非均相物系分离设备

非均相物系分离设备
非均相物系分离设备

非均相物系分离设备

一、选择题

1、 一密度为7800 kg/m 3

的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 (设沉降区为层流)。D ?A 4000 mPa ·s ; ?B 40 mPa ·s ; ?C 33.82 Pa ·s ; ?D 3382 mPa ·s

2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 。D

A .m μ302?;

B 。m μ32/1?;

C 。m μ30;

D 。m μ302? 3、降尘室的生产能力取决于 。 B

A .沉降面积和降尘室高度;

B .沉降面积和能100%除去的最小颗粒的沉降速度;

C .降尘室长度和能100%除去的最小颗粒的沉降速度;

D .降尘室的宽度和高度。

4、降尘室的特点是 。D

A . 结构简单,流体阻力小,分离效率高,但体积庞大;

B . 结构简单,分离效率高,但流体阻力大,体积庞大;

C . 结构简单,分离效率高,体积小,但流体阻力大;

D . 结构简单,流体阻力小,但体积庞大,分离效率低

5、在降尘室中,尘粒的沉降速度与下列因素 无关。C A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状

6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 。C

A. 旋风分离器效率最高时的旋风分离器的直径;

B. 旋风分离器允许的最小直径;

C. 旋风

分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径 7、旋风分离器的总的分离效率是指 。D

A. 颗粒群中具有平均直径的粒子的分离效率;

B. 颗粒群中最小粒子的分离效率;

C. 不同粒级(直径范围)粒子分离效率之和;

D. 全部颗粒中被分离下来的部分所占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的 。C

A .尺寸大,则处理量大,但压降也大;

B .尺寸大,则分离效率高,且压降小;

C .尺寸小,则处理量小,分离效率高;

D .尺寸小,则分离效率差,且压降大。

9、恒压过滤时, 如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的 。 B

A. 1 倍;

B. 2 倍;

C.2倍;

D.1/2倍 10、助滤剂应具有以下性质 。B

A. 颗粒均匀、柔软、可压缩;

B. 颗粒均匀、坚硬、不可压缩;

C. 粒度分布广、坚硬、不可压缩;

D. 颗粒均匀、可压缩、易变形

11、助滤剂的作用是 。B

A . 降低滤液粘度,减少流动阻力;

B . 形成疏松饼层,使滤液得以畅流;

C . 帮助介质拦截固体颗粒;

D . 使得滤饼密实并具有一定的刚性

12、下面哪一个是转筒真空过滤机的特点 。B

A .面积大,处理量大;

B .面积小,处理量大;

C .压差小,处理量小;

D .压差大,面积小

13、以下说法是正确的 。B

A. 过滤速率与A(过滤面积)成正比;

B. 过滤速率与A 2

成正比; C. 过滤速率与滤液体积成正比; D. 过滤速率与滤布阻力成反比

14、恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量 。

C

A. 增大至原来的2倍;

B. 增大至原来的4倍;

C. 增大至原来的

倍; D. 增大至原

来的1.5倍 15、过滤推动力一般是指 。 B

A .过滤介质两边的压差;B. 过滤介质与滤饼构成的过滤层两边的压差; C. 滤饼两面的压差; D. 液体进出过滤机的压差

16、恒压板框过滤机,当操作压差增大1倍时,则在同样的时间里所得滤液量将 (忽略介质阻力) 。 A

A .增大至原来的2倍;

B .增大至原来的 2倍 ; C.增大至原来的 4 倍; D .不变 二、填空题

1、一球形石英颗粒,分别在空气和水中按斯托克斯定律沉降,若系统温度升高,则其在水中的沉降速度将 ,在空气中的沉降速度将 。下降,增大

2、在滞流(层流)区,颗粒的沉降速度与颗粒直径的 次方成正比。 2

3、降尘室的生产能力与降尘室的 和( ) 有关。 长度 宽度

4、已知某沉降室在操作条件下的气体流率为3600m 3

/h ,沉降室长、宽、高尺寸为

L H b ??=523??,则其沉降速度为 s m /。0.067

5、在除去某粒径的颗粒时,若降尘室的高度增加一倍,气流速度 。减少一倍

6、若降尘室的高度增加,则沉降时间 ,气流速度 ,生产能力 。增加;下降;不变

7、一降尘室长8m ,宽4m ,高1.5m ,中间装有14块隔板,隔板间距为0.1m 。现颗粒最小直径为12μm ,其沉降速度为0.02 m/s ,欲将最小直径的颗粒全部沉降下来, 则含尘气体的最大流速不能超过 m/s 。1.6

