概率讲稿-总复习2

概率讲稿-总复习2
概率讲稿-总复习2

总复习题(二)

1. 设),(~p n b X ,问k 取何值时,)(k X P =为最大?

解:)(k X P ==k n k k n p p C --)1(=k n k p p k n k n ---)1()!

(!! )(k X P =)1(-=-k X P =----k n k p p k n k n )1()!(!!11)1()!

1()!1(!+---+--k n k p p k n k n =)1

1()1()!()!1(!1+--------k n p k p p p k n k n k n k ,令上式等于0,得 p n k )1(0+=,当0k k <时↑=)(k X P ,当0k k >时↓=)(k X P ;考虑到k 为正整数,故(1)当p n )1(+为整数时,p n k )1(+=或1)1(-+=p n k

(2)当p n )1(+不为整数时,])1[(p n k

+= 2. 掷一颗匀称的色子n 次,设M 与m 分别表示所得点子的最大值与最小值,求 )5,2(==M m P

解:记η=每次掷色子出现的点数,则

}52{≤≤η=}53{}42{}5,2{≤≤?≤≤?==ηηM m

故有

)52(≤≤ηP =)5,2(==M m P +})53{}42({≤≤?≤≤ηηP

因此

)5,2(==M m P =)52(≤≤ηP })53{}42({≤≤?≤≤-ηηP =n n n )()(2)(626364+-

3. 若η是取正整数值的随机变量,并且在已知m >η的条件下,1+=m η的概率与m 无

关,则η服从几何分布。 证明:由题义可令p m m P =>+=)1(ηη(p 为与m 无关之常数) 即)(),1(m P m m P >>+=ηηη=p m P m P =>+=)

()1(ηη(*) 令)(m P q m >=η,)(m P p m ==η,则11++-=m m m q q p ,进而(*)式化为

p q q q m

m m =-+1,或者

m m q p q )1(1-=+,对任意的m ,而10=q (?)可得

11)1(++-=m m p q ,对任意的m ,因此

m m m q q p m P -===-1)(η=p p m 1)1(--,即为几何分布。证完

4. 在一次核反应中,某个粒子可能分裂为2或3个粒子或不分裂,这三种可能性相应的 概率分别为2p 、3p 和1p ;新粒子的形态是相同的(与老粒子也相同),并且行为彼此独立。求两次反应以后粒子总数的分布。

解:)1(=X P =21p

)2(=X P =21221p p p p +

)3(=X P =313122

312p p p p p p ++ )9(=X P =43

p 5. 正值随机变量X 具有性质

)()(t X P s X t s X P >=>+>,0≥s ,0≥t ,当且仅当它服从指数分布。 证明:依条件概率公式

)(s X t s X P >+>=

)(),(s X P s X t s X P >>+>=)()(s X P t s X P >+>=)(t X P > 记)()(x X P x G >=,则上式改为

)(t s G +=)()(t G s G ,满足此式的函数仅为指数函数

令x a x G =)(,由概率的性质知10<λ,使得

x e x G λ-=)(,因此X 的分布函数为

)(1)()(x X P x X P x F >-=<==)(1x G -=x e λ--1

6. 设电视机的使用年数)10(~e T ,某人买了一台旧电视,求还能使用5年以上的概率;如果电视机的使用年数T 不服从指数分布,设其分布函数为)(x F ,且已知这台电视已经使用了s 年,则应当怎样计算上述概率?

解:(1))5(t T t T

P >+>=)5(>T P =)5(1F -=)1(15.0---e =e

1

(2))5(s T s T P >+>=)()5(s T P s T P >+>=)

(1)5(1s F s F -+- 7. 气体分子在0=t 时与另一分子碰撞后,它的时刻t 以前不与其他分子碰撞,而

在),(t t t ?+这段时间内与其他分子碰撞的概率为)(t o t ?+?λ,求它的自由运行时间(即连续两次碰撞之间的时间)大于t 的概率。

解:设η表示气体分子自由运行时间,令)()(t P t p >=η

dt t dp )(=t t P t t P t ?>-?+>→?)()(lim 0ηη=t

t t t P t ??+<<-→?)(lim 0η =t

t P t t t P t ?>>?+<-→?)()(lim 0ηηη=)(t p λ-,即 dt

t dp )(=)(t p λ-,1)0(=p (?)解此微分方程得 t e t p λ-=)(

8. 公共汽车站每隔5分钟有一辆汽车通过。乘客到达汽车站的任意时刻是等可能的。求乘

客候车时间不超过3分钟的概率。

解:乘客到达汽车站的时刻]5,0[~U ξ

,则P ({候车时间不超过3分钟})=P ({52≤≤ξ}) =6.0515

2=?dx 9. 自动生产线在调整以后出现废品的概率为

p 。生产过程中出现废品时立即重新进行调整。求在两次调整之间生产的合格品数的概率分布。 解:p q k P k ==)(η( ,2,1=k )

10.设X 的分布函数)(x F 是连续函数,则)(X F Y

=]1,0[~U 11.设X 的密度函数

)(x f =??

