海上风机钢管单桩基础轴向承载力

海上风机钢管单桩基础轴向承载力
海上风机钢管单桩基础轴向承载力

钢管桩的计算公式

钢管桩的计算公式 条件: 地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k 一、根据结构力学知识,进行桩顶作用效应计算 求出每个桩顶的力 弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。 二、桩下压承载力计算 (参见《建筑桩基技术规范》) 单桩竖向承载力标准值为: p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑ sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。 pk q ——极限端阻力标准值,查表5.3.5-2。 j l ——桩周第j 层土的厚度 u ——桩身周长 p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口 钢管桩按下式计算: 当5/

三、 桩上拔承载力计算,即当0

海上风机基础的防冰结构

(10)授权公告号 (45)授权公告日 2014.02.05 C N 203420289 U (21)申请号 201320485081.X (22)申请日 2013.08.08 E02D 31/00(2006.01) E02D 27/52(2006.01) E02D 27/44(2006.01) (73)专利权人上海电力设计院有限公司 地址200025 上海市黄浦区重庆南路310号 18-22楼 (72)发明人邹辉 (74)专利代理机构上海富石律师事务所 31265 代理人 刘峰 (54)实用新型名称 海上风机基础的防冰结构 (57)摘要 本实用新型公开了一种海上风机基础的防冰 结构,包括一用于抵抗外部撞击的防冰锥和两用 于将所述防冰锥固定连接在海上风机桩基础上的 抱箍,所述防冰锥包裹环设于海上风机桩基础的 高潮位和低潮位之间,所述防冰锥的上端部通过 一所述抱箍固定连接在所述海上风机桩基础的高 潮位,所述防冰锥的下端部通过另一所述抱箍固 定连接在所述海上风机桩基础的低潮位。本实用 新型将防冰锥套设在海上风机桩基础最频繁遭遇 海冰撞击的高潮位和低潮位之间,有效增强海上 风机基础的防撞击性能和抗海冰流激振动动力能 力。同时,在防冰锥的上下两端部处通过抱箍便将 其固定安装在所述海上风机桩基础上,施工更加 便捷有效。 (51)Int.Cl. 权利要求书1页 说明书3页 附图2页 (19)中华人民共和国国家知识产权局(12)实用新型专利权利要求书1页 说明书3页 附图2页(10)授权公告号CN 203420289 U

1/1页 1.一种海上风机基础的防冰结构,其特征在于:包括一用于抵抗外部撞击的防冰锥和两用于将所述防冰锥固定连接在海上风机桩基础上的抱箍,所述防冰锥包裹环设于海上风机桩基础的高潮位和低潮位之间,所述防冰锥的上端部通过一所述抱箍固定连接在所述海上风机桩基础的高潮位,所述防冰锥的下端部通过另一所述抱箍固定连接在所述海上风机桩基础的低潮位。 2.如权利要求1所述的海上风机基础的防冰结构,其特征在于:所述防冰锥由一上圆台和一下圆台对接组成,所述上圆台的上底面通过所述抱箍套设在所述海上风机桩基础的高潮位,所述下圆台的下底面通过另一所述抱箍套设所述海上风机桩基础的低潮位,所述上圆台的下底面和所述下圆台的上底面在所述海上风机桩基础的平均潮位处对接,所述上圆台的上底面直径小于所述上圆台的下底面直径,所述下圆台的上底面直径大于所述下圆台的下底面直径,所述上圆台的下底面直径与所述下圆台的上底面直径相等。 3.如权利要求1或2所述的海上风机基础的防冰结构,其特征在于:所述防冰锥的外周侧面覆盖设置有靠泊橡胶护舷。 4.如权利要求1或2所述的海上风机基础的防冰结构,其特征在于:在位于所述海上风机桩基础高潮位向上延伸设置有外部船舶辅助爬梯。 5.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述上圆台和下圆台的对接面与所述海上风机桩基础的平均潮位处重合,且所述上圆台和下圆台以所述对接面为对称面上下对称。 6.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述上圆台的母线和所述上圆台的轴之间的夹角为28-32°。 7.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述下圆台的母线和所述下圆台的轴之间的夹角为28-32°。权 利 要 求 书CN 203420289 U