8、在旋风分离器中,某球形颗粒的旋转半径为0.4 m, 切向速度为15 m/s 。当颗粒与流体的相对运动属层流时,其分离因数C K

为 。57

9、选择旋风分离器型式及决定其主要尺寸的根据是 ; ; 。气体处理量,分离效率,允许压降

10、通常, 非均相物系的离心沉降是在旋风分离器中进行, 悬浮物系一般可在旋液分离器或沉降离心机中进行。气固;液固

11、已知q 为单位过滤面积所得滤液体积V/A ,q e 为V e /A ,V e 为过滤介质的当量滤液体积(滤液体积为V e 时所形成的滤饼层的阻力等于过滤介质的阻力),在恒压过滤时,测得 Δτ/Δq=3740q+200 则过滤常数K = ( )。 0.000535

12、实现过滤操作的外力可以是 、 或 。重力;压强差;惯性离心力

13、在饼层过滤中,真正发挥拦截颗粒作用的主要是 而不是 。滤饼层;过滤介质

14、对恒压过滤,当过滤面积增大一倍时,如滤饼可压缩,则过滤速率增大为原来的 倍。 四

15、用板框式过滤机进行恒压过滤操作,随着过滤时间的增加,滤液量 ,生产能力 。增加;不变

16、对恒压过滤,介质阻力可以忽略时,过滤量增大一倍,则过滤速率为原来的 。 二分之一 三、计算题

1、某一锅炉房的烟气沉降室,长、宽、高分别为11×6×4 m ,沿沉降室高度的中间加一层隔板,故尘粒在沉降室内的降落高度为2m 。烟气温度为150℃,沉降室烟气流量12500m 3标准)/ h ,试核算沿降室能否沉降35μm 以上的尘粒。

已知ρ尘粒 = 1600 kg/m 3,ρ烟气 = 1.29 kg/m ,μ烟气 = 0.0225cp 解:

设沉降在滞流状态下进行,Re <1,且因 ρ尘粒>>ρ烟气,故斯托克斯公式可简化为: u 0 = d 尘粒2ρ尘粒g/18μ烟气

= (35×10-6)2×1600×9.81/ (18×2.25×10-5) = 0.0474 m/s

检验:Re = d 尘粒u 0ρ烟气/μ烟气

= 35×10-6×0.0474×1.29/(2.25×10-5) = 0.095<1

故采用计算式正确,则35mm 以上粒子的沉降时间为: θ沉降 = 2/0.0474 = 42.2s

又,烟气流速u = [(12500/(4×6×3600))×[(273+150)/273] = 0.224 m/s

烟气在沉降室内停留时间:θ停留 = 11/0.224 = 49.1s 即θ停留>θ沉降

∴35mm 以上尘粒可在该室沉降

2、相对密度7.9,直径2.5 mm 的钢球,在某粘稠油品(相对密度0.9)中以5mm/s 的速度匀速沉降。试求该油品的粘度。 解:

设沉降以滞流状态进行,则: μ油品 = d 钢球2 (ρ钢球-ρ油品)g/(18 u 钢球)

= (0.0025)2×(7900-900)×9.81/(18×0.005) = 4.77Pa?s

验算:Re = d 钢球u 钢球ρ油品/μ油品 = 0.0025×0.005×900/4.77

= 2.36×10-3

<1 假设正确

3、直径为30m μ的球形颗粒,于大气压及20℃下在某气体中的沉降速度为在水中沉降速度的88倍, 又知此颗粒在此气体中的有效重量为水中有效重量的1.6倍。试求此颗粒在此气体中的沉降速度.

20℃的水:CP 1=μ,3

/1000m kg =ρ

气体的密度为1.2kg/m 3

(有效重量指重力减浮力)

解: ∵ 1.6)g

()(气水ρρρρ-=

-g

1.61.2)g

(1000)(-=

-g ρρ

解得:3

/2665m kg s =ρ

设球形颗粒在水中的沉降为层流, 则在水中沉降速度:

s m g d u s /1017.8101881.9)10002665()1030(18)(4

3

2611201---?=??-?=-=μρρ

校核:0245.010********.810303

4

6011=????==---μρdu R e <1

假设正确.

则此颗粒在气体中的沉降速度为

s m u u /16.20245.088880102

=?==

4、有一降尘室,长6m ,宽3m ,共20层,每层100mm ,用以除去炉气中的矿尘,矿尘密度3/3000m kg s =ρ,炉气密度3

/5.0m kg ,粘度0.035m s Pa ?,现要除去炉气中10m

μ以上的颗粒,试求:

(1)为完成上述任务,可允许的最大气流速度为多少? (2)每小时最多可送入炉气若干?

(3)若取消隔板,为完成任务该降尘室的最大处理量为多少?

