIMATTE_KEYER_V1.5.1_FOR_AE5.5_AND_6.0 类别:插件 说明:AE插件,可以轻易地从前景和背景的区域中取样,抑制颜色溢出,并能够调整mattes的透明度,来创建令人惊叹的mattes Frischluft.Flair.v1.02.for.Adobe.After.Effects 类别:插件 说明:After Effect插件,具有八个高速高质量的滤镜,包括Volumetric light和glow(闪光)等效果。 Frischluft_Lenscare_v1.1.1_For_After_Effects 类别:插件 说明:Lenscare是面向Adobe After Effects的一款插件。它包括两个独立的插件,out of focus用来模仿镜头模糊,depth of field用来创建复杂的景深效果。v1.1升级包括对多CPU的支持以及更好的内存管理。out of focus插件可以节省百分之五十的内存! RevisionFX_Twixtor_Pro_v3.04_For_After_Effects 类别:插件 说明:After Effects 插件,用来减慢、加快及改变图像序列中的帧速,支持8、16位通道处理。pro版支持使用特别的Matte来分离前景和

【飞行员必备】机场标志和标识

【飞行员必备】机场标志和标识 随着民航事业的不断发展,飞机越来越多、机场跑道越来越多、航线越来越多。机遇和挑战并存,繁忙的机场运行、复杂的机场滑行路线、不规范的机场标志等,于是...... 2008年2月4日,越南航空公司飞机执行广州-河内VN919 航班,飞机在广州白云机场地面滑行过程中误入车辆服务通道,左侧机翼撞击车辆服务通道照明灯柱而受损。2006年6月7日和6月9日,两架执行至呼和浩特航班任务的飞机在26号跑道着陆时,降落在机场未启用的新跑道上。 2008年2月29日,一架B737飞机在银川河东机场21号跑道实施VOR/DME程序进近,将尚未启用的平行滑行道当做跑道,飞机在平行滑行道上接地并滑跑494米后离地。飞机无受损,机上人员安全。 类似这样的事件时有发生,导致事件发生的原因可能是多方面的,作为飞行员,我们又如何去规避此类事件呢?秉着一起学习交流的目的,飞行GO将推出“机场标志/标识和机场助航灯光系统”系列文章,跟大家一起回顾有关机场标志标识和机场灯光系统等方面的内容。一、基本概念介绍 1飞行区指标(Aerodrome Reference Code Elements I and II)2机场基准点(Aerodrome Reference Point—ARP ) 机场必须设置一个基准点,应位于机场使用中的或规划的所

有跑道的几何中心或者主跑道中线的中点,首次设定后应保持位置不变。其坐标必须加以测量,用经纬度表示,精确到秒。3机场标高和跑道标高(Aerodrome elevation) 起飞着陆区(跑道中线)最高点的标高,还需提供跑道入口两端中点标高。 4跑道公布距离 道面系统:ASPH—Asphalt Runway 沥青CONC——Concrete Surfaced Runway 水泥 净空道(CWY)跑道头的一块长方形场地或水面,飞机在其上空起始爬升到35ft 停止道(SWY)起飞滑跑距离末端以外的一块长方形区域,适合飞机在中断起飞时能在上面停住。在正常起飞着陆时不使用,因此可选用比跑道低级一些的道面,但强度应在中断起飞承载时不致造成航空器的结构损坏。与跑道处于同一条中心线上,至少与跑道同宽;停止道表面的摩阻特性应良好。可用起飞滑跑距离(Take 0ff Runway Available) 可用起飞距离(Take Off Distance Available)可用加速停止距离(Accelerate-stop Distance Available)可用着陆距离(Landing Distance Available) 5道面承载强度pavement classification number (PCN) 为确定道面能否满足运行,我们需要用道面的PCN值与飞机相应的实际ACN值进行比较。