单桩竖向承载力设计值计算

单桩竖向承载力设计值计算 一、构件编号: ZH-1 示意图 二、依据规范: 《建筑桩基技术规范》(JGJ 94-2008) 《建筑地基基础设计规范》(GB50007-2002) 三、计算信息

1.桩类型: 桩身配筋率<0.65%灌注桩 2.桩顶约束情况: 固接 3.截面类型: 圆形截面 4.桩身直径: d=800mm;桩端直径: D=1200mm 5.材料信息: 1)混凝土强度等级: C30 fc=14.3N/mm2 Ec=3.0×104N/mm2 2)钢筋种类: HRB335 fy=300N/mm2fy,=300N/mm2Es=2.0×105N/mm2 3)钢筋面积: As=2155mm2 4)净保护层厚度: c=50mm 6.其他信息: 1)桩入土深度: H>6.000m 7.受力信息: 桩顶竖向力: N=1169kN 四、计算过程: 1)根据桩身的材料强度确定 桩型:人工成孔灌注桩(d≥0.8m) 桩类别:圆形桩 桩身直径D =800mm 桩身截面面积A ps=0.50m 桩身周长u=2.51m R a=ψc f c A +0.9f y,A S,【5.8.2-1】 ps 式中A ps————桩身截面面积 f c———混凝土轴心抗压强度设计值 ψc———基桩成孔工艺系数,预制桩取0.85,灌注桩取0.7~0.8。 f y,———纵向主筋抗压强度设计值 A S,———纵向主筋截面面积 R a =5363+582=5945KN 2)根据经验参数法确定 计算依据:《建筑桩基技术规范》JGJ94-2008和本项目岩土工程勘察报告 单桩竖向承载力特征值(R a)应按下式确定: R a=1/k×Q uk 【5.2.2】 式中Q uk————单桩竖向极限承载力标准值 K———安全系数,取K=2. Q uk=Q +Q pk= u∑ψsi q sik L i +ψp q pk A p 【5.3.6】 sk 桩型: 人工成孔灌注桩(d≥0.8m) 桩类别:圆形桩 桩端直径D =1200mm 桩端面积A p=1.13m 桩端周长u=3.77m 第1土层为:不计阻力土层,极限侧阻力标准值q sik=10Kpa

钢管桩支架计算书

钢管桩支架计算书 一.工程概况 1.1 工程简介 A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。 1.2 建设条件 该地区属于山谷地区且常年少雨,气候干燥。高程变化有时较剧烈,施工条件较困难。 1.2.1地形地貌 典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。 1.2.2地质情况 Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到地质情况主要为 4 分化。承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。 1.2.3气候 气候干燥少雨,年均降雨量很小,早晚温差变化较大。 二.施工方案总体布臵和荷载设计值 2.1 支架搭设情况说明 A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇

筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。方木布臵情况:横桥向放臵截面尺寸为15cm×15cm的方木,间距0.3m。15cm×15cm方木放臵在工10型钢上,工10型钢放臵在贝雷梁上,贝雷梁放臵在钢管桩顶端的沙桶上。 2.2 设计荷载取值 混凝土自重取: 26.5kN/m3 箱梁重: 24.1kN/m2 模板自重: 2.5kN/m2 施工人员和运输工具重量: 2.5kN/m2 振捣混凝土时产生的荷载: 2.5kN/m2 考虑分项系数后的每平米荷载总重:31.6kN/m2 三.贝雷梁设计验算 大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。其中第一跨采用满堂支架法施工,验算过程参考满堂支架法计算书。 神杨路方向第二、三、五、六跨 神杨路方向第二跨,第三跨,第五跨,第六跨,跨中布臵两排钢管桩,计算采用间距17m进行计算,现场可以根据实际情况减小间距。 采用双排单层加强型贝雷梁,每组贝雷梁间距1m, 全截面使用21组。 混凝土箱梁每平方米荷载: 31.6kN/m2 贝雷梁每片自重: 2×3kN/m 荷载总重: 6kN+31.6kN/m=37.6kN/m 双排单层加强型贝雷梁力学性能: [M] = 3375kN〃m [Q] = 490kN

