DCS工作原理

DCS工作原理
DCS工作原理

DCS系统即分布式控制系统,其实质时计算机技术对生产过程进行集中监视、操作、管理和分散控制的一新型控制技术。分布式操作系统的构成:作为一种纵向分层和横向分散的大型综合控制系统,它以多层计算机网络为依托,将分布在全场范围内的各种控制设备的数据处理设备连接在一起,实现各部分信息的共享的协调工作,共同完成控制、管理及决策功能。

其硬件设备由管理操作应用工作站、现场控制站和通信网络组成。管理操作应用工作站包括工程师站、操作员站和立式数据站等各种功能服务站。工程师站提供对技术人员生成控制系统的人机接口,主要用于系统组态和维护,技术人员也可以通过工程师站对应用系统尽心监控。操作员总理提供技术人员与系统数据库的人机交互界面,用于监视可以完成数据的状态值显示和操作员对数据点的操作。历史站保存整个系统的历史数据,供组态软件实现历史趋势显示,报表打印和事故追忆等功能。现场控制站用于对现场信号的采集处理,控制策略的实现,并具有可靠地冗余保证。网络通信功能:通信网络连接分布式控制系统的各个分布部分,完成数据、指令及其他信息的传递。为保证DCS可靠性,电源、通信网络、过程控制站都采用冗余配置。

PLC即可编程控制器,由CPU、存储器、输入输出接口、内嵌的精简高效操作系统组成。用户可根据自己的需要配置(扩展)自己的I/O类型及数量,用户按自己的控制需求编写控制程序下载到PLC的存储器内,PLC在运行的时候,PLC内的操作系统能运行用户的程序,根据用户程序通过输入端子完成输入信号(开关、触点、传感器等)的读取,并进行处理运算,把运算处理的结果输出到端子,以控制用户的执行机构(阀门、线圈、指示灯等),从而完成用户所需的控制功能。

电子汽车衡时利用应变电测原理称重。在称重传感器的弹性体上粘有应变计,组成惠斯通电桥。在零负载时,电桥处于平衡状态,输出为0。当弹性体承受载荷时,各应变计随之产生与载荷成比例的应变,由输出电压即可测出外加的载荷的大小。将多个称重传感安装在称台的下方,多个传感器电缆线引入接线盒并联,然后用一根电缆线接入仪表。当汽车驶上称台后,称台将所受力传递到各个称重传感器上,使应变电桥的电阻发生变化,引起输出电压变化,即输出了电信号。此电线号传输到一表内,经数字滤波、线性放大、A/D转换,经CPU 处理后最终显示称重值。电子汽车衡除其基本组成之外,可通过仪表同时连接微机、打印机、大屏幕显示器等其他电气设备,可直接实现称重打印,也可通过微机管理最终达到网络化管理。

原电池中的盐桥的作用与反应本质

认识原电池中的“桥” 一、盐桥的构成与原理: 盐桥里的物质一般是强电解质而且不与两池中电解质反应,教材中常使用装有饱和KCl 琼脂溶胶的U形管,离子可以在其中自由移动,这样溶液是不致流出来的。 用作盐桥的溶液需要满足以下条件: 阴阳离子的迁移速度相近;盐桥溶液的浓度要大;盐桥溶液不与溶液发生反应或不干扰测定。盐桥作用的基本原理是: 由于盐桥中电解质的浓度很高, 两个新界面上的扩散作用主要来自盐桥, 故两个新界面上产生的液接电位稳定。又由于盐桥中正负离子的迁移速度差不多相等, 故两个新界面上产生的液接电位方向相反、数值几乎相等, 从而使液接电位减至最小以至接近消除。 常用的盐桥溶液有:饱和氯化钾溶液、4.2mol/LKCl、0.1mol/LLiAc和0.1mol/LKNO3等。 二、盐桥的作用: 盐桥起到了使整个装置构成通路、保持电中性的作用,又不使两边溶液混合。盐桥是怎样构成原电池中的电池通路的呢? Zn棒失去电子成为Zn2+进入溶液中,使ZnSO4溶液中Zn2+过多,即正电荷增多,溶液带正电荷。Cu2+获得电子沉积为Cu,溶液中Cu2+过少,SO42-过多,即负电荷增多,溶液带负电荷。当溶液不能保持电中性,将阻止放电作用的继续进行。盐桥的存在,其中Cl-向ZnSO4溶液迁移,K+向CuSO4溶液迁移,分别中和过剩的电荷,使溶液保持电中性,反应可以继续进行。盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。可使由它连接的两溶液保持电中性,否则锌盐溶液会由于锌溶解成为Zn2+而带上正电,铜盐溶液会由于铜的析出减少了Cu2+而带上了负电。盐桥保障了电子通过外电路从锌到铜的不断转移,使锌的溶解和铜的析出过程得以继续进行。导线的作用是传递电子,沟通外电路。而盐桥的作用则是沟通内电路,保持电中性就是化学原电池的盐桥起到电荷“桥梁”的作用,保持两边的电荷平衡以防止两边因为电荷不平衡(一边失去电子,一边得到电子造成的)而阻碍氧化还原反应的进行。 三、盐桥反应现象: 1、检流计指针偏转(或小灯泡发光),说明有电流通过。从检流计指针偏转的方向可以知道电流的方向是Cu极→Zn极。根据电流是从正极流向负极,因此,Zn极为负极,Cu