AE十大插件介绍

AE十大插件介绍 一、55MM 55MM的基本功能是用来复制电影工业中所使用的电影摄像机上的玻璃滤镜的光 学特性。 这意味着你用DV拍摄的视频也可以拥有这们通常所缺乏的那种光泽和深度感。转场和渐变看起来会比通常的视频效果显得更富有质感。 Polarising(偏振)滤镜非常出色。 它可以将一个有着薄薄雾气的白色天空转变为非常真实的蓝色。 滤镜虽无法像真实偏振那样删除玻璃上的反光, 但是它可以实现的效果已经非常接近真实了。 这些滤镜可以用各种方法进行*作,而且决不会降低画面的质量, 同时渲染的时间也是相对较少的。 二、MAGIC BULLET 唯一一款可以精确模拟真实电影胶片效果的AE插件 真正的电影胶片是非常锐丽而且清晰的,当出现运动的地方就会模糊, Magic Bullet是唯一一款可以在DV影片上精确模拟这种效果的产品。 它的强大功能来自于去除瑕疵的处理过程, 它可以去掉视频影像中的锯齿边界而不会出现模糊。 其他的技术只是简单的减少细节,或者降低分辨率来达到类似的效果。 但是Magic Bullet却可以保留所有应该锐丽的区域,而只模糊掉不必要的区域。最后的效果是极好的,堪称可能实现的最好的仿电影效果。 这个滤镜非常适于电视广播的应用, 但是也可以被用来将DV处理为35mm胶片。

这个插件包中包括了模拟的Promist滤镜和诸如光学溶解等电影工作室的处理方法, 不过需要渲染的时间也是非常漫长的。 三、AURORA SKY AE 创建写实主义的天空 模拟的天空在非常多的项目中都会用到。 刚开始时插件的选项有些让人无从下手, 但大量的预设效果会帮助你很快的找到方向。 生成的效果虽然还达不到照片的真实度,但也相差不远了。 也许这个插件给你的第一印象是觉得它只适合动画或特效, 其实你也可以用它来替换不适合的天空—— 这个3D效果看起来太象photoshop了, 所以使用的时候一定要小心噢! 这个插件的渲染速度很慢, 有时候你可以只渲染一个静帧,然后用它来做背景! 四、SWIM 真实的水面波纹效果 想模仿真实的海洋或湖泊,你也许需要类似Psunami 这样的高端滤镜。 或者你只是想创建真实的波纹效果,Swim就是对标准水效果的一个重大改进。它的关键功能之一是创建循环的视频片断, 每一个像素都会回到最初的位置,而运动过程决不雷同,

AE插件详解Trapcode-Lux

Lux 插件效果:制作点光源与聚光灯的自身显现 Point Lights点光源设置 继承AE点光源的三个属性:位置,颜色,灯光强度 Point Light Model点灯光显示类型 ---Off关闭,不显示点光源 ---Natural灯光衰减采用距离平方(1/R2),更为仿真 ---Radius定义一个半径像一个体积球 ---Radius+Source体积球中间叠加一个小的体积球 ---Source仅仅一个小的体积球 Light’s Intensity显示强度是否受灯光自身强度影响,默认勾选,如需统一多盏灯光的显示强度可以取消勾选Intensity显示灯光强度,不会影响AE自带灯光的灯光强度Softness[%]柔化,有点像加了模糊插件,但是Alpha更为清晰 Radius选择Radius/Radius+Source类型时生效,控制球型大小 Individual Radius选择Radius/Radius+Source类型时生效, ---None所有灯光拥有同样的球型半径,球型受三维影响 ---Intensity(mult)灯光大小受灯光自身强度影响,不管Light's Intensity是否勾选 ---Shadow Darkness(mult)灯光大小受灯光Shadow Darkness属性影响 ---Shadow Diffusion(add)灯光大小受灯光Shadow Diffusion属性影响 Source Intensity控制内部小球强度 Source Radius控制内部小球大小 Spot Lights聚光灯源设置 Spot Light Model聚光灯显示类型 ---Off关闭,不显示聚光灯源 ---Natural灯光衰减采用距离平方(1/R2),更为仿真 ---Distance灯光衰减采用距离(1/R) ---Constant灯光强度固定,无衰减

AE插件大全以及部分汉化插件

Red Giant系列官网https://www.360docs.net/doc/9b13996741.html,/红巨星系列插件注册码 0、Trapcode_Suite_Win_Full_11_原版+注册机(Form更新至2.0) 1、Red.Giant.Trapcode.合集.V4.0中英文安装版32位Particular_预置(英汉双语) Form_预置(英汉双语) 2、Red.Giant.Trapcode.合集.For.AECS5中英文安装版64位也适用于AECS5.5 3、魔法子弹调色系列Red Giant Magic Bullet Suite 11 英文原版+注册机+汉化+安装教程下载 Magic Bullet Suite 11破解版安装图解 Magic Bullet Suite 11调色系列包括以下九个插件(其中Grinder用于MAC):