钢管桩设计与验算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据386#或389#墩身高度和 周边地形,钢管桩最大桩长按30m 考虑。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 22 l EI π= 3 2 8 230 10 936.1101.2-????π =4458kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4 π (D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×30×102×7.85 =5844kg=58.44kN 桩身荷载 p=658.3+58.44=716.7 kN б=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P = m 1{ ()[]v a A f m x 12 23 1111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

风电泰斗和他的漂浮式海上风机基础

风电泰斗和他的漂浮式海上风机基础 随着海上风电向深海远海发展,对水深超过50米的海上风电项目,安装和运维的成本居高不下仍然是一个主要问题。对这些深远海海上风电项目,为减少其生产,安装和运维成本,在固定式基础持续进步的同时,这些年,漂浮式海上风机基础已经逐渐渐发展起来,并走出试验阶段,走向商业化应用了。 最近的一则消息称,丹麦技术大学DTU,及两家丹麦企业DHI和StiesdalOffshoreTechnology正在合作进行一项叫作LIFES50+的测试,用以测试下一代漂浮式海上风电基础,该基础叫TetraSpar,是由Stiesdal公司发明的。6月20日,该测试项目举行了现场示范。这是DTU风能团队在DHI海上波浪盆地进行的漂浮式风力发电机基础的第四次测试活动。 该漂浮式基础使用DTU的10MW风力发电机进行1:60比例模型测试,并考虑两个浮子配置。漂浮式风电机在许多运行和生存条件下经受风浪和波浪考验。 模型测试活动LIFES50+的目标是提供TetraSpar基础的概念证明,并提供该领域的实验测试和数据分析技术。该项目由欧洲地平线2020计划资助,由挪威公司SintefOcean领衔。DTU风电系主导数字建模活动,并参与该项目。来自风电行业,研发和咨询机构的12个合作伙伴共同参与创建新的漂浮式基础结构概念。 DTU和DHI在风电行业都鼎鼎大名,StiesdalOffshoreTechnology是何方神圣? 这个公司的创始人HenrikStiesdal是名副其实的风电前辈,以下关于他的资料(斜体字部分)来源来维基百科。 1978年,HenrikStiesdal(与KarlErikJørgensen一起)设计了代表“丹麦概念”的第一台风力发电机之一。1979年,他将该设计授权给了维斯塔斯公司,当时,维斯塔斯公司是一家丹麦制造企业,生产农用货车、卡车起重机和船用冷却器。Stiesdal的设计形成了维斯塔斯公司崛起成为风力发电机领先制造商的基础。Stiesdal开始在维斯塔斯担任顾问,之后于1983年加入公司担任项目经理。1987年,Stiesdal加入丹麦风力发电机制造商BonusEnergyA/S作为开发专家。1988年,他成为技术经理,2000年担任首席技术官。2004年,BonusEnergyA/S被德国技术公司Siemens收购。Stiesdal成为西门子风力发电的首席技术官,并于2014年底退休。在他的职业生涯中,Stiesdal已经发明了超过175项发明,已经获得650多项有关风力

