微孔雾化片单片机自动调整中心频率原理图和软件

微孔雾化片单片机自动调整中心频率原理图和软件
微孔雾化片单片机自动调整中心频率原理图和软件

/****************扫频函数*************

FileName:Frepuecy_Sweep.c

ProjectName:

FunctionDesc:

CreateDate:

Version:

Author:

ModifyHistory:

Remark:

5ms执行一次

*****************包含头文件**********************/

#include "Stdint_Sonix.h"

#include "SysInit.h"

#include "Frequency_Sweep.h"

#include "adc.h"

/*****************定义全局变量*******************/

/*****************声明全局变量*******************/

extern bit B_Moistrue;

extern u8 r_adc1,r_adc2,r_adc3;

bit B_SF_OK;//是否已经扫过频标志

/*******************定义常量*********************/

#define PWM1_DUTY_MIN 3u

#define PWM1_DUTY_MAX 253u

#define PWM1_CURRENT_MIN 10u

//#define M1_Stop_500ms_Set_Value 100u

/*****************IO口重定义*********************/

/*******************函数定义*********************/

/*******************Frepuecy_Sweep function******/

//扫频思路:求取AD值最大的5的占空比的值取最小值做为中心频率可抗四次大的干扰void Frequency_Sweep(void)

{

static uint8_t PWM1_Duty,Temp1,Temp2,Temp3;

static uint8_t PWM1_Duty_OK;

if(B_Moistrue)

{

if(B_SF_OK == 0) //扫频位完成

{

if (PWM1_Duty < PWM1_DUTY_MAX) //加暂空比

{

PWM1_Duty++;

PWM1_Duty_Update(PWM1_Duty);

Temp3 = Temp2;

Temp2 = Temp1;

if(r_adc1 < r_adc2)

{

Temp1 = r_adc1;

r_adc1 = r_adc2;

r_adc2 = Temp1;

}

if(r_adc2 < r_adc3)

{

Temp1 = r_adc2;

r_adc2 = r_adc3;

r_adc3 = Temp1;

}

if(r_adc1 < r_adc2)

{

Temp1 = r_adc1;

r_adc1 = r_adc2;

r_adc2 = Temp1; //三个数排大小,r_adc2为中间值

}

Temp1 = r_adc2;

if(Temp3 >= Temp2)

{

if(Temp2 >= Temp1) //连续递减

{

if(Temp1 < Temp3) // 并且第1次比第3次大

{

if( Temp1 >= PWM1_CURRENT_MIN ) //并且都有一定电流

{

PWM1_Duty_OK = (PWM1_Duty-2);

B_SF_OK = 1;

}

}

}

}

}

else

{

if(B_SF_OK == 0) //没扫到重来

{

PWM1_Duty = 3;

}

}

}

else

{

static uint8_t Tempa;

Tempa++;

if(Tempa == 1) PWM1_Duty_Update(PWM1_Duty_OK+1);

else if(Tempa == 2) PWM1_Duty_Update(PWM1_Duty_OK+2);

else

{

Tempa = 0;

PWM1_Duty_Update(PWM1_Duty_OK);

}

}

}

else

{

B_SF_OK = 0;

PWM1_Duty_OK = PWM1_DUTY_MIN;

PWM1_Duty_Update(PWM1_DUTY_MIN);

PWM1_Duty = PWM1_DUTY_MIN;

Temp1 = 0;

Temp2 = 0;

Temp3 = 0;

}

}

单片机简易频率计课程设计

前言 (3) 一、总体设计 (4) 二、硬件设计 (6) AT89C51单片机及其引脚说明: (6) 显示原理 (8) 技术参数 (10) 电参数表 (10) 时序特性表 (11) 模块引脚功能表 (12) 三、软件设计 (12) 四、调试说明 (15) 五、使用说明 (17) 结论 (17) 参考文献 (18)

附录 (19) Ⅰ、系统电路图 (19) Ⅱ、程序清单 (20)

前言 单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用在生活中至关重要。 随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小.考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。

一、总体设计 用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量. 所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x。时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s.闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。由于计数器计得的脉冲数N是在1秒时间内的累计数,所以被测频率fx=NHz。 本系统采用测量频率法,可将频率脉冲直接连接到AT89C51的T0端,将T/C1用做定时器。T/C0用做计数器。在T/C1定时的时间里,对频率脉冲进行计数。在1S定时内所计脉冲数即是该脉冲的频率。见图1: 图1测量时序图 由于T0并不与T1同步,并且有可能造成脉冲丢失,所以对计数器T0做一定的延时,以矫正误差。具体延时时间根据具体实验确定。 根据频率的定义,频率是单位时间内信号波的个数,因此采用上述各种方案