原电池中的盐桥的作用与反应本质

原电池中的盐桥的作用 与反应本质

原电池中的盐桥的作用 与反应本质 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

认识原电池中的“桥” 一、盐桥的构成与原理: 盐桥里的物质一般是强电解质而且不与两池中电解质反应,教材中常使用装有饱和KCl琼脂溶胶的U形管,离子可以在其中自由移动,这样溶液是不致流出来的。 用作盐桥的溶液需要满足以下条件: 阴阳离子的迁移速度相近;盐桥溶液的浓度要大;盐桥溶液不与溶液发生反应或不干扰测定。盐桥作用的基本原理是: 由于盐桥中电解质的浓度很高,两个新界面上的扩散作用主要来自盐桥,故两个新界面上产生的液接电位稳定。又由于盐桥中正负离子的迁移速度差不多相等,故两个新界面上产生的液接电位方向相反、数值几乎相等,从而使液接电位减至最小以至接近消除。 常用的盐桥溶液有:饱和氯化钾溶液、4.2mol/LKCl、0.1mol/LLiAc和 0.1mol/LKNO3等。 二、盐桥的作用: 盐桥起到了使整个装置构成通路、保持电中性的作用,又不使两边溶液混合。盐桥是怎样构成原电池中的电池通路的呢? Zn棒失去电子成为Zn2+进入溶液中,使ZnSO4溶液中Zn2+过多,即正电荷增多,溶液带正电荷。Cu2+获得电子沉积为Cu,溶液中Cu2+过少,SO42-过多,即负电荷增多,溶液带负电荷。当溶液不能保持电中性,将阻止放电作用的继续进行。盐桥的存在,其中Cl-向ZnSO4溶液迁移,K+向CuSO4溶液迁移,分别中和过剩的电荷,

使溶液保持电中性,反应可以继续进行。盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。可使由它连接的两溶液保持电中性,否则锌盐溶液会由于锌溶解成为Zn2+而带上正电,铜盐溶液会由于铜的析出减少了Cu2+而带上了负电。盐桥保障了电子通过外电路从锌到铜的不断转移,使锌的溶解和铜的析出过程得以继续进行。导线的作用是传递电子,沟通外电路。而盐桥的作用则是沟通内电路,保持电中性就是化学原电池的盐桥起到电荷“桥梁”的作用,保持两边的电荷平衡以防止两边因为电荷不平衡(一边失去电子,一边得到电子造成的)而阻碍氧化还原反应的进行。 三、盐桥反应现象: 1、检流计指针偏转(或小灯泡发光),说明有电流通过。从检流计指针偏转的方 向可以知道电流的方向是Cu极→Zn极。根据电流是从正极流向负极,因此,Zn极为负极,Cu极为正极。而电子流动的方向却相反,从Zn极→Cu极。电子流出的一极为负极,发生氧化反应;电子流入的一极为原电池的正极,发生还原反应。 一般说来,由两种金属所构成的原电池中,较活泼的金属是负极,较不活泼的金属是正极。其原理正是置换反应,负极金属逐渐溶解为离子进入溶液。反应一段时间后,称重表明,Zn棒减轻,Cu棒增重。 Zn-2e=Zn2+(负极) Cu2++2e=Cu(正极) 原电池发生原理是要两极存在电位差,锌铜原电池实际发生的电池反应是锌与铜离子的反应,铜片只起到导电作用,并不参与反应。

双液原电池的工作原理盐桥(选修4预习)

双液原电池的工作原理盐 桥(选修4预习) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原理与装置关系回顾简析 联系上述原电池的形成原理与装置,我们能否分析总结出原电池的工作原理与形成条件是什么? 形成条件 双液原电池的工作原理盐桥