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

风机锚栓基础设计管理

风机锚栓基础设计管理 论文栏目:设计管理论文更新时间:2015/6/19 15:37:26 283 1前言 风机基础与塔筒的连接形式有很多种,最具代表性的有基础环与锚笼环两种形式。据不完全统计,目前国内已经建成风电场95%以上的风机塔筒与基础连接采用的基础环形式,该种连接方式被认为是安全可靠的。随着部分风电场陆续出现基础环松动的问题,风机供应商、设计单位、施工单位等各方专家进行了多次会诊,目前已基本达成如下共识:基础环直径较大、埋深不足、基础环与周边混凝土连接不可靠,其受力特性相比锚栓差。从设计角度来讲,单机容量1.5MW及以上容量的风机塔筒与基础连接宜采用锚栓[1][2][3]。但是,由于当前用于风机塔架与基础连接的锚栓存在材质无相应规程规范、防腐难度大、锚栓断裂不易更换等问题,由此增加的风险成本,风机供应商和设计单位都在回避。在此前提下,业主推出“风机锚栓基础设计及锚栓组件材料采购打捆”的招标采购形式,相当于EP承包,投标主体必须是设计院。根据目前市场环境条件,设计单位应充分掌握锚栓式基础的市场前景,本着尽最大可能的占领市场份额和为业主服务的目标,积极参与投标。只要做好锚栓材料市场调研,充分进行研究,详细设计,发现风险点,做好风险控制和转移,精工细作,做好设计优化工作,就能在新的市场条件下占据主动。设计单位既要作为设计的主体,同时又是采购的主体,除了要保证结构设计的可靠以外,还应对所需采购锚栓及组件材料的市场情况有充分的了解,这样才能保证整个项目的风险可控,以使效益最大化。因此,作者以下将针对该新的市场环境条件,对风电项目中“风机锚栓基础设计及锚栓组件材料采购打捆”的设计管理进行简单论述,为设计单位提供借鉴。 2产品调研 锚笼环高度一般在3.0m以上,除外露30cm左右之外,其余部分埋入风机基础混凝土。锚栓组件最重要的承力构件是高强预应力锚固螺栓及替代品,其不同于一般的高强预应力锚固螺栓,且国内没有专门针对风电机组的锚栓设计规程,造成目前市场材料供应良莠不齐。经资料收集整理,目前市场上较有名的主要有中船重工713研究所、江苏金海公司、青海金阳光生产的高强预应力锚固螺栓,以及天津二轧生产的精轧钢筋。通过掌握资料,首先应由项目负责人通过电话向供货商了解其产品基本性能,产品应用业绩,目前市场价格等,并初步了解其合作意向。其次,以公司名义向有意向参与合作的供应商发正式询价函件,由

(完整版)海上风电场+风机基础介绍

海上风电场风机基础介绍技术服务中心业务筹备部

前言 近年来,国家对清洁能源特别是风电的发展在政策上给予了很大支持,使得中国风电得到蓬勃发展。风力发电作为新能源领域中技术最成熟、最具规模化开发条件和商业化发展前景的发电方式,获得了迅猛发展。随着风电机组从陆地延伸到海上,海上风电正成为新能源领域发展的重点。 本文结合国内外海上风电场具体的风机基础,对现有的海上机组的基础类型逐一介绍,目的是对海上风机基础形成一个初步的了解,为公司日后的海上服务业务做铺垫。 为人类奉献白云蓝天,给未来留下更多资源。 2

目录 1 风机基础类型--------------------------------------- 4 1.1 重力式基础----------------------------------------- 4 1. 2 单桩基础------------------------------------------- 6 1. 3 三脚架式基础--------------------------------------- 8 1. 4 导管架式基础-------------------------------------- 10 1. 5 多桩式基础---------------------------------------- 11 1.6 其他概念型基础------------------------------------ 12 2 海上风力发电机组基础维护 -------------------------- 14为人类奉献白云蓝天,给未来留下更多资源。 3