4--单片机最小系统的原理图绘制

教 学环节教学容与过程 师 生 活 动 教学 方法 设计 意图 复习引入 新课教学 第一课时 一、项目描述: 通过单片机最小系统的原理图设计,对Protel DXP 2004 绘制原理图的过程有进一步的了解,掌握总线与总线入口的绘 制方法,网络标号的正确使用,原理图的报表生成、网络表、 元件库的生成。 过程: 1、新建项目:新建一个PCB项目,命名为“单片机 最小系统.PrjPCB”并保存,在项目中新建一个原 理图文件“87cs20.SchDoc”。 2、设置图纸参数:执行【设计】【文档选项】进行设 置。 3、放置元器件 4、绘制导线 教 师 指 导 学 生 上 机 操 作 练 习 项目 教学 法 任务 驱动 教学 法 让学 生学 会单 片机 最小 系统 的原 理图 设计

新课教学二、总线与总线入口的绘制方法 1、绘制总线:执行【放置】【总线】命令,按【TAB】键修改 总线属性。 2、绘制总线入口 3、放置网络标号 网络标号具有电气特性。 教 师 指 导 学 生 练 习 学会 总线 的绘 制方 法

三、放置忽略ERC检查标记 四、生成原理图报表(元件采购清单) 本软件可以提供采购清单,避免出错。 执行【报告】【bills of materials】菜单命令,打开项目元件列表对话框。 五、原理图的网络表 网络表是原理图与印制板电路的桥梁。 生成网络表的方法:执行【设计】【设计项目的网络表】【Protel】命令,系统自动生成网络表文件,后缀名为.NET。 网络表每一个[…]表示一个元件和它的主要参数,每一个学会生成原理图的各种文件如网络表等

总结 作业(…)表示一个网络,其中显示的是元件的引脚编号,同一个(…)中的引脚在电气意义上是相连的,此信息对PCB制版至关重要。 六、项目元件库的 生成 执行【设计】【建立设 计项目库】菜单命令, 生成一个与项目 同名的元件库。

基于单片机的数字频率计设计

江阴职业技术学院 毕业论文 课题:基于单片机的数字频率计的设计 专业电子信息工程 学生姓名冯海洋 班级08电子信息工程(1)班 学号20080305107 指导教师张文洁 完成日期

目录 摘要?错误!未定义书签。 前言................................................................................................... 错误!未定义书签。第一章绪论............................................................................................... 错误!未定义书签。 1.1课题背景?错误!未定义书签。 1.2 课题研究的目的和意义 ................................................................. 错误!未定义书签。 1.4数字频率计设计的任务与要求?错误!未定义书签。 第二章数字频率计总体方案设计............................................................... 错误!未定义书签。 1.1方案比较 .......................................................................................... 错误!未定义书签。 1.2方案论证......................................................................................... 错误!未定义书签。 1.3方案选择......................................................................................... 错误!未定义书签。 第三章数字频率计的硬件系统设计........................................................... 错误!未定义书签。 3.1数字频率计的硬件系统框架...................................................... 错误!未定义书签。 3.2 数字频率计的主机电路设计?错误!未定义书签。 3.3数字频率计的信号输入电路设计................................................... 错误!未定义书签。 3.4数字频率计显示电路的设计 ........................................................... 错误!未定义书签。 3.5数字频率计的计数电路的设计?错误!未定义书签。 3.6数字频率计电源模块的设计?错误!未定义书签。 第四章数字频率计软件系统设计?错误!未定义书签。 4.1 软件设计规划................................................................................. 错误!未定义书签。 4.1.1信号处理............................................................................ 错误!未定义书签。 4.1.2中断控制................................................................................. 错误!未定义书签。 4.2.1定时器/计数器?错误!未定义书签。 4.2.2定时工作方式0..................................................................... 错误!未定义书签。 4.3程序流程图设计................................................................................ 错误!未定义书签。