1.氧化还原反应(如活性不同的电极,形成电势差) 2.电解质(如溶液中,离子导电) 3.闭合回路(持续稳定的电流) 锌铜原电池的缺陷 电池的极化作用 原因主要是由于在铜极上很快就聚集了许多氢气泡,把铜极跟稀硫酸逐渐隔开,这样就增加了电池的内阻,使电流不能畅通。这种作用称为极化作用。 由于是单液电池,因而不可能彻底将氧化反应与还原反应分开。氢离子依然可以在锌片上得到电子

从盐桥使用重新认识氧化还原反应(化学反应) 盐桥的使用突破了氧化剂、还原剂只有直接接触、相互作用才能发生电子转移的思维定式能使氧化反应与还原反应在不同的区域之间进行得以实现。为原电池持续、稳定地产生电流创造了必要的条件,也为原电池原理的实用性开发奠定了理论基础。

可逆原电池的电动势 1.电极与电解质溶液界面间电势差的产生 2.接触电势差 电子逸出功(φe)不同,逸出电子的数量不同 当两金属相间不再出现电子的净转移时,其间 建立了双电层,该双电层的电势差就是接触电势差,用φ接触表示。φ接触∝φe,1-φe,2 3.液体接界电势差 两液相间形成的电势差即为液体接界电势差,以φ扩表示。

普通氧化还原反应与原电池反应的联系与区别 【例1】 理论上不能设计为原电池的化学反应是( ) A.CH4(g)+2O2(g)==CO2(g)+2H2O(l) △H<0 B.HNO3(aq)+NaOH(aq)==NaNO3(aq)+H2O(l) △H<0 C.2H2(g)+O2(g)==2H2O(l) △H<0 D.2FeCl3(aq)+Fe(s)==3FeCl3(aq) △H<0 【例2】 下列哪几个装置能形成原电池

双液原电池的工作原理盐桥(选修4预习)

原理与装置关系回顾简析 联系上述原电池的形成原理与装置,我们能否分析总结出原电池的工作原理与形成条件是什么? 形成条件 1.氧化还原反应(如活性不同的电极,形成电势差) 2.电解质(如溶液中,离子导电) 3.闭合回路(持续稳定的电流) 双液原电池的工作原理盐桥

锌铜原电池的缺陷 电池的极化作用 原因主要是由于在铜极上很快就聚集了许多氢气泡,把铜极跟稀硫酸逐渐隔开,这样就增加了电池的阻,使电流不能畅通。这种作用称为极化作用。 由于是单液电池,因而不可能彻底将氧化反应与还原反应分开。氢离子依然可以在锌片上得到电子 从盐桥使用重新认识氧化还原反应(化学反应) 盐桥的使用突破了氧化剂、还原剂只有直接接触、相互作用才能发生电子转移的思维定式 能使氧化反应与还原反应在不同的区域之间进行得以实现。为原电池持续、稳定地产生电流创造了必要的条件,也为原电池原理的实用性开发奠定了理论基础。

可逆原电池的电动势 1.电极与电解质溶液界面间电势差的产生 2.接触电势差 电子逸出功(φe)不同,逸出电子的数量不同 当两金属相间不再出现电子的净转移时,其间 建立了双电层,该双电层的电势差就是接触电势差,用φ接触表示。φ接触∝φe,1-φe,2

3.液体接界电势差 两液相间形成的电势差即为液体接界电势差,以φ扩表示。 普通氧化还原反应与原电池反应的联系与区别

理论上不能设计为原电池的化学反应是( ) A.CH4(g)+2O2(g)==CO2(g)+2H2O(l) △H<0 B.HNO3(aq)+NaOH(aq)==NaNO3(aq)+H2O(l) △H<0 C.2H2(g)+O2(g)==2H2O(l) △H<0 D.2FeCl3(aq)+Fe(s)==3FeCl3(aq) △H<0 【例2】 下列哪几个装置能形成原电池 【例3】 原电池的电极名称不仅与电极的性质有关,也与电解质溶液有关,下列说法中不正确的是( ) A.有Al、Cu、稀H2SO4组成原电池,其负极反应式为:Al-3e-=Al3+ B.Mg、Al、NaOH溶液组成原电池,其负极反应式为:Al-3e-=Al3+ C.由Fe、Cu、FeCl3溶液组成原电池,其负极反应式为:Cu-2e-=Cu2+ D.由Al、Cu、浓硝酸组成原电池,其负极反应式为:Cu-2e-=Cu2+ 【例4】 一个电池反应的离子方程式是Zn+Cu2+=Zn2++Cu,该反应的的原电池正确组合是( ) 【例5】 根据下图,可判断出下列离子方程式中错误的是 A.2Ag(s)+Cd2+(aq)=2Ag+(aq) +Cd(s) B.Co2+(aq)+Cd(s)=Co(s)+Cd2+(aq) C.2Ag+(aq)+Cd(s)=2Ag(s)+Cd2+(aq) D.2Ag+(aq)+Co(s)=2Ag(s)+Co2+(aq)