单桩竖向承载力特征值计算

单桩竖向承载力特征值计算 根据《简明施工计算手册(第三版)》单桩承载力计算:(p320—p326) 1.一般直径竖向承载力特征值,可按下式计算: p pa i sia p pk sk a A q l q Q Q R +=+=∑μ 其中,sk Q :单桩总侧阻力特征值; pk Q :单桩总端阻力特征值; p μ:桩身周长; sia q :桩第i 层土的侧阻力特征值——(查表5-15) (p321) 修正系数0.8:1q =36K ,2q =20KN ,3q =116kN ; i l ——土层厚度; p A ——桩端面积 pa q ——极限端阻力特征值——查表(5-16) (p322),得8400。 一、圆桩:(R=15) 0.943×(2.5×36×0.8+2.5×0.8×20+1×2×116)+8400×A =808.8kN 二、方桩:(A=0.3×0.3) 4×0.3×(2.5×36×0.8+25×0.8×20+1×2×116)+8400×A =273.6+1029.6=1303.2kN

2.大直径(mm d 800≥)单桩竖向承载力特征值,可按下式计算: p pa P i sia si p pk sk a A q l q Q Q R ’ ψψμ+=+=∑ 其中,sk Q :单桩总侧阻力特征值,这里我们使用端承桩sk Q 为0忽略不计; pk Q :单桩总端阻力特征值; p μ:桩身周长; sia q :桩第i 层土的侧阻力特征值——(查表5-15) (p321); i l ——土层厚度; p A ——桩端面积,p A =N 2 21?? ? ?? pa q ——极限端阻力特征值——查表(5-16) (p322); ‘sia q ——桩侧第i 层土的侧阻力特征值——(查表5-15)(p321); ‘pa q ——桩径为800mm 的端阻力特征值,可采用深层载荷板试验确定,这里我们查表(5-17)取值2500; si ψ、P ψ——大直径桩侧阻、端阻尺寸效应系数,按表(5-18) (p324)取值P ψ端阻尺寸效应系数3 18.0??? ??D 。 对于混凝土护壁的大直径挖孔桩,计算单桩竖向承载力时,其设计桩径取护壁外直径。 挖孔桩:(D=1m ,h=6-7m ) 31 18.0??? ??×2500×∏221??? ??=1822.7kN

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

钢管桩计算书

边跨现浇直线段支架设计计算 一、计算何载(单幅) 1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为: V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2× 225 .0 65 .0 ×1-1.2×1.5]=16.125 m3 作用在支架的荷载: G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN 2、底模及侧模重(含翼缘板脚手架):估算G2=130KN 3、内模重:估算G3=58KN 4、施工活载:估算G4=80KN 5、合计重量:G5=1957.78+130+58+80=2226KN 二、支架形式 支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。

根据支架的具体结构,现将其简化成力学计算模型,如下图所示: 327.5 585 327.5 10×120 20 20 780 550 115 115 纵桥向横桥向 三、支架内力及变形验算 1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上 承托12根I45a 工字钢。为简化计算横梁荷载采用均布荷载。 (1)纵梁上面荷载所生的均布荷载: Q 1=2226÷2÷12.25=90.86KN/m (2)纵梁的自重所生的均布荷载: Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m (3)横梁自身的重量所生的均布荷载: Q 3=2×1.0627=2.125N/m (4)横梁上的总均布荷载: Q=90.86+2.815+2.125=95.8N/m