压缩式雾化器的设计

压缩式雾化器的设计 摘要:文章设计了一款可便携、易用、产品可亲近性更强的空气压缩式雾化器,以促进其在医疗行业及家庭保健行业中的应用。 关键词:压缩;雾化器;结构设计 1压缩式雾化器的设计 气体压缩式雾化器其组成主要有:空气压缩机1台、面罩1个、咬嘴1个、导气管1根、雾化杯1个。其中空气压缩机和雾化杯是压缩式雾化器的关键组成部分。 1.1空气压缩泵的选用 选择风冷全无油V型二级活塞式空气压缩泵。高效无油活塞式压缩机,雾化时不需冷却水、日常免维护、操作更简单方便。单级活塞式压缩泵由电动机直接驱动压缩泵,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由于气缸内压力的变化,通过进气阀使空气经过空气滤清器(采用消毒棉网)进入气缸,在压缩行程中,由于气缸容积的缩小,压缩空气经过排气阀的作用,经排气管,单向阀进入储气罐。 1.2雾化杯的设计 ①雾化杯体的设计。雾化杯体是药物雾化的关键位置,本设计中选择内部雾化形式的喷嘴,使雾化颗粒能够更细,使药物吸收率更高。高16 cm直径为9 cm的雾化杯主要部分就是内部的喷嘴结构,杯体低端是和导管直接相连的直径为1 cm高为7.5 cm的通孔。通孔上方有如A区域的雾化区域,药液从杯体底部喷嘴周围设置的两个直径为1.5 cm的小孔流高压气流处雾化,雾化的药物从顶部直径为0.9 cm的孔径分散至雾化杯上方的挡板处。杯体上部设有和咬嘴相连的直径为3 cm的出口。 ②雾化杯盖和伞帽的设计。由设计出的雾化杯体结构可知,雾化杯所能盛放的药液最大高度不能超过杯底部7.5 cm高的通孔,否则药液就会直接从通孔流至杯底部。雾化杯上方的空间不必太大,雾化杯盖可相对设计大些,杯盖在杯体内部的结构在一定程度上还能起到和伞帽相似的作用。此外,由于雾化杯内部的喷嘴上方需要设置伞帽来挡住大的颗粒,伞帽的固定就要靠杯盖来完成。由此,可以设计出杯盖的外形。其尺寸和外形由图片可以清楚地展现出来。伞帽即装在杯盖的底部,伞帽为橡胶材质所制,有较大的韧性。靠其自身的弹性和杯盖底部紧密结合。其结构和尺寸设计都非常简单。 ③雾化杯咬嘴的设计。咬嘴的主要作用就是能够直接由和雾化杯相连,将雾

基于5单片机的数字频率计设计

基于5单片机的数字频率计设计

毕业论文基于51单片机的数字频率计 基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概 述…………………………………………… (2) 1.2频率测量仪的设计思路与频率的计 算…………………………………………… (2) 1.3基本设计原 理…………………………………………… (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明…………………………………………………

(5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示…………………………………………………

(12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15) 基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量范围从1Hz—10kHz的正弦波、方波、三角波,时基

医用雾化器产品的主要技术指标.

医用雾化器产品的主要技术指标 给出医用雾化器需要考虑的基本技术性能指标,制造商可参考相应的行业标准,根据自身产品的技术特点制定相应的性能指标。如行业标准中有不适用条款,企业在标准的编制说明中必须说明理由。鉴于目前压缩式雾化器没有相应的行业标准,故推荐审评人员参考下面的相关技术指标。 1.超声雾化器主要技术性能要求一般应包括以下内容: (1超声振荡频率:雾化器超声工作频率与标称频率的偏差:≤±10%。 (2最大雾化率:雾化器的最大雾化率必须不小于其企业标准、使用说明书(或铭牌上的规定。(奥咨达医疗器械咨询 (3雾化器水槽内温度:雾化器水糟内水温≤60℃。 (4整机噪声试验:雾化器正常工作时的整机噪声:≤50dB(A计权。 (5雾化量调节性:雾化器的雾化率宜能调节。 (6低水位提示装置:雾化器宜具备低水位提示或停机装置。 (7风量调节装置:雾化器宜在适当部位安装风量调节装置。 (8定时误差:雾化器宜有定时控制装置,其控制时间与标称时间的偏差不大于10%。 (9连续工作时间:雾化器在常温下,采用交流电源供电时,连续工作4小时以上,仪器应能正常工作;如采用直流电源供电时,连续工作1小时以上,产品标准规定的时间雾化器应能正常工作。如制造商在产品标准中规定了连续工作时间,则依据产品标准规定。 (10外观与结构:雾化器外观应整洁,色泽均匀,无伤痕、划痕、裂纹等缺陷。面板上的文字和标志应清晰可见;雾化器塑料件应无气泡、起泡、开裂、变形以及灌