原电池中的盐桥的作用与反应本质

一、盐桥的构成与原理: 盐桥里的物质一般是强电解质而且不与两池中电解质反应,教材中常使用装有饱和KCl琼脂溶胶的U形管,离子可以在其中自由移动,这样溶液是不致流出来的。 用作盐桥的溶液需要满足以下条件: 阴阳离子的迁移速度相近;盐桥溶液的浓度要大;盐桥溶液不与溶液发生反应或不干扰测定。盐桥作用的基本原理是: 由于盐桥中电解质的浓度很高, 两个新界面上的扩散作用主要来自盐桥, 故两个新界面 上产生的液接电位稳定。又由于盐桥中正负离子的迁移速度差不多相等, 故两个新界面上产生的液接电位方向相反、数值几乎相等, 从而使液接电位减至最小以至接近消除。 常用的盐桥溶液有:饱和氯化钾溶液、LKCl、LLiAc和LKNO3等。 二、盐桥的作用: 盐桥起到了使整个装置构成通路、保持电中性的作用,又不使两边溶液混合。盐桥是怎样构成原电池中的电池通路的呢 Zn棒失去电子成为Zn2+进入溶液中,使ZnSO4溶液中Zn2+过多,即正电荷增多,溶液带正电荷。Cu2+获得电子沉积为Cu,溶液中Cu2+过少,SO42-过多,即负电荷增多,溶液带负电荷。当溶液不能保持电中性,将阻止放电作用的继续进行。盐桥的存在,其中 Cl-向ZnSO4溶液迁移,K+向CuSO4溶液迁移,分别中和过剩的电荷,使溶液保持电中性,反应可以继续进行。盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。可使由它连接的两溶液保持电中性,否则锌盐溶液会由于锌溶解成为Zn2+而带上正电,铜盐溶液会由于铜的析出减少了Cu2+而带上了负电。盐桥保障了电子通过外电路从锌到铜的不断转移,使锌的溶解和铜的析出过程得以继续进行。导线的作用是传递电子,沟通外电路。而盐桥的作用则是沟通内电路,保持电中性就是化学原电池的盐桥起到电荷“桥梁”的作用,保持两边的电荷平衡以防止两边因为电荷不平衡(一边失去电子,一边得到电子造成的)而阻碍氧化还原反应的进行。 三、盐桥反应现象: 1、检流计指针偏转(或小灯泡发光),说明有电流通过。从检流计指针偏转的方向可以知道电流的方向是Cu极→Zn极。根据电流是从正极流向负极,因此,Zn极为负极,Cu 极为正极。而电子流动的方向却相反,从Zn极→Cu极。电子流出的一极为负极,发生氧化反应;电子流入的一极为原电池的正极,发生还原反应。

为什么使用盐桥

液接电位:当组成或活度不同的两种电解质接触时,在溶液接界处由于正负离子扩散通过界面的离子迁移速度不同造成正负电荷分离而形成双电层,这样产生的电位差称为液体接界扩散电位,简称液接电位, 液接电位的影响因素:液接电位是由于离子运动速度不同而引起的 离子的浓度、电荷数、迁移速度、溶剂性质和液接方式 液接电位的大小:一般不超过30mV 液接电位的稳定性:不稳定(扩散过程是不可逆的) 液接电位的存在使实验时很难得出稳定的实验数值 液接电位是引起电位分析误差的主要原因之一 减免液接电位的方法:在两种溶液之间插入盐桥以代替原来的两种溶液的直接接触,减免和稳定液接电位 用作盐桥溶液的条件: 阴阳离子的迁移速度相近; 盐桥溶液的浓度要大; 盐桥溶液不与溶液发生反应或不干扰测定 盐桥作用的原理: 由于盐桥中电解质的浓度很高,两个新界面上的扩散作用主要来自盐桥,故两个新界面上产生的液接电位稳定、再现

又由于盐桥中正负离子的迁移速度差不多相等,故两个新界面上产生的液接电位方向相反、数值几乎相等,从而使液接电位减至最小以致接近消除 例如,0.1mol/L HCl与0.1mol/L KCl的液接电位约为27mV,当其间插入饱和氯化钾盐桥后,接界电位减小至1mV以下。 常用的盐桥溶液:有饱和氯化钾溶液、4.2mol/L KCl、0. 1mol/L LiAc和0.1mol/L KNO3 盐桥的使用形式:有单盐桥、双盐桥和固态U型盐桥 外盐桥溶液的作用: ①防止参比电极的内盐桥溶液从液接部位渗漏到试液中干扰测定 ②防止试液中的有害离子扩散到参比电极的内盐桥溶液中影响其电极电位 单盐桥与双盐桥的选择: 盐桥溶液不影响测定时应使用单盐桥参比电极 否则必须使用双盐桥参比电极 固态U型盐桥的制备方法: 3g琼胶 + 100ml饱和氯化钾溶液 在水浴上加热制成溶液