解:(1)设沉降区为滞流,则 μρρ18)(2g d u -=

因为

ρρ>>s 则

s

m m u /4.67100.035189.81

3000)10(103

260=?????=

--

1

106.67100.0350.5

104.6710

1043

3

6

00

=

----μ

ρ

du Re 假设正确

由降尘室的分离条件,有

s

m H L u u /0.280.16

104.630=??==-

(2)

3600104.673620203

?????==-A u V =6052.3h m /3 (3) h m A u V /302.63600104.67363

30=????==-

可见加隔板可提高生产能力,但隔板间距不能过小,过小会影响出灰和干扰沉降。

5、一降尘室,长5m ,宽3m ,高4m ,内部用隔板分成20层,用来除去烟气中m μ75以上的颗粒。已知烟气密度为0.63

/m kg ,粘度为0.03s mPa ?,尘粒密度为43003

/m kg ,试求可处理的烟气量。

解: m d 61075-?= 3/4300m kg s =ρ

3/6.0m kg =ρ s Pa ??=-3

1003.0μ

设沉降区为层流,则 s

m g d u /0.4410

0.03189.81

0.6)(4300)10(7518)(3

262

=???-?=

-=--μ

ρρ

验算

1

0.6610

0.030.6

0.4410753

6<=????=

=

--μ

ρ

Re du 故假设正确

总处理量为

s m A nu q /132350.44203

=???==

6、一降尘室长5m ,宽3m ,高4m ,内部用隔板分成20层,用来回收含尘气体中的球形

固体颗粒,操作条件下含尘气体的流量为36000h m /3,气体密度3/9.0m kg =ρ,粘

度s mPa ?=03.0μ。尘粒密度3

/4300m kg s =ρ,试求理论上能100%除去的最小颗粒

直径。

解:降尘室总面积 2

3003520m A =??=

生产能力的计算式为 A u

q =

注意式中 u 0 为能 100% 除去的最小颗粒的沉降速度,而A 应为总沉降面积。 解出

s m A q u /0.03330036000/3600

===

设沉降区为层流,则有

g

u d

g d u )(1818)(020ρρμμ

ρρ-=

-=

=

m

531006.281

.9)9.04300(033

.01003.018--?=?-???

验算Re 0 =

u p u d

=1

0.02100.030.90.033102.0635

<=????--

故假设正确

7、在202.7kPa(2atm) 操作压力下用板框过滤机处理某物料,操作周期为3h ,其中过

滤 1.5h ,滤饼不需洗涤。已知每获1m 3 滤液得滤饼0.05m 3

,操作条件下过滤常数

s m /103.325-?=K ,介质阻力可忽略,滤饼不可压缩。试计算:

(1)若要求每周期获0.6m 3

的滤饼,需多大过滤面积?

(2)若选用板框长?宽的规格为m m 11?,则框数及框厚分别为多少?

解:(1)3

1205.06

.0m V ==

0=Ve 所以 θ2

2KA V =

A=

θK V

=36005.1103.3125???-=28.43m 2

(2) A=112???n

所以

=

=2A n 243.28=14.2 取15个 δ??

?=11n q

所以

n q

=

δ=156.0=0.04m 应注意每个框的两侧都有滤布,故计算面积时要在n 个框面积的基础上再乘以2。

8、一小型板框压滤机有5个框,长宽各为0.2 m, 在300 kPa(表压)下恒压过滤2 h ,滤饼充满滤框,且得滤液80 L,每次洗涤与装卸时间各为0.5 h 。若滤饼不可压缩,且

过滤介质阻力可忽略不计。求:(1)洗涤速率为多少m 3/(m 2

.h )? (2)若操作压强增加一倍,其它条件不变,过滤机的生产能力为多少? 解:(1)洗涤速率

因过滤介质阻力可忽略不计,即

q 2=K τ

过滤面积 A =5×0.22×2=0.4 m

2

单位过滤面积上的滤液量 q=V/A =80×10-3/0.4=0.2 m 3/m 2

过滤常数 K= q 2/τ=0.22/2=0.02 m 2

/h

过滤终了时的速率 (dq/d τ)E =K /2q =0.02/(2×0.2)=0.05 m/h 洗涤速率 (dq/d τ)W =0.5 (dq/d τ)E =0.5×0.05=0.025 m/h (2) Δp ’=2Δp 时的生产能力

因滤饼不可压缩,所以 K ’=K Δp ’/Δp =2K =2×0.02=0.04 m 2

/h 因在原板框压滤机过滤,悬浮液浓度未变,则当5个板框充满滤饼时所得滤液量仍为V ’=0.08 m3, 故此时所用的过滤时间为

τ= q ’2/K ’=q 2/K =0.22

/0.04=1 h

生产能力 Q=V ’/(τ+τw +τD )=0.08/(1+0.5+0.5)=0.04 m 3

滤液/h

9、在一板框过滤机上过滤某种悬浮液,在1atm 表压下20分钟在每1m 2

过滤面积上得到

0.197m 3的滤液,再过滤20分钟又得滤液0.09m 3

。试求共过滤1小时可得总滤液量为若

干m 3

.