注物溢出现象;雾化器的控制和调节机构应安装牢固、可靠,紧固部位应无松动;雾化器的水槽、管道应无泄漏。 (11环境试验:应根据产品特点,在企业标准中按GB/T14710规定气候环境和机械环境试验的组别,并在随机文件中说明。试验时间、恢复时间及检测项目按表1的补充规定执行。(只专注于医疗器械领域 (12吸嘴、吸入面罩:若吸嘴或吸入面罩具有医疗器械注册证,应验证相关注册证件;若吸嘴或吸入面罩不具有医疗器械注册证,制造商应公布吸嘴、吸入面罩材料的具体成分或者提供其材质的相关证明,依据GB/T16886.1标准对其进行细胞毒性、刺激性、致敏的评价,并要求其微生物指标应符合 GB15980标准的要求。 (13等效体积粒径分布:与实际颗粒具有相同体积的同物质的球形颗粒的直径叫做等效体积粒径。按照激光散射法或EN13544-1规定的瀑布撞击法检测,等效体积粒径分布应符合制造商的规定。 (14安全性能要求:应符合GB 9706.1、YY0505的全部要求。 2. 医用压缩式雾化器主要技术要求一般应包括以下内容: (1气体流量:气体流量的数值应符合制造商规定。 (2压力范围:正常状态压力:正常工作条件下,本体所产生的压力应该在制造商规定的范围以内(如60kPa~130kPa。异常状态压力:当本体发生异常情况,本体所产生的最大压力应该在制造商规定的范围以内(如150kPa~400kPa且不发生管体破裂现象。 (3喷雾速率:应符合制造商的规定。 (4残液量:应符合制造商的规定。 (5整机噪音试验:吸入器正常工作时的整机噪音应符合制造商规定的噪声要求。

51单片机最小系统电路介绍

51单片机最小系统电路介绍 单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。 单片机最小系统晶振Y1也可以采用6MHz或者,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好 口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。其他接口内部有上拉电阻,作为输出口时不需外加上拉电阻。 设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N乘以机器周期Tcy就是定时时间t。 " 设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。 标识符号地址寄存器名称 P3 0B0H I/O口3寄存器 PCON 87H 电源控制及波特率选择寄存器 SCON 98H 串行口控制寄存器 SBUF 99H 串行数据缓冲寄存器 TCON 88H 定时控制寄存器 TMOD 89H 定时器方式选择寄存器 TL0 8AH 定时器0低8位 - TH0 8CH 定时器0高8位 TL1 8BH 定时器1低8位 TH1 8DH 定时器1高8位

基于AT89C52单片机的简易频率计设计说明书

单片机系统开发与应用工程实习报告 选题名称:基于AT89C52单片机的简易频率计设计 系(院): 专业:计) 班级: 姓名:学号: 指导教师: 学年学期: 2009 ~ 2010 学年第 2 学期 2010 年 5 月 30 日

摘要: 在电子技术中,频率是一个经常用到的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。本项目主要阐述了以AT89C52单片机作为核心器件,采用模块化布局,设计一个简易数字频率计,以达到测量频率并进行显示的目的。本项目利用单片机的内部定时器溢出产生中断来实现定时,把单片机内部的定时/计数器0作为定时器,实现2.5ms定时。外部待测脉冲从单片机的TI(第15引脚)输入,以定时/计数器1作为计数器,利用中断方式来达到间接测量的目的。最后采用四位数码管显示。本设计采用C语言进行软件编程,用keil软件进行调试。最后把调试成功后的程序固化到AT89C52单片机中,接到预先焊好的电路板上,接上待测脉冲,通电运行,数码管成功显示待测脉冲频率。 关键词:单片机;频率计;AT89C52

目录 1 项目综述 (1) 1.1 设计要求 (1) 1.2 系统设计 (1) 2硬件设计 (2) 2.1 电路原理图 (2) 2.2 元件清单 (2) 2.3 主要芯片引脚说明 (3) 3 软件设计 (4) 3.1 程序流程图 (4) 3.2 软件设计简述 (5) 3.3 程序清单 (6) 4 系统仿真及调试 (10) 4.1 硬件调试 (10) 4.2 软件调试 (10) 5 结果分析 (10) 总结 (11) 参考文献 (12)

单片机最小系统原理图

单片机最小系统 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的 系统. 对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路. 下面给出一个51单片机的最小系统电路图. 说明

复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让R C组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍. 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 单片机:一片AT89S51/52或其他51系列兼容单片机 特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的. 复位电路: 一、复位电路的用途 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 单片机复位电路如下图:

二、复位电路的工作原理 在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢? 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充