盐桥的工作原理

盐桥的工作原理 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

原电池------盐桥的工作原理 原电池装置中盐桥作用:盐桥起到了使整个装置构成通路的作用,补充电荷,维持电荷平衡, 消除液接电势 现象:1、检流计指针偏转,说明有电流通过。从检流计指针偏转的方向可以知 道电流的方向是Cu极→Zn极。根据电流是从正极流向负极,因此,Zn极为负极,Cu极为正极。而电子流动的方向却相反,从Zn极→Cu极。电子流出的一极为负极,发生氧化反应;电子流入的一极为正极,发生还原反应。 一般说来,由两种金属所构成的原电池中,较活泼的金属是负极,较不活泼的金属是正极。其原理正是置换反应,负极金属逐渐溶解为离子进入溶液。反应一段时间后,称重表明,Zn棒减轻,Cu棒增重。 2、取出盐桥,检流计指针归零,重新放入盐桥,指针又发生偏转,说明盐桥起到了使整个装置构成通路的作用。盐桥是装有饱和KCl琼脂溶胶的U形管,溶液不致流出来,但离子则可以在其中自由移动。 工作原理 盐桥是怎样构成原电池中的电池通路呢 Zn棒失去电子成为Zn+2进入溶液中,使ZnSO4溶液中Zn+2过多,带正电荷。Cu+2获得电子沉积为Cu,溶液中Cu+2过少,SO4-2过多,溶液带负电荷。当溶液不能保持电中性,将阻止放电作用的继续进行。盐桥的存在,其中Cl-向ZnSO4 溶液迁移,K+向CuSO4 溶液迁移,分别中和过剩的电荷,使溶液保持电中性,反应可以继续进行。盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。 固态U型盐桥的制备方法:3g琼胶 + 100ml饱和氯化钾溶液,在水浴上加热制成溶液,趁热用吸气球吸入U型玻管中充满,冷却冻结 以上是本人拙见,忘能给大家一些启发。。

盐桥的制备及应用学生讲义

盐桥的制备及应用 、实验目的 1)掌握常用盐桥的制备方法。 2)熟悉盐桥的多种型式。 3)掌握盐桥在电池电动势测定中的工作原理。 二、实验原理 在测量电极电势时,往往参比电极内的溶液和被研究体系内的溶液组成不一样。这时在两种溶液间存在一个接界面。在接界面的两侧由于溶液的浓度不同,所含的离子种类不同,在液界面上产生液接界电势。 为了尽量减小液接电势通常采用盐桥。常见的盐桥是一种充满盐溶液的玻璃 管,管的两端分别与两种溶液相连接。通常盐桥做成U形状,充满盐溶液后,把它置于两溶液间,使两溶液导通。盐桥内充满凝胶状电解液,也可以抑制两边溶液的流动。所用的凝胶物质有琼脂、硅胶等,一般常用琼脂。但高浓度的酸、氨都会与琼脂作用,从而破坏盐桥,污染溶液。若遇到这种情况,不能采用琼脂盐桥。由于琼脂微溶于水,也不能用于吸附研究实验中。 选择盐桥应注意以下几点: (1)盐桥溶液内阴阳离子的扩散速度应尽量相近,且溶液浓度要大。这样在溶液界面上主要是盐桥溶液向对方扩散,在盐桥两端产生的两个液接电势的方向相反,串联后总的液接电势大大减小,甚至可以忽略不计。 在水溶液体系中,常采用饱和KC或NH4NO3做盐桥溶液例如25C时0.1MHC和0.1M HC相接界时,液接电势为38mV,采用饱和KC溶液做盐桥后,在盐桥一端的饱和KC溶液和0.1M HC溶液间液接电势约为4.6mV,饱和KC溶液一侧带正电;在盐桥另一端的液接电势约为3.0mV,且也是饱和KC一侧带正电。这样,总的液接电势只约为 2mV,比原先要小得多。 在有机电解质溶液中的盐桥可采用苦味酸四乙基胺或高氯酸季铵盐溶液。如果 KCl NH4NO3在该有机溶液中能溶解,则也可采用KCl NH4NO3溶液。