解: 当min 201=τ时, q 1

= 0.197m 3/m 2

min 402=τ时, q 2 = 0.197+0.09 = 0.287m 3

/m 2

代入恒压过滤方程时可得:

400.28720.28720

0.19720.1972

2.?=?+?=?+K q K q 联立解得:

min /1038.2,/0222.02

.323m K m m q e -?== 由此 m in 0.207102.38(0.0222)32

2=?==-K q τ

∴当过滤1小时后,可得滤液量: )207.060(1038.2)0222

.0(3

2+?=+-q 解得: q = 0.356m 3/m 2 即每m 2过滤面积过滤1小时后可得滤液为0.356m 3

10、一转筒真空过滤机,其直径和长度均为1m ,用来过滤某悬浮液。原工况下每转一

周需时1min ,操作真空度为4.9KPa (500mmHg),每小时可得滤液603

m ,滤饼厚度为12mm ,新工况下要求生产能力提高1倍,操作真空度提高至6.37kPa (650mmHg),已知滤饼不可压缩,介质阻力可忽略。试求:

(1)新工况过滤机的转速应为多少? (2)新工况所生成的滤饼厚度为多少?

解:(1)e V = 0 所以τ22KA V =

设浸没度为?,转速为n (r/min)

则转筒旋转一周所需时间为)(60s n ,其中转筒整个面积浸入滤槽即过滤时间为)(60

s n ?

所以

?n

K A V 60=

故Q = 60nV = 60A

?Kn 60h m /3 所以

1

1221

2

n K n K Q Q =

由题知 S = 0 及p K ?∝ 故 min

/1.3)(1)(21237.69.42121221r n n K K

=?==

(2) 设滤饼的厚度为δ,则有

112260260δδAn n A n = h m /3饼 所以

mm n n 7.71.312

1222211===

??δδ

第三章非均相物系的分离练习题

第三章非均相物系的分离 一、填空题 1、旋风分离器是用于混合物分离的典型设备,如奶粉、蛋粉等干制品加工后期的分离,其主要性能参数为、 和。 2、多数沉降过程是在层流区内进行的,根据层流区域内的斯托克斯定律,影响沉降速度的主要因素有、和。 3、过滤操作基本计算的依据主要是过滤基本方程,即。在实际运用时还必须考虑三种情况,即的相对大小, 的相对大小和恒速过滤或恒压过滤。 4、沉降分离方法主要有、和电沉降,非均相混合物在沉降分离设备内能分离出来的条件为。 5、过滤推动力应是由所组成的过滤层两侧的压力差,而过滤阻力相应包括和。 6、某降尘室高4m,宽3m,长5m,用于矿石焙烧炉的炉气除尘。矿尘密度为4300千克每立方米,其形状近于圆球,操作条件下气体流量为1800立方米每小时,气体密度为0.9千克每立方米,粘度为0.03mPa·s。则理论上能除去矿尘颗粒的最小直径为_______μm 二、选择题 1、某球形颗粒在粘度为 1.86×10-5Pa.S的大气中自由沉降,已知颗粒直径为40μm,密度为2600Kg/m3,沉降速度为0.12m/s,则该颗粒沉降属()(设大气密度ρ =1.165Kg/m3) A、层流区 B、过渡流区 C、湍流区 D、无法确定 2、若固体颗粒密度为2600Kg/m3,大气压强为0.1Mpa,温度为300C,(此状况下空气密度ρ=1.165Kg/m3粘度为μ=1.86×10-5Pa.S),则直径为40μm的球形颗粒在该大气中的自由沉降速度为() A、0.12m/s B、1.63m/s C、1.24m/s D、2.12m/s 3、过滤过程的计算主要是通过过滤基本方程进行的,方程式中几个表示体系特征的过滤常数则需通过实验首先确定,这几个过滤常数为() A、K、S、Ve(Vd)、ΔP B、K、S、Ve(Vd)、te(td) C、K、S、Ve(Vd)、r D、K、Ve(Vd)、ΔP、r 4、利用过滤基本方程计算过滤速度必须考虑滤饼的可压缩性,所谓不可压缩滤饼,下列说法错误的是()。 A、不可压缩滤饼中流动阻力不受两侧压力差的影响。 B、其中的流动阻力受固体颗粒沉积速度的影响。 C、一定体积滤饼内的流动阻力不受压力差和沉积速率的影响。 D、压力差变化时滤饼性质及厚度保持不变。 5、恒压过滤方程式是基于()推导出来的 A、滤液在介质中呈湍流流动 B、滤液在介质中呈层流流动 C、滤液在滤渣中呈湍流流动 D、滤液在滤渣中呈层流流动 6、降尘室的生产能力是由()决定的(底面积一定时)。 A、降尘室的高度和长度 B、降尘室的高度 C、降尘室的长度 D、降尘室的底面积 7、已知旋风分离器旋转半径为r m=0.5m,气体切向进口速度为u t=20m/s,那么该分离器的离心沉降速度与重力沉降速度之比为()