φ20mm-1.7M雾化片规格书

PRODUCT: PIEZOELECTRIC CERAMICS TRANSDUCER M O D E L : 压电陶瓷雾化换能片 Φ20MM 1.7MHz CASE

1. 型号命名方法 (1) (2) ( 3) ( 4) ( 5) (6) (1) 主称:压电陶瓷超声雾化换能片 (2) 外形尺寸:圆形---φ(mm ) 矩形---长度(mm ) (3) 电极材料:G --- 不锈钢 N --- 镍 Ag --- 银 BL—玻璃釉 (4) 工作频率:(MHz ) (5) 换能片形状:A --- 圆形 E --- 矩形 (6) 序列号:1、2、3… 2.测试电路 3.技术指标(型号)(工作水质:自来水/饮用水) 项目 Item 单位 Unit 标准 Standard 测试条件(Test condition): T=25±5℃ 谐振频率 Thick resonant frequency MHZ 1.7±0.15 恒压法(见以上测试线路) 检验标准:全检 谐振阻抗 Resonant impedance ? ≤1.5 恒压法(见以上测试线路) 检验标准:全检 静电容量 PF 1600±20% 数字电桥At 1KHZ/1V XYD 20 N 1.7 A 1  XYD20N1.7A

注:可根据用户要求生产起它特殊规格的产品。 4. 试验方法 4.1 谐振频率及谐振阻抗的测试:测试夹具短路时调节信号发生器输出电压, 使毫伏表指示值为50mV,接上雾化片,调节信号发生器的频率,使毫伏表指示最大,这时的频率为谐振频率;谐振阻抗按R=19.3(50/E0-1)(?)计算。 4.2 静电容量的测试:在频率为1KHz,电压小于1V的信号下测试。 4.3 寿命试验:将产品装上雾化器,将激励电压调至24V,使雾化器正常工作并计时或采用美国军方测试压电陶瓷寿命的计算公式来测试。 5.注意事项 a. 雾化片的浸水面为零电位,电极与液体不能有电位差。 b. A型不能在无水状态下使用。 c. E型需复合金属网片,通过多孔管将液体吸到网片上雾化。该产品雾滴小、不下沉,适合车用、

医用雾化器注册技术审查指导原则(2016年修订版)

附件11 医用雾化器注册技术审查指导原则 (2016年修订版) 本指导原则旨在指导注册申请人对医用雾化器注册申报资料的准备及撰写,同时也为技术审评部门审评注册申报资料提供参考。 本指导原则是对医用雾化器的一般要求,申请人应依据产品的具体特性确定其中容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的容进行充实和细化。 本指导原则是供申请人和审查人员使用的指导文件,不涉及注册审批等行政事项,亦不作为法规强制执行,如有能够满足法规要求的其他方法,也可以采用,但应提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规、标准体系及当前认知水平下制定的,随着法规、标准体系的不断完善和科学技术的不断发展,本指导原则相关容也将适时进行调整。 一、适用围 本指导原则适用于第二类医用雾化器产品(或称雾化器)。该产品以超声振荡或气体压缩机驱动的方式将药物雾化供患者吸入。 本指导原则所称的医用雾化器属于《医疗器械分类目录》中

6823-6超声雾化器,以及《关于冷热双控消融针等166个产品医疗器械分类界定的通知》(国食药监械〔2011〕231号)文中二(六十三)规定的压缩式雾化器,管理类别代号为6821。 本指导原则不适用于网式雾化器和采用外接气源的方式将药物雾化的器具(如由医院中心供气系统或其他的经过压缩的氧气或医用气体作为气源的药物雾化器具),但可以参考本指导原则对这些产品进行技术审查。 二、技术审查要点 (一)产品名称要求 产品的名称应为通用名称,并符合《医疗器械命名规则》、《医疗器械分类目录》、标准等相关法规、规性文件的要求。产品名称可主要依据雾化的原理及方式来命名,如:“医用超声雾化器”或者“医用压缩式雾化器”。 (二)产品的结构和组成 产品的结构和组成应首先说明产品的主要部件,如有必要再对主要部件的组成进行说明。 医用超声雾化器一般主要由主机、雾化杯、送雾管、吸嘴或吸入面罩组成,其中的主机可由超声波发生器(超声换能器)、超声薄膜、送风装置、调节和控制系统组成。医用超声雾化器产品实例如图1所示。 图1 医用超声雾化器产品实例

基于单片机的频率计的设计

摘要 本方案主要以单片机为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分,设计以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测的正弦波或者三角波整形为方波。利用单片机的计数器和定时器的功能对被测信号进行计数。编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。 本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED数码显示管将所测频率显示出来。系统简单可靠、操作简易,能基本满足一般情况下的需要。既保证了系统的测频精度,又使系统具有较好的实时性。本频率计设计简洁,便于携带,扩展能力强,适用范围广。 关键词:单片机,运算,频率计,LED数码管