双液原电池工作原理盐桥.doc

双液一次电池的工作原理原理与装置关系的回顾与分析 能否分析总结其工作原理和构成 基于上述形成原理的原电池条件 设备呢? 形成条件 1氧化还原反应(例如具有不同活性形式的电极电位差) 2电解液(例如溶液中, 离子电导率 三。闭环(连续稳定电流) 锌铜原电池的缺陷 电池极化 主要原因是表面有许多氢气泡 铜电极,将铜电极与 稀硫酸, 从而增加了 电池和使电池通电 水流不畅。这种作用称为极化。 因为它是一个单一的液体电池,不可能

把氧化反应和还原反应完全分开 反应。氢离子仍然可以在锌片上获得电子 从化学反应看氧化还原反应 盐桥 盐桥的运用突破了以往只能直接使用的思维方式 氧化剂和还原剂之间的接触和相互作用会导致 电子转移 氧化反应和还原反应可以在真空中进行 不同地区。 它创造了必要的条件 连续稳定地产生电流的原电池 为实践的发展奠定了理论基础。 一次电池原理。 可逆原电池电动势 1电极与电极间电位差的产生 电解质溶液界面 2接触电位差 当电子的功(φE)为 电子是不同的 当两种金属之间没有净的电子转移时,就没有电子转移

它们之间没有净电子转移 建立了双电层,并计算了双电层的电势 双电层的差别是接触电势 区别, 用φ接触表示。φ接触∞φe,1-φ 是的, 二 三。液结电位差 两个液相之间的电位差就是液体 结电位差,用展开式表示 φ。 普通氧化还原反应与化学反应的联系与区别 原电池反应 [例1] 从理论上讲,不能被设计成一级反应的化学反应 单元格为() A、CH4(g)+2O(g)==CO2(g)+2H2O(l)△H< 0B、HNO3(aq)+NaOH(aq)==NaNO3(aq)+H2O(l)△H <0 C.2H(g)+O(g)==2HO(l)△H<0 4

盐桥原电池的特点简析

盐桥原电池的特点简析 1.原理认识 例1:关于如图所示装置的叙述中,正确的是 A.铜是阳极,铜片上有气泡产生 B.铜片质量逐渐减少 C.铜离子在铜片表面被还原 D.电流从锌片经导线流向铜片 解析:这是原电池装置,其反应原理是Zn+CuSO 4= ZnSO 4 +Cu。左池中Zn 棒失去电子(通过导线流向Cu棒,是负极)成为Zn2+进入溶液中,使ZnSO 4 溶液中 Zn2+过多,带正电荷。右池中由导线流过来的Cu棒(正极)上富集电子,Cu2+获得 电子沉积为Cu,溶液中Cu2+过少,SO 4 2-过多,溶液带负电荷。由于盐桥的存在, 其中Cl-向ZnSO 4溶液迁移,K+向CuSO 4 溶液迁移,分别中和过剩的电荷,使溶 液保持电中性,反应可以继续进行。 答案:C。 点拨:与同单池的原电池一样,活泼金属做负极,不活泼的金属做负极;为使溶液保持电中性,盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。 2.设计感知 例2:控制适合的条件,将反应2Fe3++2I-2Fe2++I 2 设计成如图所示的原电池。下列判断不正确的是 A. 反应开始时,乙中石墨电极上发生氧化反应 B. 反应开始时,甲中石墨电极上Fe3+被还原 C. 电流计读数为零时,反应达到化学平衡状态 D. 电流计读数为零后,在甲中溶入FeCl 2 固定,乙中石墨电极为负极

解析:乙中I-失去电子放电,故为氧化反应,A项正确;由总反应方程式知,Fe3+被还原成Fe2+,B项正确;当电流计为零时,即说明没有电子发生转移,可证明反应达平衡,C项正确。加入Fe2+,导致平衡逆向移动,则Fe2+失去电子生成Fe3+,而作为负极,D项错。 答案:D。 点拨:有盐桥的原电池的两个电极的材料可以不同,也可以相同,但环境绝对不同。一定要从总反应的原理出发,分析原电池的正负极。 3.知识迁移 例3:已知反应AsO 43-+2I-+2H+AsO 3 3-+I 2 +H 2 O,现设计如下实验装置,进行 下述操作: (I)向B杯内逐滴加入浓盐酸,发现微安表指针偏转; (II)若改向B烧杯中滴加40%NaOH溶液,发现微安表指针与(I)实验的反向偏转。 试回答下列问题: (1)两次操作中指针为什么发生偏转? (2)两次操作过程中指针偏转方向为什么相反?试用化学平衡移动原理解释之。 (3)(I)操作过程中C 1 棒上发生的反应为; (4)(II)操作过程中C 2 棒发生的反应为。 解析:由于反应AsO 43-+2I-+2H+AsO 3 3-+I 2 +H 2 O是可逆的,也是氧化还原反应。 而且满足:①不同环境中的两电极(连接);②电解质溶液(电极插入其中并与电极自发反应);③形成闭合回路。构成原电池的三大要素。 当加酸时,c(H+)增大,平衡向正向移动;C1:2I--2e-=I2,这是负极;C2:AsO43-+2H+ +2e-=AsO 33-+H 2 O,这是正极。 当加碱时,c(OH-)增大,平衡向逆反应方向移动:C1:I2+2e-=2I-,这是正极; C 2:AsO 3 3-+ 2OH- -2e-=AsO 4 3-+H 2 O,这是负极。 答案:(1)两次操作中均能形成原电池,化学能转变成电能。