???≤>+0,00,)1(22x x x π,求X Y ln =的密度。 解:)(y F Y =}{y Y

P <=}{ln y X P <=}{y e X P <,1R y ∈ =?+y

e x dx 02)1(2π=y e arctan 2π

)()(y F y f Y Y '==)

1(22y y

e e +π 12.点随机地落在中心在原点、半径为R 的圆周上,并且对弧长是均匀分布的,求落点的

横坐标的概率密度。

解:θcos R X =,]2,0[~πθU

)(x F X =}{x X P <=}cos {x R P <θ=}{cos R

x P <θ,R x R <<- =}arccos 2{arccos R

x R x P -<<πθ=ππ2arccos 22R x - )()(x F x f X X '==221x R -π,R x <

13.设随机变量X 的概率密度为

???≤≤=其它。,010,)(x Cx x p 求(1)常数C ;(2)X 落在区间 ),(2

121-的概率。 解:(1)由1)(10=?dx x p 得2=C (2))(2121<<-X P =4122

1

=?xdx 14.先抛一枚匀称的色子,然后抛与色子点数相同的硬币。(1)求国徽朝上个数的分布列;

(2)若得到3个国徽朝上,问色子抛出n 点的概率有多大?

解:(1))0(=X

P =62)2

1(61)21(61)21(61+++ )1(=X P =616212)2

1(61)21(61)21(61C C +++ )3(=X P =6

1 )6(=X P =6)21(61 (2)记n A =色子抛出n 点,则

)3(=X A P n =)

3()()3(==X P A P A X P n n =61)(21361n n C =n n C )(213 15.一袋子中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布。

解:}3{=X P =3533C C ,}4{=X P =3523C C ,}5{=X P =35

24C C 16.将一颗色子抛两次,以X 表示两次中得到的小的点数,求X 的分布律。

解:}1{=X P =65651-=36

11 }2{=X P =36

9

}3{=X P =36

7 17.一个房间有3扇同样大小的窗子,其中只有一扇是打开的。房间里有一只鸟,它只能从开着的窗子飞出去。假定鸟没有记忆,它飞向各扇窗子是随机的。

(1) 以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。

(2) 假定鸟有记忆,它飞向同一窗子的尝试不超过一次。以Y 表示它为了飞出房间试飞

的次数,求Y 的分布律。

(3) 求}{Y X P <,}{X Y P <

解:(1)此为几何分布

}{k X P ==)()

(31132-k , ,2,1=k (2)设k A =第k 次飞出窗子。

}1{=Y P =)(1A P =3

1 }2{=Y P =)(21A A P c =)()(121c c A A P A P =

2132=31 }3{=Y P =3

1 (3)}{Y X P <=}2,1{==Y X P +}3,1{==Y X P +}3,2{==Y X P =27

8 }{X Y P <=∑∞===2},1{k k X Y P +∑∞===3},2{k k X Y P +∑∞===4

},3{k k X Y P =

8138 18.一大楼装有5个同类型的供水设备。调查表明在任一时刻t 每个设备被使用的概率为1.0,问在同一时刻

(1) 恰有2个设备被使用的概率是多少?

(2) 至少有3个设备被使用的概率为多少?

(3) 至多有3个设备被使用的概率为多少?

(4) 至少有1个设备被使用的概率为多少?

解:此为二项分布问题。

19.设事件A 在每一次试验中发生的概率为3.0,当A 发生不少于3次时,指示灯发出信号。

(1)进行了5次重复独立试验,求指示灯发出信号的概率。

(2)进行了7次重复独立试验,求指示灯发出信号的概率。

解:(1)P {指示灯发出信号的概率}=}3{≥X P =2335

)7.0()3.0(C +1445)7.0()3.0(C +5)3.0( 20.有甲乙两种味道和颜色都极为相似的酒各4杯,如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。

(1) 某人随机地去猜,问他试验成功一次的的概率是多少?P =481C =70

1 (2) 某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。推断他是猜对的

还是他的确有区分能力。

解:(2)假定他没有区分能力,则他连续试验10次,成功3次的概率为

P =770693701310)()(C 10000

4<,可能性如此小的事件是不太可能发生的,居然发生了,只能表明我们的假设有误。所以他有区分能力。

21.一电话总机每分钟收到呼唤的次数)4(~P η,求

(1)某一分钟恰有8次呼唤的概率;(2)某一分钟的呼唤的次数大于3次的概率。

22.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标。设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比。求X 的分布函数。

解:)(x F =??