Abstract The program mainly microcontroller as the core, are divided into time-base circuit, the logic control circuit, amplifier shaping circuit, the gate circuit, the counting circuit, latch circuit, decoding circuit most of the seven shows, design a microcontroller as the core, the measured signal the first amplifier to amplify the incoming signal, and then was sent to the waveform shaping circuit surgery, the measured sine wave or triangle wave shaping as a square wave. Counter and timer microchip features of the signal count. Write the corresponding program can automatically adjust the measurement range of SCM, and the frequency of the measured data to the display circuit displays. The design of the 89C51 microcontroller core, microcontroller applications and control functions and arithmetic operations with LED digital display tube to the measured frequency is displayed. System is simple, reliable, easy to operate and can basically meet the general needs. Both to ensure the accuracy of the system frequency measurement, but also the system has good real-time. The frequency meter design is simple and easy to carry, expansion capability, wide application. Key words:microcontroller, operation, frequency meter, LED digital tube

雾化器注册指导原则

附件3: 医用雾化器产品注册技术审查指导原则 本指导原则旨在指导和规范医用雾化器产品的技术审评工作,帮助审评人员理解和掌握该类产品原理/机理、结构、性能、预期用途等内容,把握技术审评工作基本要求和尺度,对产品安全性、有效性作出系统评价。 本指导原则所确定的核心内容是在目前的科技认识水平和现有产品技术基础上形成的,因此,审评人员应注意其适宜性,密切关注适用标准及相关技术的最新进展,考虑产品的更新和变化。 本指导原则不作为法规强制执行,不包括行政审批要求。但是,审评人员需密切关注相关法规的变化,以确认申报产品是否符合法规要求。 一、适用范围 本指导原则适用于第二类医用雾化器产品(或称雾化器)。该产品以超声振荡或气体压缩机驱动的方式将药物雾化供患者吸入。 本指导原则所称的医用雾化器属于《医疗器械分类目录》中6823-6超声雾化器,以及《关于冷热双控消融针等166个产品医疗器械分类界定的通知》(国食药监械[2011]231号)文中二(六十三)规定的压缩式雾化器,类代号6821。 本指导原则不适用于以其他原理将药物雾化的器具,如网式雾化器;也不适用于采用无源的方式将药物雾化的器具,如由医院中心供气系统或钢瓶提供的经过压缩的氧气或医用气体作为气源的药物雾化器具。 二、技术审查要点

(一)产品名称 在《医疗器械命名规则》发布实施之前,产品的名称应以发布的国家标准、行业标准以及《医疗器械产品分类目录》中的产品名称为依据。没有国家标准、行业标准以及《医疗器械产品分类目录》中无相应产品名称的产品,其命名也应以体现产品技术结构特征、功能属性为基本原则。 产品名称可主要依据雾化的原理及方式来命名,如:“医用超声雾化器”或者“医用压缩式雾化器”。 (二)产品的结构和组成 产品的结构和组成应首先说明产品的主要部件,如有必要再对主要部件的组成进行说明。 医用超声雾化器一般主要由主机、雾化杯、送雾管、吸嘴或吸入面罩组成,其中的主机可由超声波发生器(超声换能器)、透声薄膜、送风装臵、调节和控制系统组成。医用超声雾化器产品实例如图1所示。 医用压缩式雾化器一般主要由主机、送气管、雾化装臵、吸嘴或吸入面罩组成,其中主机主要由压缩泵、过滤组件和控制系统组成。医用压缩雾化器产品实例如图2所示。 图1 医用超声雾化器产品实例

单片机最小系统电路图

单片机最小系统电路图

————————————————————————————————作者:————————————————————————————————日期: 2

单片机基础实践 D0D1D2D3D4D5D6D7EA ALE PSEN P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78RST 9P3.0(RXD)10P3.1(TXD)11P3.2(INT0)12P3.3(INT1)13P3.4(T0)14P3.5(T1)15P3.6(WR)16P3.7(RD)17XTAL218XTAL119GND 20 P2.0 21 P2.122P2.223P2.324P2.425P2.526P2.627P2.728PSEN 29ALE 30EA 31P0.732P0.633P0.534P0.435P0.336P0.237P0.138P0.039Vcc 40U1 STC89C52 P10P11P12P13P14P15P16P17P20 P21P22P23P24P25P26P27P30P31P32P33P34P35P36P37X2X1 RST Vcc 图1 单片机STC89C52电路图