4、调色插件Magic_Bullet_Looks_AE_1.4.3_32bit英文版+汉化(baxianhua) MBLooks.预置(安装时直接复制粘贴即可) Magic_Bullet_Looks_PPro_1.4.3_64bit英文版+汉化(baxianhua) 5、调色师Magic.Bullet.Colorista.II.注册版+汉化(32位+64位)详细说明 6、调色插件MBMojo.32位(1.1).64位(1.2)+汉化(AE.PR.VEGAS) 7、AE降噪极品.Magic.Bullet.Denoiser.1.0.1.32bit64bit原版加汉化 8、AE视频转换Magic.Bullet.InstantHD.3264bit 9、AEPR场插件MB.Frames.(32位1.02版).(64位1.1版) 10、Red_Giant_Keying_Suite_11包括:Primatte Keyer 5.0 、Key Correct 1.2.1 和Warp 1.1.1 Keying_Suite_11.0_安装注册图文教程 11、Red.Giant.KeyCorrectWinFull.ChsPackV2.0.(32.64bit)AE抠像校正原版加汉化汉化说明 12、极品抠像插件_Primatte_Keyer_Pro_4.0_中英文安装版32位 13、Red.giant.Warp.1.1.3264bit.AEPR(三维变形反射投影) Red_Giant_Warp_1.0_中英文版(三维变形反射投影)32位 14、灯光工厂Red.Giant.Knoll.Light.Factory.2.52.英文原版(带汉化)新增100组预设ffx后缀lfp后缀 灯光工厂Knoll.Light.Factory.Win.Full.(2.5版+2.7版) 2.5版本用于32位,2.7版本用于64位 15、3D助手Red.Giant.PlaneSpace.v1.4.3264bit+汉化(曹润)汉化说明 16、天空大海滤镜.Red.Giant.Psunami.v1.4(3264bit)+32bit汉化 17、AE烟雾水火.RedGiant.Image.Lounge.1.4.5.(3264bit) 18、卡通.水墨.油画Red.Giant.ToonIt.v2.1.3264bit.注册版 AE卡通、水墨、油画Red_Giant_Toon_It_AE(带汉化1.1.1版)32位 19、极品文字特效插件.Red.Giant.Text.Anarchy.2.4.(32.64bit)(AEPR) 极品文字特效插件_Red_Giant_Text_Anarchy_V2.35中英文版32位 20、AE屏幕视觉Red.Giant.Holomatrix.1.2.(3264bit) 21、Reflector.1.5.0.PC反射倒影(32位) 22、Magic.Bullet.Steady.for.AE.1.1.1(稳定降噪) 23、Red.Giant.Film.Fix.v1.0.for.AE【修复老旧影片插件】 DigiEffects系列官网https://www.360docs.net/doc/9b13996741.html,/DE系列注册破解方法 1、DE.Delirium.1.8(原版加汉化)32位 DE-DeliriumV2-64bit原版

AE插件大全

Adobe After Effects目前可用插件的比较周全的名单,要是全部装的话估计AE一到loading plug-ins就要宕机了,anyway,只当是个参考列表罢了... DigiEeeects Aurorix 2: 3dlighting 2(3D灯光,带色浮雕,酷) agedfilm 2(老电影2,酷) bulgix 2(程序自带) chaoticonoise 2(RGB杂色) chaoticrainbow 2(与上一个同) colorspotlights 2(RGB色散灯光,酷) earthquake 2(地震,酷) electrofield 2(二维彩虹扩散) flitter 2(与程序自带Scatter同) fractalnoise 2(RGB杂色) infinitywarp 2(快速万花筒,酷) infinityzone 2(分形图像,酷) interferix 2(万花筒) interpheron 2(万花筒) lightzoom 2(光线缩放,酷) noiseblender 2(RGB杂色) soapfilm 2(RGB杂色)

spotlights 2(聚灯光,酷) strangenedbulae 2(飞动星云,差,渲染慢) tilos 2(差于程序自带) turbuletflow 2(波动,差于程序自带) videolook 2(模拟电视机像素块,好) warpoid 2(波动) whirlix 2(差于程序自带) woodmaker 2(RGB杂色) DigiEffects berserk: blizzard(雪景,酷) bumpmasker(不可用常死机) contourist(调整色块化,好) crystallizer(晶格化) cyclowarp(水波纹,差于程序自带) edgex(带色阀值

相关主题