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

简述旋风分离器性能的优化

简述旋风分离器性能的优 化 摘要:综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度讲述了提高旋风分离器工作效率,减少压降、阻力(延长使用寿命)的优化措施。阐述了工艺优化后旋风分离器性能上的改善,为进一步扩展其应用领域提供了必要的依据。 关键词:旋风分离器:分离效率;压降;使用寿命;性能优化 0 引言 旋风分离器作为一种重要的除尘设备,在石油化工、燃煤发电等许多行业都得到广泛应用。但是,由于其除尘效率一般多在90%左右,同时对粉尘粒径较小的粉尘除去效果一般,故对于除尘要求较高的生产场合,它一般只作为多级除尘中的一级除尘使用。这就使得旋风除尘器的使用条件受到了很大的限制。本文综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度论述其性能优化的方法措施,使旋风分离器能适用于更广阔的应用领域。 1 旋风分离器结构设计对其性能优化的影响 1.1 旋风分离器与多孔材料的组合 人们为提高旋风分离器的效率,做了许多努力:将金属多孔材料安置于旋风分离器中,组合成的旋风—过滤复合式除尘器就是其中之一。这种结构设计在锥筒底部加了一段直管,机器到了增加分离的目的,又起到减缓旋流的目的,以避免二次扬尘的产生。 为此,实验人员做了相关的测定实验,选取了铁合金冶炼粉尘等4种直径大小从0.05μm~10μm的不等的颗粒(基本上涵盖了所有常见粉尘的粒径范围),让实验更具有广泛的实用性,分离效率可大幅提高至近100%。实验结束后,用氮气反吹滤管后,得到的结果非常理想,可进行再次实验,即实验的再生效果好。 1.2 改变入口切入角及外筒直径对旋风分离器性能的影响

影响旋风分离器性能的因素有很多,可以从改变其入口切入角和外筒直径这两个方面考虑工艺的优化。根据模拟结果显示,r=6000mm、θ=7.5°构造的旋风分离器效率接近95%,分离效果较好。现实验人员研究的就是在此基础上的设计优化。 首先,把入口切入角θ改为θ=9°及θ=6°两组,发现θ=9°比θ=6°入口速度高,但速度衰减慢,速度场分布均匀,速度偏差小,减少了对颗粒的二次卷吸,在外筒壁面处速度高,分离效率提高了。 其次,实验人员将外筒直径由6000mm变更为5600mm、5800mm、6200mm、6400mm,发现当直径增大,离心力作用小,分离效率降低;直径减少后,分离效果好,但由于在下部形成内旋涡卷吸了一些下沉颗粒,分离效果下降。故可利用此外筒直径与分离效率的变化关系,寻找最合适的外筒直径大小,以达到最佳的分离效率。 1.3加装循环管和防液罩对旋风分离器性能的影响 对旋风分离器加装循环管前后进行实验对比分析可知,加装循环管的旋风分离器压降小于不带循环管的分离器,这就是说,带循环管的旋风分离器在入口摩擦损失、器内气流旋转的动能损失等方面均要小于不带循环管的分离器。 防液罩的存在对分离器压降影响不大,但带防液罩的分离器在不同高度剖面上的切向速度明显大于不带防液罩的分离器,那么他的分离效率就会相应提高。因此,防液罩可以在不增加压降损失的同时,进一步提高切向速度,从而提高气、液相的分离效率。 1.4新设计样式的旋风分离器与旋风分离器性能的影响 已有许多研究人员着手于新型旋风分离器的设计与研究,新型双蜗壳旋风分离器就是新设计出的一种新型旋风分离器。他的上行流区的静压变化为顺压梯度,有利于气体的顺利排出,减少旋风分离器的压力损失。 另外,循环式旋风分离器也有着提高分离效率,降低系统能耗的作用。 2 排除故障以优化旋风分离器的效率 2.1 消除三旋单管堵塞 笔者以比较常见的三级旋风分离器为例,简述通过工艺手段,消除由于

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解

第三章 非均相混合物分离及固体流态化 1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度 6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多 少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少? 解:(1)假设为滞流沉降,则: 2 s t ()18d u ρρμ -= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15??=-μ,所以, ()()()m 1276.0s m 1081.11881.9205.126501004.0185 2 3s 2t =???-??=-=--μρρg d u 核算流型: 3 t 5 1.2050.12760.04100.3411.8110 du Re ρμ--???===