4 3 2 Vcc R11k D LED 4 3 123456789J1 CON9 D0D1D2D3D4D5D6D7 Vcc 5 43+ C8 1 234 B1 R2 Vcc RST 图2 电源指示灯 图3 单片机P0口上拉电阻 图4 复位电路 Y C1 C2 X1 X2 2 1 D 123 4 56K1 1234USB USB VCC 图5 晶振电路 图6 USB 供电电路

Q_NLD-002-2018一次性使用气流雾化器

NLD/Q Q/SND002—2018 石家庄诺利达医疗器械有限公司企业标准 NLD/Q-002-2018一次性使用气流雾化器 2018-03–05发布2018–03–10实施石家庄诺利达医疗器械有限公司发布

前言 本标准由石家庄诺利达医疗器械有限公司提出并起草。 本标准于2017年9月28日发布,主要起草人于存涛,审核甄君艳,审批任双军。 本标准于2018年3月5日进行了第一次修订,修订人于存涛,审核甄君艳,审批任双军。

一次性使用气流雾化器 1.产品组成及其型号/规格 1.1规格型号 Ⅰ-K、Ⅰ-CM、Ⅰ-EM、Ⅱ-K、Ⅱ-CM、Ⅱ-EM 1.2组成 由输气导管、喷雾瓶、口含吸咀/面罩(带绑带)、过滤器组成; Ⅰ-CM、Ⅰ-EM型由输气导管、喷雾瓶; Ⅱ-K型由输气导管、喷雾瓶、口含吸咀、过滤器组成; Ⅱ-CM、Ⅱ-EM型由输气导管、喷雾瓶、面罩(带绑带)、组成 2.性能指标 2.1外观 a.面罩型:面罩表面应手感光滑,无异常气味、气泡、飞边、黑点、缩痕等缺陷。面罩孔畅通光滑,无毛刺。 b.口含吸咀:口含吸咀表面应光滑,无异常气味、气泡、黑点,口含吸咀孔畅通光滑,无毛刺。 c.输气管管体应手感柔软,富有弹性,表面应平滑整洁,无凹陷、气泡、污渍、异物及明显扭曲、扁瘪现象。 2.2尺寸 尺寸应符合下表要求。 表1 规格型号面罩儿童型面罩成人型 压扁两端点长度9.00±0.50cm13.00±0.50cm 尺寸 孔径 2.10±0.10cm 2.10±0.10cm

产品示意图 2.3物理性能 2.3.1畅通性 面罩气体传输孔应畅通。 2.3.2连接牢固性 面罩气体通道各组件间的连接应牢固,并能承受20N的静拉力,持续15s卸荷后,各连接处应不松动。 2.3.3密封性 面罩气路接口连接处应密封,应无气体泄漏现象。 2.3.4雾化量 气源流量为6L/min时雾化量应不小于0.25mL/min。 2.3.5滤除率(Ⅱ型) 对0.5um以上的微粒滤除率不低于90%。 2.4面罩型化学性能 2.4.1酸碱度 检验液与空白液对比,pH值之差≤1.0。 2.4.2还原物质 20ml检验液与同批空白对照液所消耗的高锰酸钾溶液[c(KMnO4=0.002mol/L)]的体积之差≤1.5ml。 2.4.3不挥发物

51单片机_最小系统免费下载

单片机是一门实践性较强的技术,很多初学者在学习单片机技术开发的时候往往一头雾水,不知何从下手。为此,笔者结合自己使用单片机多年的经验,特意设计了单片机开发所需的Study-c 整机和硬件套件,并结合套件精心编写了单片机从入门到精通系列教程。通过讲述单片机原理、电路设计、应用开发软件工具、编写实验实例让读者全面接触单片机技术。教程编排上由浅入深,循序渐进,内容力求完整、实用、趣味并存,使读者在轻松愉快的学习过程中逐步提高单片机软硬件综合设计水平。 一、内容提要 本讲主要向大家介绍51 系列单片机的最小系统的实现并通过编写程序来实现对单片机IO 口的输出控制。以点亮外部连接的LED(发光二极管)为例,简要的介绍单片机的原理、最小系统的组成,并通过简单的C51 程序设计来讲述编译软件Keil的使用并下载Hex 文件烧写单片机。 二、原理简介 在了解原理之前,首先让我们思考一个问题,什么是单片机,单片机有什么用?这是一个有意思的问题,因为任何人都不能给出一个被大家都认可的概念,那到底什么是单片机呢?普遍来说,单片机又称单片微控制器,是在一块芯片中集成了CPU(中央处理器)、RAM(数据存储器)、ROM(程序存储器)、定时器/ 计数器和多种功能的I/O(输入/ 输出)接口等一台计算机所需要的基本功能部件,从而可以完成复杂的运算、逻辑控制、通信等功能。在这里,我们没必要去找到明确的概念来解析什么是单片机,特别在使用C 语言编写程序的时,不用太多的去了解单片机的内部结构以及运行原理等。从应用的角度来说,通过从简单的程序入手,慢慢的熟悉然后逐步深入精通单片机。 在简单了解了什么是单片机之后,然后我们来构建单片机的最小系统,单片机的最小系统就是让单片机能正常工作并发挥其功能时所必须的组成部分,也可理解为是用最少的元件组成的单片机可以工作的系统。对51 系列单片机来说,最小系统一般应该包括:单片机、时钟电路、复位电路、输入/ 输出设备等(见图1)。 图1 单片机最小系统框图 三、电路详解 依据上文的内容,设计51 系列单片机最小系统见图2。