双液原电池的工作原理 盐桥

双液原电池的工作原理盐桥 原理与装置关系回顾简析 联系上述原电池的形成原理与装置,我们能否分析总结出原电池的工作原理与形成条件是什么? 形成条件 1.氧化还原反应(如活性不同的电极,形成电势差) 2.电解质(如溶液中,离子导电) 3.闭合回路(持续稳定的电流) 锌铜原电池的缺陷 电池的极化作用 原因主要是由于在铜极上很快就聚集了许多氢气泡,把铜极跟稀硫酸逐渐隔开,这样就增加了电池的内阻,使电流不能畅通。这种作用称为极化作用。 由于是单液电池,因而不可能彻底将氧化反应与还原反应分开。氢离子依然可以在锌片上得到电子 从盐桥使用重新认识氧化还原反应(化学反应) 盐桥的使用突破了氧化剂、还原剂只有直接接触、相互作用才能发生电子转移的思维定式 能使氧化反应与还原反应在不同的区域之间进行得以实现。为原电池持续、稳定地产生电流创造了必要的条件,也为原电池原理的实用性开发奠定了理论基础。 可逆原电池的电动势 1.电极与电解质溶液界面间电势差的产生 2.接触电势差 电子逸出功(φe)不同,逸出电子的数量不同 当两金属相间不再出现电子的净转移时,其间 建立了双电层,该双电层的电势差就是接触电势差,用φ接触表示。φ接触∝φe,1-φe,2

3.液体接界电势差 两液相间形成的电势差即为液体接界电势差,以φ扩表示。 普通氧化还原反应与原电池反应的联系与区别 【例1】 理论上不能设计为原电池的化学反应是( ) A.CH4(g)+2O2(g)==CO2(g)+2H2O(l) △H<0 B.HNO3(aq)+NaOH(aq)==NaNO3(aq)+H2O(l) △H<0 C.2H2(g)+O2(g)==2H2O(l) △H<0 D.2FeCl3(aq)+Fe(s)==3FeCl3(aq) △H<0 【例2】 下列哪几个装置能形成原电池 【例3】 原电池的电极名称不仅与电极的性质有关,也与电解质溶液有关,下列说法中不正确的是( ) A.有Al、Cu、稀H2SO4组成原电池,其负极反应式为:Al-3e-=Al3+ B.Mg、Al、NaOH溶液组成原电池,其负极反应式为:Al-3e-=Al3+ C.由Fe、Cu、FeCl3溶液组成原电池,其负极反应式为:Cu-2e-=Cu2+ D.由Al、Cu、浓硝酸组成原电池,其负极反应式为:Cu-2e-=Cu2+ 【例4】 一个电池反应的离子方程式是 Zn+Cu2+=Zn2++Cu,该反应的的原电池正确组合是( ) 【例5】 根据下图,可判断出下列离子方程式中错误的是 A.2Ag(s)+ Cd2+(aq)=2Ag+(aq) + Cd(s) B.Co2+(aq)+ Cd(s)=Co(s)+Cd2+(aq) C.2Ag+(aq)+Cd(s)=2Ag(s)+Cd2+(aq) D.2Ag+(aq)+ Co(s)=2Ag(s)+Co2+(aq) 【例6】 用铜片、银片、Cu (NO3)2溶液、AgNO3溶液、导线和盐桥(装有琼脂-KNO3的U型管)构成一个原电池。以下有关该原电池的叙述正确的是( ) A.在外电路中,电流由铜电极流向银电极 B.正极反应为:Ag++e-=Ag C.实验过程中取出盐桥,原电池仍继续工作 D.将铜片浸入AgNO3溶液中发生的化学反应与该原电池反应相同