???≥<≤

)(x f =?????<>-0

,00,22x x e Ax b x ,其中)2kT m b =,k 为Boltzmann 常数,T 为绝对温度,m 是分子质量。求常数A 。

24.设随机变量)5,0(~U K ,求x 的方程02442=+++K Kx x 有实数根的概率。

25.设顾客在某银行的窗口等待服务的时间X (以分钟计))5(~e ,某顾客在窗口等待服务,若超过10分钟,他就离开。他一个月要去银行5次。Y =一个月内他未等到服务而离开的次数。写出分布律,并求}1{≥Y

P 。 解:记一次等不到服务的概率为p ,则p =)10()(F F -+∞=2-e =

21e }{k Y P ==k k k e

e C --5225)11()1(

,5,4,3,2,1,0=k

概率论基础讲义

概率论基础知识 第一章随机事件及其概率 一随机事件 §1几个概念 1、随机实验:(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。 例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况; E3:观察某电话交换台在某段时间内接到的呼唤次数。 2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B,C…… 例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。 3、 例如,在E1中,6点”的事件便 是不可能事件, 4、基本事件: 例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。 E1中“掷出偶数点”便是复合事件。 5、样本空间: e. 例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。在E2中,用H表示正面,T表示反面,此试验的样本点

有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。 例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。试验中所有样本点构成的集合称为样本空间。记为Ω。 例如, 在E1中,Ω={1,2,3,4,5,6} 在E2中,Ω={(H,H),(H,T),(T,H),(T,T)} 在E3中,Ω={0,1,2,……} 例1,一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种。 此试验样本空间所有样本点的个数为NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京) 若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为 (组合) 例2.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。此试验的样本空间所有样本点的个数为

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

初中数学概率初步讲义

第13讲概率初步 温故知新 轴对称 (一)轴对称的定义 (1)轴对称:如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。 (2)轴对称图形:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 (3)轴对称与轴对称图形的区别:①成轴对称是对于两个图形而言的,指的是两个图形形状和位置关系,而轴对称图形是指一个具有特殊形状的图形。 (二)轴对称的性质 (1)对应点、线段、角的概念:我们把对称轴折叠后能够重合的点叫做对应点,重合的线段叫做对应线段,重合的角叫做对应角。 (2)轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。 (3)画已知图形的轴对称图形:画轴对称图形,首先应该确定对称轴,然后找出对称点。连接这些对称点就可以得到原图形的轴对称图形。 智慧乐园 大家都有过夹娃娃的经历吗?你觉得什么情况下 夹到娃娃的可能性会更大?与小伙伴进行讨论

知识要点一 。 感受可能性 (一)确定事件与不确定事件 1、必然事件:在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件。 2、不可能事件:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。 3、确定事件:必然事件与不可能事件统称为确定事件。 4、不确定事件:有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称随机事件。 5、 ?? ?? ?? ? ? 必然事件 确定事件 事件不可能事件不确定事件 ?典例分析 例1、下列事件不是随机事件的是() A.投两枚骰子,面朝上的点数之积为7 B.连续摸了两次彩票,均中大奖 C.投两枚硬币,朝上的面均为正面D.NBA运动员连续投篮两次均未进 例2、袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样 C.这个球可能是白球D.事先能确定摸到什么颜色的球 例3、“射击运动员射击一次,命中靶心”这个事件是() A.确定事件B.必然事件C.不可能事件D.不确定事件 例4、下列事件属于随机事件的有() ①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰; ②经过城市中某有交通信号灯的路口,遇到红灯; ③今年春节会下雪; ④5,4,9的三根木条组成三角形. A.②B.②④C.②③D.①④