基于单片机的频率计设计学习资料

基于单片机的频率计 设计

基于单片机的频率计设计 摘要:数字频率计是现代科研生产中不可或缺的测量仪 器,它以十进制数显示被测频率,基本功能是测量正弦信号,方波信号,及其它各种单位时间内变化的物理量。 本系统采用AT89C52单片机智能控制,结合外围电子电 路,设计的频率计性能稳定。在软件设计上采用了单片机 的C语言设计,通过单片机内部定时/计数器同时动作,在 测量频率时将测频率和测周期相结合,提高了频率计的测量 准确性。测量结果在LCD1602上输出显示,结果精 确到整数位。频率计的软件设计,系统软件设计简单明了, 适用于测量频率从1~99999Hz的脉冲信号。 关键词: AT89C52单片机数字频率计 74LS74 NE555 LCD1602 一、引言 1.1 数字频率计的发展和意义 随着电子技术的飞速发展,各类分立电子元件及其所构 成的相关功能单元已逐步被功能更强大、性能更稳定、使 用更方便的集成芯片所取代。由集成芯片和一些外围电路 构成的各种自动控制、自动测量自动显示电路遍及各种电

子产品和设备已广泛应用于各个领域,更新换代速度可谓日新月异。 在电子系统广泛的应用领域中,到处看见处理离散信息的数字电路。供消费用的冰箱、电视、航空通讯系统等设计过程中都用到数字技术。数字频率计是现代通信测量设备系统中不可缺少的测量仪器,不但要求电路产生频率准确的和稳定度高的信号,而且能方便的改变频率。 与传统的测量方式相比,运用了单片机频率计有着体积更小,运算速度更快,测量范围更宽和制作成本更低的优点。由于传统的频率计中有许多功能是依靠硬件来实现的,而采用单片机测频率后,有许多以前需要用硬件才能实现的功能现在仅仅依靠软件编程来实现,而且不同的软件编程代码能够实现不同的功能,从而大大降低了制作成本。 数字频率计主要实现方法有直接式、锁相式、直接数字式和混合式四种。直接式的优点是速度快、相位噪声低,但结构复杂、杂散多,一般只用于地面雷达中。锁相式和直接数字式都同时具有容易实现产品系列化、小型化、模块化和工程化特点,其中,锁相式更是以其容易实现相位同步的自动控制且低功耗的特点成为众多业内人士的首选,应用最为广泛。

单片机最小系统电路

单片机最小系统的相关知识 复位电路: 一、复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。单片机复位电路如下图: 二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?

在单片机系统中,系统上电启动的时候复位 一次,当按键按下的时候系统再次复位,如果释 放后再按下,系统还会复位。所以可以通过按键 的断开和闭合在运行的系统中控制其复位。 开机的时候为什么会复位:在电路图中,电 容的的大小是10uF,电阻的大小是10k。所以根 据公式,可以算出电容充电到电源电压的0.7倍 (单片机的电源是5V,所以充电到0.7倍即为 3.5V),需要的时间是10K*10UF=0.1S。也就是 说在单片机启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V 的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 按键按下的时候为什么会复位:在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。 晶振电路: 晶振电路:晶振是晶体振荡器的简称在 电气上它可以等效成一个电容和一个电阻并 联再串联一个电容的二端网络电工学上这个 网络有两个谐振点以频率的高低分其中较低 的频率是串联谐振较高的频率是并联谐振由于晶体自身的特性致使这两个频率的距离相当的接近在这个极窄的频率范围内晶振等效为一个电感所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路由于晶振等效为电感的频率范围很窄所以即使其他元件的参数变化很大这个振荡器的频率也不会有很大的变化 晶振有一个重要的参数那就是负载电容值选择与负载电容值相等的并联电容就可以得到晶振标称的谐振频率

相关文档
最新文档