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

化工原理非均相分离试题及答案

化工原理考试题及答案 第三章非均相分离 ____________班级____________学号_____________成绩______________ 一、填空题: 1.(2分)悬浮液属液态非均相物系,其中分散内相是指_____________;分散外相是指______________________________。 ***答案*** 固体微粒,包围在微粒周围的液体 2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。 ***答案*** 重力、阻力、浮力代数和为零沉降速度 3.(2分)自由沉降是___________________________________ 。 ***答案*** 沉降过程颗粒互不干扰的沉降 4.(2分)当微粒在介质中作自由沉降时,若粒子沉降的Rep相同时,球形度越大的微粒,介质阻力系数越________ 。球形粒子的球形度为_________ 。 ***答案*** 小 1 5.(2分)沉降操作是使悬浮在流体中的固体微粒,在_________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 ***答案*** 重离心沉积 6.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零24/ Rep 7.(2分)降尘宝做成多层的目的是____________________________________ 。 ***答案*** 增大沉降面积,提高生产能力。 8.(3分)气体的净制按操作原理可分为_____________________________________ ___________________.旋风分离器属_________________ 。 ***答案*** 重力沉降、离心沉降、过滤离心沉降 9.(2分)过滤是一种分离悬浮在____________________的操作。 ***答案*** 液体或气体中固体微粒 10.(2分)过滤速率是指___________________________ 。在恒压过滤时,过滤速率将随操作的进行而逐渐__________ 。 ***答案*** 单位时间内通过单位面积的滤液体积变慢 11.(2分)悬浮液中加入助滤剂进行过滤的目的是___________________________ ___________________________________________________。 ***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流 12.(2分)过滤阻力由两方面因素决定:一方面是滤液本身的性质,即其_________;另一方面是滤渣层本身的性质,即_______ 。 ***答案*** μ γL 13.(2分)板框压滤机每个操作循环由______________________________________五个阶段组成。 ***答案*** 装合板框、过滤、洗涤、卸渣、整理 14.(4分)板框压滤机主要由____________________________________________,三种板按________________的顺序排列组成。 ***答案*** 滤板、滤框、主梁(或支架)压紧装置等组成

粉体工程——分离与分离设备

幻灯片1 第5部分 分离与分离设备 幻灯片2 分离 固气分离 按颗粒物性分离 固一液分离 幻灯片3 一、固气分离 概念 旋风收尘器 过滤分离 静电吸附 惯性式收尘 幻灯片4 概念 固气分离是分离捕集悬浮于气体中的固体颗粒或烟雾的操作,由于发展成以收尘为使用目的,往往称为收尘装置。收尘系统(图7.29 )由装设在扬尘点的洗尘罩、管道、收尘装置和风机等组成。 ;■ 處右收I: jdat 电收T. 威氏 收I: 幻灯片5 旋风收尘器

尾气的回收;也用于超细粉体的初步分离,以减少气溶胶中固体含量,为随后的过滤分离减轻压力。 工作原理:旋风收尘器是利用含尘气体高速旋转产生的惯性离心力而使尘粒与气体分离的设备。 与旋风分级原理基本一致。 幻灯片6 速度分布 旋风收尘器内旋流质点的切向速度分布可用旋涡方程式来表示: Vtrn=K Vt —旋流质点的切向速度 r —旋流质点与轴心的距离 K —常数n —指数n=1自由旋涡;n接近于1为准自由旋涡;n=-1为强制旋涡 tSi6-6-隸乂畋H生内向忧盘廈及压聲分布 幻灯片7 速度分布 排气管直径0.65倍的圆周上速度最大,作分界线。 内旋流为强制旋流,Vt=Kr,K=角速度 核心气流以外气流为准自由旋涡Vt=Kr - n n=0.5 —0.8,大型旋风收尘器n接近1,形成近于自由蜗旋的气流,同一收尘器内,随着圆锥下降,n值也一般减少. 幻灯片8 压强分布 径向压强分布曲线似抛物线状。 筒壁漏,含尘气体喷出;灰仓漏,外界空气吸入收尘器。 实际情况更加复杂,二次旋流,短路气流及散乱涡流等。 幻灯片9 性质与优缺点 根据径向沉降速度公式,可人为控制圆周速度和器筒半径,获得离心沉降速度uOr,较重力沉降速度大很多倍。 与沉降室相比,旋风收尘器可以做到小型和高效率,但能量消耗相应要增加。作初级收 尘器使用。 优缺点:结构简单,10 以上。流体阻力大。 幻灯片10

旋风分离器的建模及fluent模拟

旋风分离器的建模及 f l u e n t模拟 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Gambit建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流 场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit”,“Defaults”,“GRAPHICS”,选择“WINDOWS_BACKGROUND_COLOR”设置为“White”,点击Modify。关闭对话框。 一.利用Gambit建立几何模型 1.双击打开, 2.先创建椭圆柱 依次点击“Operation”下的“Geometry”创建体“Volume”,点击“Create Real Frustum”,输入数据基于Z轴正方向创建“height 475;radius1 ; radius3 95”,点击Apply,生产椭圆柱体。如图1-1,图1-2。 3.创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z轴正方向创建“height 285; radius1 95;radius3 95”,点击Apply。 移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 图1-1椭圆柱设置对话框图1-2椭圆柱生成图

同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图 1-6,图1-7所示。 显示实体图,如图1-8。 4.将小圆柱体进行分割,分成上下两个圆柱面,点击“Split Volume”,选择被分割的圆柱体Volume2,选择下部组合体为分割体,点击“Bidirectional 和connected”,点击Apply。删除Volume3。如图1-9,图1-10所示。 5.创建旋风分离器进风口,点击依次点击“Geometry”,“Volume”,“create real brick”,基于中心,输入数据“width 140 ,depth 38,height 95”,点击Apply。如图1-11,图1-12所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图图1-9实体分割命令对话框图1-10生成实体图