概率统计期末试卷

2008-2009学年第一学期期末试卷-B 卷 概率论与数理统计 课程号: 课序号: 开课学院: 统计学院 1. 设A 、B 是Ω中的随机事件,必有P(A-B)=P(A)-P(B) ( ) 2. 设A 、B 是Ω中的随机事件,则A ∪B=A ∪AB ∪B ( ) 3. 若X 服从二项分布B(n,p), 则EX=p ( ) 4. 样本均值X = n 1∑ =n i i X 1 是总体均值EX 的无偏估计 ( ) 5. X ~N(μ,21σ) , Y ~N(μ,22σ) ,则 X -Y ~N(0,21σ-22σ) ( ) 二、填空题(本题共15分,每小题3分) 1.设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且 ()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________. 2.甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中 各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. 3.设随机变量X 的概率密度为2,01,()0, x x f x <

三、单项选择题(本题共15分,每小题3分) 1.设随机变量X和Y不相关,则下列结论中正确的是 (A)X与Y独立. (B)() D X Y DX DY -=+. (C)() D X Y DX DY -=-. (D)() D XY DXDY =. ()2.设随机变量X的概率密度为 2 (2) 4 (), x f x x + - =-∞<<∞ 且~(0,1) Y aX b N =+,则在下列各组数中应取 (A)1/2, 1. a b ==(B )2, a b == (C)1/2,1 a b ==-. (D )2, a b ==()3.设随机变量X与Y 相互独立,其概率分布分别为 01 0.40.6 X P 01 0.40.6 Y P 则有 (A)()0. P X Y ==(B)()0.5. P X Y == (C)()0.52. P X Y ==(D)() 1. P X Y ==()4.对任意随机变量X,若E X存在,则[()] E E EX等于 (A)0.(B).X(C). E X(D)3 (). E X()5.设 12 ,,, n x x x 为正态总体(,4) Nμ的一个样本,x表示样本均值,则μ的置信度为1α -的置信区间为 (A) /2/2 (x u x u αα -+ (B) 1/2/2 (x u x u αα - -+ (C)(x u x u αα -+ (D) /2/2 (x u x u αα -+() 四、(8分)甲、乙、丙三个炮兵阵地向目标发射的炮弹数之比为1∶7∶2, 而各地每发炮弹命目标的概率分别为0.05、0.1、0.2。求 (1)目标被击毁的概率; (2)若目标已被击毁,问被甲阵地击毁的概率。

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论基础复习资料

概率论基础复习资料 训练题选: 1、设A ,B ,C 为三个事件,则A 、B 、C 至少有一个发生可表示为? 2、设A ,B ,C 为三个事件,则A 、B 、C 都不发生可表示为? 3、设事件A 的概率为31)(= A P ,事件 B 的概率为21)(=B P ,且4 1)(=AB P ,求.)(B A P 4、设41)(=A P ,31)(=A B P ,2 1)(=B A P ,求)(B A P . 5、某人射击三次,以)3,2,1(=n A n 表示事件“第n 次射击时击中目标”,,试用 )3,2,1(=n A n 表示事件“至多击中目标一次”。 6、甲、乙两个班级进行篮球比赛,设事件A=“甲胜”,则事件A 表示什么事件? 7、某人打靶的命中率为0.8,现独立的射击5次,求5次射击中恰有3次命中 的概率。 8、设某盒子中有24个球,现随机抽取一上是红球的概率是25.0,求盒子中红 球的数量。 9、盒中有3红2白共5个球,从中任取2个球,则取到两个同色球的概率是多 少? 10、设在随机试验中事件A 的概率为6 1)(=A P ,求在6次独立重复试验中,事件A 出现的2次的概率 11、设随机变量设)4,1(~N X ,已知设6915.0)5.0(=Φ,计算)21(≤≤X P 12、某篮球运动员投篮命中率为0.8,求其两次投篮没有全中的概率

13、若A 与B 相互独立,4 3)(=A P ,41)(=AB P ,求)(B P 14、在1,2,3,4,5,6,7,8,9,10共十个不同的号码中随机地不放回抽取 一个号码,求第三次抽取时恰好抽到8号球的概率是多少? 15、从1,2,3,4,5中任取3个数字,计算则三个数字中不含1的概率。 16、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个乒乓球,现随机地从 中取出5个球,求取到的五个乒乓球中最大号码为7的概率,最小号码为7的概 率。 17、已知随机变量X 只能取值-1,0,1,2四个数值,其相应的概率为设 c c c c 162,85,43,21,求常数C 18、设随机变量X 服从正态分布,即X ~),(2οu N ,计算?? ? ??≤-0οu X P 13、设随机变量X 服从区间]1,0[上的均匀分布,即X ~]1,0[U ,计算()1≤X P 20、设随机变量X 服从参数为3的泊松分布,即X ~)3(P ,求)2(≤X P 21、设X 服从[]41, 上的均匀分布,求)53(<