海上风电风机基础选型

海上风电场风机基础选型 1.概述 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。海上有丰富的风能资源和广阔平坦的区域,离岸10 km的海上风速通常比沿岸陆上25%;海上风湍流强度小,具有稳定的主向,机组承受的疲劳负荷较低,使得风机寿命;风切变小,因而塔架可以较低;在海上开发风能,受噪声、景观、鸟类、电磁波干扰等问题较少;海上风电场不涉及土地征用等问题,人口比较集中,陆地面积相对较小、濒临海洋家或地区,较适合发展海上风电。海上风能利用不会造成大气污染和产生任何有害,可减少温室效应气体的排放,环保价值可观,海上风电的这些优点,使得近海风力发电技术成为近年来研究和应用的热点。 发电成本是海上风电发展的瓶颈,影响海上风电成本的主要因素是基础结构成本(包括制造、安装和维护)。目前,海上风电场的总投资中,基础结构占20~30%,而陆上风电场仅为5~10%。因此发展低成本的海上风电基础结构是降低海上风电成本的一个主要途径。 2.风机基础结构型式 海上风电机组的基础被认为是造成海上风电成本较高的主要因素之一。目前国外研究和应用的海上风机基础从结构结构型式上主要分为重力式基础、桩基础及悬浮式基础。前两种形式已在欧洲海上风电场建设中得到广泛应用,悬浮式基础为正在研制阶段的深水海上风电技术。 2.1.重力式基础 重力固定式基础体积较大,靠重力来固定位置,主要有钢筋混凝土沉箱型或钢管柱加钢制沉箱型等等,其基础重量和造价随着水深的增加而成倍增加,丹麦的Vindeby 、Tun? Knob、Middelgrunden和比利时的Thornton Bank海上风电场基础采用了这种传统技术。 重力式基础适合坚硬的黏土、砂土以及岩石地基,地基须有足够的承载力支撑基础结构自重、上部风机荷载以及波浪和水流荷载。重力式基础一般采用预制圆形空腔结构(图2-1),空腔内填充砂、碎石或其他密度较大的回填物,使基础有足够自重抵抗波浪、水流荷载以及上部风机荷载对基础产生的水平滑动、

单桩竖向承载力计算书

主楼单桩承载力计算书 1、土层分布情况: 层号 土层名称 土层厚度(m ) 侧阻q sik (Kpa ) 端阻q pk (Kpa ) ○1 杂填土 2.0 0 / ○2 粉质粘土 1.0 50 / ○3 含碎石粉质粘土 7.5 90 / ○4 粉质粘土 4.5 85 / ○5 含碎石粉质粘土 13 100 2700 2、单桩极限承载力标准值计算: 长螺旋钻孔灌压桩直径取Ф600,试取ZKZ1桩长为16.0 米,ZKZ2桩长为28.0 米进入○ 5层含碎石粉质粘土层 根据《建筑桩基技术规范规范》(JGJ 94-2008): 单桩竖向极限承载力特征值计算公式: ∑+=i p p l u A q Q sik k uk q 式中:uk Q ---单桩竖向极限承载力特征值; q pk ,q sik ---桩端端阻力,桩侧阻力标准值; A p ---桩底端横截面面积; u---桩身周边长度; l i ---第i 层岩土层的厚度。 经计算:uk Q =0.2826×2700+1.884×(50×1.0+90×7.5+85×4.5+100× 3.0)=3400KN 。 ZKZ1单桩竖向承载力特征值R a =1/2uk Q 取R a =1600KN

经计算:uk Q =0.2826×2700+1.884×(50×1.0+90×7.5+85×4.5+100× 15.0)=5675KN 。 ZKZ2单桩竖向承载力特征值R a =1/2uk Q 取R a =2850KN 3、 桩身混凝土强度(即抗压验算): 本基础桩基砼拟选用混凝土为C30。 根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条公式: s P c c A f N ψ≤+0.9f y As 根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条公式: s P c c A f N ψ≤ 式中:f c --混凝土轴心抗压强度设计值;按现行《混凝土结构设计规范》 取值,该工程选用C30砼,f c =14.3N/m 2; N--荷载效应基本组合下的桩顶轴向压力设计值; A ps --桩身横截面积,该式A ps =0.2826m 2; ψc ---基桩成桩工艺系数,本工程为长螺旋钻孔灌注桩,取0.8。 带入相关数据: 对于ZKZ2: A ps f c Ψc =0.2826×106×14.3×0.8=3232KN 3232KN/1.35=2395KN>R a 对于ZKZ1: A ps f c Ψc +0.9f y As =0.2826×106×14.3×0.8+0.9×360×924= 3532KN 3232KN/1.35=2395KN>R a 4、 桩基抗震承载力验算:

钢管桩稳定性计算计算书

悬臂式板桩和板桩稳定性计算计算书 万科城六期工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 一、编制依据 本计算书的编制参照《建筑基坑支护技术规程》(JGJ120-99),《土力学与地基基础》(清华大学出版社出版)等编制。 二、参数信息 重要性系数:1.00;开挖深度度h:6.00m; 基坑外侧水位深度h wa:8m;基坑下水位深度h wp:2.00m; 桩嵌入土深度h d:6m;基坑边缘外荷载形式:荷载满布 土坡面上均布荷载值q0:1.00kN/m; 悬臂板桩材料:63a号工字钢;弹性模量E:206000N/mm2; 强度设计值[fm]:205N/mm2;桩间距bs:0.50m; 截面抵抗矩Wx:2981.47cm3;截面惯性矩Ix:93916.20cm4; 基坑土层参数: 序号土名称土厚度坑壁土的重度内摩擦角内聚力浮容重 (m) (kN/m3) (°) (kPa) (kN/m3) 1 填土 2 19 16 10 20 2 细砂 1 18 25 0 20 3 中砂 3 18.5 28 0 20 4 砾砂 3 19 30 0 20 5 圆砾 3 20.25 35 5.5 20 6 碎石 3 21 37.5 9 20 三、土压力计算

1、水平荷载 (1)、主动土压力系数: K a1=tan2(45°- φ1/2)= tan2(45-16/2)=0.568; K a2=tan2(45°- φ2/2)= tan2(45-25/2)=0.406; K a3=tan2(45°- φ3/2)= tan2(45-28/2)=0.361; K a4=tan2(45°- φ4/2)= tan2(45-30/2)=0.333; K a5=tan2(45°- φ5/2)= tan2(45-30/2)=0.333; K a6=tan2(45°- φ6/2)= tan2(45-35/2)=0.271; (2)、土压力、地下水以及地面附加荷载产生的水平荷载: 第1层土:0 ~ 2米; σa1上= -2C1K a10.5 = -2×10×0.5680.5 = -15.071kN/m2; σa1下= γ1h1K a1-2C1K a10.5 = 19×2×0.568-2×10×0.5680.5 = 7.075kN/m2; 第2层土:2 ~ 3米; H2' = ∑γi h i/γ2 = 38/18 = 2.111; σa2上= [γ2H2'+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×2.111+1+0]×0.406-2×0×0.4060.5 = 15.828kN/m2; σa2下= [γ2(H2'+h2)+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×(2.111+1)+1+0]×0.406-2×0×0.4060.5 = 23.134kN/m2; 第3层土:3 ~ 6米; H3' = ∑γi h i/γ3 = 56/18.5 = 3.027;

单桩竖向承载力特征值计算方法

单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94 -2008第5.2.2条公式5.2.2计算: R a=Q uk/K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 1. 一般桩的经验参数法 此方法适用于除预制混凝土管桩以外的单桩。 按JGJ94-2008规范中第5.3.5条公式5.3.5计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; u——桩身周长; l i——桩周第i 层土的厚度; A p——桩端面积; q sik——桩侧第i 层土的极限侧阻力标准值;参考JGJ94-2008规范表5.3.5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0; q pk——极限端阻力标准值,参考JGJ94-2008规范表5.3.5- 2取值,用户需在地质资料土层参数中设置此值;对于摩擦桩取q pk=0; 2. 大直径人工挖孔桩(d≥800mm)单桩竖向极限承载力标准值的计算 此方法适用于大直径(d≥800mm)非预制混凝土管桩的单桩。按JGJ94-2008规范第5.3.6条公式5.3.6 计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; q sik——桩侧第i层土的极限侧阻力标准值,可按JGJ94-2008规范中表5.3.5-1取值,用户 需 1取值,用户需在地质资料土层参数中设置此值;对于扩底桩变截面以上2d范围不计侧阻力;对于端承桩取q sik=0; q pk——桩径为800mm极限端阻力标准值,可按JGJ94-2008规范中表5.3.6- 1取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取qpk=0; ψsi,ψp——大直径桩侧阻、端阻尺寸效应系数,按JGJ94-2008表5.3.6-2取值;