旋风分离器的设计

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写

4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度:kg/m3 粘度:x 10-5Pa?s 颗粒密度:1200 kg/m3 颗粒直径:6 [1 m 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、

压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

旋风分离器的建模及fluent模拟

Gambit 建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit ”,“Defaults ”,“GRAPHICS ”,选择“WINDOWS_BACKGROUND_COLOR ”设置为“White ”,点击Modify 。关闭对话框。 一.利用Gambit 建立几何模型 1. 双击打开Gambit 2.4.6, 2. 先创建椭圆柱 依次点击“Operation ”下的“Geometry ”创建体“Volume ”,点击“Create Real Frustum ”,输入数据基于Z 轴正方向创建“height 475;radius1 36.25;radius3 95”,点击Apply ,生产椭圆柱体。如图1-1,图1-2。 3. 创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z 轴正方向创建“height 285;radius1 95;radius3 95”,点击Apply 。 图1-1椭圆柱设置对话框 图1-2椭圆柱生成图

移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图1-6,图1-7所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图

旋风分离器的建模及fluent模拟

Gambit建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit,” “Defaults, “GRAPHIC'S, 选择“WINDOWS_BACKGROUND_COLOR 设置为“White;'点击 Modify。关闭对话框。 一.利用Gambit建立几何模型 1. 双击打开 Gambit 2.4.6, 2. 先创建椭圆柱 依次点击“Operation下的“Geometry创建体“V lume”,点击“CreateReal Frustum”输入数据基于Z 轴正方向创建“height 475;r adius1 36.25;radius3 95”,点击Apply,生产椭圆柱体。如图1-1,图1-2。 3. 创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于 Z 轴正方向创建“height 285; radius1 95; radius3 95”,点击 Apply。 移动刚刚创建的圆柱体,依次点击“Geometry' “olume”,点击“Move/copy,选择刚刚创建的圆柱体,点击“ Mov >Tra nslate,”输入移动的数据 X=0, Z=475”,并选择 Connected Geometry 点击 Apply。如图 1-3, 1-4 所示。 图1-1椭圆柱设置对话框图1-2椭圆柱生成图 Y=0,坤卩ly I Rcsc4 I OK*- * Mtwc □pcfaUnn: ? Tiiiis?V ROCSiJS -Y> RoflDCl 7 ScHiil Cwp制申驿-| L_5'II:1 >| TMf* ■ UwvfK-M geonwrlry

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌资料

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌 (山东大学能源与动力工程学院济南250010) 摘要:循环流化床的分离机构是循环流化床的关键部件之一,其主要作用是将大量高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的快速流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应。这样,才有可能达到理想的燃烧效率和脱硫效率。 关键词: 旋风分离器、循环流化床锅炉、循环效率、发展。 图1 75t/h循环流化床锅炉简图 1.循环流化床旋风分离器的工作原理 如图2、3为普遍采用的高温旋风分离器结构。此类分离器的体积庞大,占地面积与炉膛基本相当,它是利用旋转的含尘气体所产生的离心力,将颗粒从气流中分离出的一种干式气固分离装置。含灰烟气在炉膛出口处分进入旋风分离器,旋风分离器的圆形筒体和气体的切向入口使气固混合物进入围绕旋风分离器的2个同心涡流,外部涡流向下,内部涡流向上。由于固体密度比烟气密度大,在离心力作用下固体离开外部涡流移向壁面, 再沿旋风分离器的循环流化床的分离机构是循环流化床的关键部件 之一,其主要作用是将大量高温固体物料从气流中分 离出来,送回燃烧室,以维持燃烧室的快速流态化状态, 保证燃料和脱硫剂多次循环、反复燃烧和反应。这样, 才有可能达到理想的燃烧效率和脱硫效率。因此,循环 流化床分离机构的性能优劣,将直接影响整个循环流 化床锅炉的出力、效率及运行寿命。 随着循环流化床锅炉大型化的发展,对分离器提出 了更高的要求,它不但要能处理大容量的烟气,还要求 能在恶劣的环境中可靠、稳定运行。多年的商业运行 经验表明,高温旋风分离器目前仍是最适合(大型)循 环流化床锅炉的分离器之一。 图 3 高温旋风分离

(03)第三章 非均相混合物分离及固体流态化习题答案演示教学

(03)第三章非均相混合物分离及固体流态化习题答案

第三章 非均相混合物分离及固体流态化 1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为 0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少? 解:(1)假设为滞流沉降,则: 2s t ()18d u ρρμ -= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15??=-μ,所以, ()()()m 1276.0s m 1081.11881.9205.126501004.01852 3s 2t =???-??=-=--μρρg d u 核算流型: 3t 51.2050.12760.04100.3411.8110 du Re ρμ--???===