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

历年考研数学概率论零基础讲义

2016考研数学概率论零基础入门讲 目录 第一讲随机事件与概率 (1) 第二讲一维随机变量及其概率分布 (7) 第三讲随机变量的数字特征 (12)

【注】(1)数二的考生不需要学习这部分内容。 (2)老师没有完全按照讲义的顺序讲课,而是打乱了顺序,重新整合授课体系,但是老师所讲的内容多数是包含在讲义中的,讲义中没有的内容需要同学们自己做笔记. 第一讲随机事件与概率 一、从古典概型讲起 1.随机试验与随机事件 称一个试验为随机试验,如果满足: (1)同条件下可重复 (2)所有试验结果明确可知且不止一个 (3)试验前不知哪个结果会发生 【注】①在一次试验中可能出现,也可能不出现的结果称为随机事件,简称为事件,并用大写字母A, B, C 等表示,为讨论需要,将每次试验一定发生的事件称为必然事件,记为Ω.每次试验一定不发生的事件称为不可能事件,记为φ. ②随机试验每一最简单、最基本的结果称为基本事件或样本点,记为ωi . 2.古典概率 称随机试验(随机现象)的概率模型为古典概型,如果其基本事件空间(样本空间)满足: (1)只有有限个基本事件(样本点); (2)每个基本事件(样本点)发生的可能性都一样. 【注】①等可能:对于可能结果: ω1,ω2 , ,ωn ,我们找不到任何理由认为其中某一结果ωi 更易发生,则只好(客观)认为所有结果在试验中发生的可能性一样. ②如果古典概型的基本事件总数为n ,事件A 包含k 个基本事件,即有利于A 的基本事件k 个.则A 的概率定义为 P( A) =k = 事件A所含基本事件的个数n 由上式计算的概率称为A 的古典概率. 3.计数方法 基本事件总数 1

概率统计期末试卷 答案

2013年下学期概率统计模拟卷参考答案 1. 设A, B, C 是三个随机事件. 事件:A 不发生, B , C 中至少有一个发生表示为(空1) . 2. 口袋中有3个黑球、2个红球, 从中任取一个, 放回后再放入同颜色的球1个. 设B i ={第i 次取到黑球},i =1,2,3,4. 则1234()P B B B B =(空2) . 解 用乘法公式得到 )|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P = .32a r b a r a r b r a r b a b r b b +++?++?+++?+= =3/70 3. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927 . 则每次试验成 功的概率为(空3) .. 解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是27 19,那么一次都没有成功的概率是278. 即278)1(3 = -p , 故 p =3 1 . 4. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 2 2 ()()2E X E Y ==, 则2 [()]E X Y +=(空4) . 解 2 2 2 [()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++ 42420.52 6.XY ρ=+=+??= 5. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||}P X E X -()≥3=(空5) . 解 由切比雪夫不等式, 对于任意的正数ε, 有 2() {()}D X P X E X εε -≥≤, 所以 2 {||}9 P X E X -()≥3≤ . 6. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X 的样本, 2 12()k X X -为2σ的无 偏估计. 则常数k =(空6) . 解 由于2 2 2 121122[()][(2)]E k X X kE X X X X -=-+ 22211222[()2()()]2k E X E X X E X k σσ=-+==, 所以k = 1 2 为2σ的无偏估计. 1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) P (A )=0或P (B )=0.. (D) 以上答案都不对.

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

2021年《概率论与数理统计》考研复习笔记与辅导讲义

2021年《概率论与数理统计》考研复习笔记与辅导 讲义 第1章随机事件和概率 一、考研辅导讲义 1.随机现象与样本空间 (1)随机现象 在一定的条件下,并不总是出现相同结果的现象称为随机现象. (2)样本空间 随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点. (3)随机事件 样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注: ①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件. ②随机事件既然由样本点组成,因此,随机事件是由基本事件组成. ③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生. ④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件. ⑤把不包含任何样本点的空集看成一个事件,称为不可能事件. (4)随机变量

表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系 (1)包含关系 如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或. (2)事件相等 若与同时成立,则称事件A与事件B相等,记作A=B. (3)互斥事件(互不相容事件) 若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点. 注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形: ①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容. ②如果可数无穷多个事件…中任意两个事件均互斥,即 ,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容. 【例】对任意两个互不相容的事件A与B,必有(). A.如果P(A)=0,则P(B)=0 B.如果P(A)=0,则P(B)=1 C.如果P(A)=1,则P(B)=0 D.如果P(A)=1,则P(B)=1 【答案】C查看答案

相关文档
最新文档