桁架钢管桩承载力计算书

桩基承载力说明与计算 根据箱梁结构形式,支架基础采用Φ820*8钢管桩,每幅单排布置5根,纵向根据现浇梁不同部位的重量不同,根据现浇梁的纵向断面形式不同钢管桩间距距离不同,具体布置形式见现浇支架立面图。现浇梁施工完成后要根据钢管桩的入土深度和桥梁的净高确钢管桩拆除方式。 使用DZ60振动锤打入河床,入土深度要达到DZ60振动锤的最大击振力强度(即每根管桩竖向承载力可达到59t的标准)。 1、钢管计算 (1)、桥梁荷载 ①混凝土荷载 ②施工荷载 ③ (2)、地基承载力计算 根据相关资料查询各种土层的摩阻力分别为:淤泥质粉质粘土桩侧土摩阻力q ik=20kPa(回填土按淤泥质土计算摩阻力);细砂桩侧土摩阻力q ik=25kPa;中砂层桩侧土摩阻力q ik=35kPa;粗砂层桩侧土摩阻力q ik=60kPa。由地质勘查报告查询,桥位附近地质情况如下: 不同孔号对应的岩层厚度

按照钢管入土长度35m分别计算三处地基的承载力。摩擦桩计算公式:[Ra]=1/2(UΣq ik* l i)+A p* q r ①ZK26处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(6.22*20+7.3*25+13*35+8.48*60)/2=461.79 KN ②ZK28处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(4.41*20+4.2*25+6.39*35)/2=536.65KN ③ZK30处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(7.33*20+7.67*25)/2=338.35KN =375.1 KN≥1.5*203=304.5 KN 钢管桩的承载力满足要求。 (2)、钢管桩刚度计算: [σ]=F/A=304.5/((0.82*0.82-0.8*0.8)/(3.14*4)) =229.4 MPa≤235 MPa 钢管强度满足承载力要求。

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态工作状态 基础所受的水平力H:66.2KN 22.5KN 基础所受的竖向力P:434KN 513KN 基础所受的倾覆力矩M:1683KN.m 1211KN.m 基础所受的扭矩Mk:0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: (注:n为桩根数,a为塔身宽) 带入数据得 单桩最大压力: Qik压=872.04KN 单桩最大拔力:Qik拔=-615.54KN 三、钻孔灌注桩承载力计算 1、土层分布情况: 层号 土层名称 土层厚度(m) 侧阻qsia(Kpa) 端阻qpa(Kpa) 抗拔系数λi 4 粉质粘土 0.95 22 / 0.75 5 粉质粘土 4.6 13 / 0.75 7 粉质粘土 5.6 16 /

0.75 8-1 砾砂 7.3 38 1000 0.6 8-2 粉质粘土 8.9 25 500 0.75 8-3 粗砂 4.68 30 600 0.6 8-4a 粉质粘土 4.05 32 750 0.75 桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。 2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: 式中:Ra---单桩竖向承载力特征值; qpa,qsia---桩端端阻力,桩侧阻力特征值; Ap---桩底端横截面面积; up---桩身周边长度; li---第i层岩土层的厚度。 经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。 单桩竖向抗拔承载力特征值计算公式: 式中:Ra,---单桩竖向承载力特征值; λi---桩周i层土抗拔承载力系数; Gpk ---单桩自重标准值(扣除地下水浮力) 经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25

相关文档
最新文档