第三章非均相物系分离(答案)

第三章非均相物系分离 一、选择题 1含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30卩m的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为_____________ 。 D A 2>:30Mm ;B。1/2x3Mm ;c。30Am ;D。J 2汉30卩口 2、降尘室的生产能力取决于__________ 。B A. 沉降面积和降尘室高度; B.沉降面积和能100%除去的最 小颗粒的沉降速度; C.降尘室长度和能100%除去的最小颗粒的沉降速度; D.降尘室的宽度和高度。 3、降尘室的特点是________ 。D A. 结构简单,流体阻力小,分离效率高,但体积庞大; B. 结构简单,分离效率高,但流体阻力大,体积庞大; C. 结构简单,分离效率高,体积小,但流体阻力大; D. 结构简单,流体阻力小,但体积庞大,分离效率低 4、在降尘室中,尘粒的沉降速度与下列因素_____ 无关。C A ?颗粒的几何尺寸 B .颗粒与流体的密度 .流体的水平流速; D ?颗粒的形状 5、助滤剂应具有以下性质_________ 。B A.颗粒均匀、柔软、可压缩; B.颗粒均匀、坚硬、不可压缩; C.粒度分布广、坚硬、不 可压缩;D.颗粒均匀、可压缩、易变形 6、助滤剂的作用是____________ 。B A. 降低滤液粘度,减少流动阻力; B. 形成疏松饼层,使滤液得以畅流; C. 帮助介质拦截固体颗粒; D. 使得滤饼密实并具有一定的刚性 7、过滤推动力一般是指________ 。B A.过滤介质两边的压差; B.过滤介质与滤饼构成的过滤层两边的压差; C.滤饼两面 的压差;D.液体进出过滤机的压差二、填空题 1、在滞流(层流)区,颗粒的沉降速度与颗粒直径的________ 次方成正比。2 2、降尘室的生产能力与降尘室的________ 和()___________ 有关。长度宽度 3、已知某沉降室在操作条件下的气体流率为3600n i/h,沉降室长、宽、高尺寸为 L b H =5 3 2,则其沉降速度为________________________ m/s。0.067 4、在除去某粒径的颗粒时,若降尘室的高度增加一倍,气流速度 ______ 。减少一倍 5、若降尘室的高度增加,则沉降时间___________ ,气流速度______ ,生产能力—。增加; 下降;不变

旋风分离器

旋风分离器 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

过去(04-05年间)我们曾经对国内的几家锅炉厂做过调研(济南、上海、杭州),重点考察旋风分离器技术,回厂后对几种分离器做过比较,今天得知您们想了解这方面情况,特介绍如下: 几种旋风分离器性能比较 项目高温绝热旋风分离器高温汽冷旋风分离器高温水冷旋风分离器结构结构简单,金属外壳内衬耐火防磨材料,外敷保温材料。结构较复杂,壳体由汽(水)冷管子弯制、手工焊装而成,壳外敷保温、壳内衬25mm 厚耐磨料。壳体采用膜式壁制作,紧贴炉膛布置,为方型水冷。 适应煤种适应于烟煤,另可掺烧优质褐煤或炉渣。适应各种煤种,包括矸石。煤种适应性差。 可维修性砌筑要求较高,壳体维修容易。更换管子难,恢复耐磨层也有一定难度。汽(水)冷旋风分离器 事故几率低汽水系统,事故频率高。 热惰性大旋风分离器筒体部分小,料褪部分大。 冷却效果无,可降50℃ 运行控制汽(水)系统简单起停炉凝结水不易带出,造成积盐、腐蚀。 后燃结焦烧无烟煤易出现后燃结焦。不易出现。不易出现。 分离效果在符合粒径要求的条件下可达99.5% 在符合粒径要求的条件下可达99.5% 飞灰含碳较低较低较高 起炉时间 7小时 3小时 3小时 造价低高较高 选择循环流化床锅炉不可避免地会提到效率和防磨问题。 高效的旋风分离器是提高锅炉运行效率的基础保证(虽然有电除尘灰返料等手段,但非主流)。“哪一种更适合于化工生产用锅炉” 你能稳定采购到什么样的煤种(必须满足企业的运行成本控制要求)你的用气制度怎样旋风分离器当然是锅炉选型的重要依据,但其也只是锅炉的一个部件。煤耗的高低和使用燃煤的关系很大,旋风分离器没有绝对的好,只有适合自己的。建议楼主综合考虑。 PS:锅炉项目投资很大,原煤参数必须要给锅炉厂家提供准确,尽可能满足今后使用供煤的需要。(前年对几家锅炉厂家进行过考察,收集到一些信息。结合其他渠道收集整理的资料如下) 目前我国循环流化床锅炉使用的高效分离器主要有三种: 1、上排气高温旋风分离器(有绝热式和汽冷式)。PS:水冷式的川锅也在做,俗

相关文档
最新文档