盐桥的工作原理

原电池------盐桥的工作原理 原电池装置中盐桥作用:盐桥起到了使整个装置构成通路的作用,补充电荷,维持电荷平衡,消除液接电势 现象:1、检流计指针偏转,说明有电流通过。从检流计指针偏转的方向可以知道电流的方向是Cu极→Zn极。根据电流是从正极流向负极,因此,Zn极为负极,Cu极为正极。而电子流动的方向却相反,从Zn极→Cu极。电子流出的一极为负极,发生氧化反应;电子流入的一极为正极,发生还原反应。 一般说来,由两种金属所构成的原电池中,较活泼的金属是负极,较不活泼的金属是正极。其原理正是置换反应,负极金属逐渐溶解为离子进入溶液。反应一段时间后,称重表明,Zn 棒减轻,Cu棒增重。 2、取出盐桥,检流计指针归零,重新放入盐桥,指针又发生偏转,说明盐桥起到了使整个装置构成通路的作用。盐桥是装有饱和KCl琼脂溶胶的U形管,溶液不致流出来,但离子则可以在其中自由移动。 工作原理 盐桥是怎样构成原电池中的电池通路呢? Zn棒失去电子成为Zn+2进入溶液中,使ZnSO4溶液中Zn+2过多,带正电荷。Cu+2获得电子沉积为Cu,溶液中Cu+2过少,SO4-2过多,溶液带负电荷。当溶液不能保持电中性,将阻止放电作用的继续进行。盐桥的存在,其中Cl-向ZnSO4 溶液迁移,K+向CuSO4 溶液迁

移,分别中和过剩的电荷,使溶液保持电中性,反应可以继续进行。盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。

固态U型盐桥的制备方法:3g琼胶 + 100ml饱和氯化钾溶液,在水浴上加热制成溶液,趁热用吸气球吸入U型玻管中充满,冷却冻结 以上是本人拙见,忘能给大家一些启发。。 (注:文档可能无法思考全面,请浏览后下载,供参考。)

盐桥的制备及应用 学生讲义

盐桥的制备及应用 一、实验目的 1)掌握常用盐桥的制备方法。 2)熟悉盐桥的多种型式。 3)掌握盐桥在电池电动势测定中的工作原理。 二、实验原理 在测量电极电势时,往往参比电极内的溶液和被研究体系内的溶液组成不一样。这时在两种溶液间存在一个接界面。在接界面的两侧由于溶液的浓度不同,所含的离子种类不同,在液界面上产生液接界电势。 为了尽量减小液接电势通常采用盐桥。常见的盐桥是一种充满盐溶液的玻璃管,管的两端分别与两种溶液相连接。通常盐桥做成U形状,充满盐溶液后,把它置于两溶液间,使两溶液导通。盐桥内充满凝胶状电解液,也可以抑制两边溶液的流动。所用的凝胶物质有琼脂、硅胶等,一般常用琼脂。但高浓度的酸、氨都会与琼脂作用,从而破坏盐桥,污染溶液。若遇到这种情况,不能采用琼脂盐桥。由于琼脂微溶于水,也不能用于吸附研究实验中。 选择盐桥应注意以下几点: (1)盐桥溶液内阴阳离子的扩散速度应尽量相近,且溶液浓度要大。这样在溶液界面上主要是盐桥溶液向对方扩散,在盐桥两端产生的两个液接电势的方向相反,串联后总的液接电势大大减小,甚至可以忽略不计。 在水溶液体系中,常采用饱和KCI或NH4NO3 做盐桥溶液例如25℃时0.1MHCI和0.1M HCI相接界时,液接电势为38mV,采用饱和KCI溶液做盐桥后,在盐桥一端的饱和KCI溶液和0.1M HCI溶液间液接电势约为4.6mV,饱和KCI溶液一侧带正电;在盐桥另一端的液接电势约为3.0mV,且也是饱和KCI一侧带正电。这样,总的液接电势只约为2mV,比原先要小得多。 在有机电解质溶液中的盐桥可采用苦味酸四乙基胺或高氯酸季铵盐溶液。如果KCI、NH4NO3在该有机溶液中能溶解,则也可采用KCI、NH4NO3溶液。 (2)盐桥溶液内的离子,必须不与两端的溶液相互作用。如果在研究金属腐

盐桥原电池的特点简析教学内容

盐桥原电池的特点简 析

盐桥原电池的特点简析 1.原理认识 例1:关于如图所示装置的叙述中,正确的是 A.铜是阳极,铜片上有气泡产生 B.铜片质量逐渐减少 C.铜离子在铜片表面被还原 D.电流从锌片经导线流向铜片 解析:这是原电池装置,其反应原理是Zn+CuSO 4= ZnSO 4 +Cu。左池中Zn 棒失去电子(通过导线流向Cu棒,是负极)成为Zn2+进入溶液中,使ZnSO4溶液中Zn2+过多,带正电荷。右池中由导线流过来的Cu棒(正极)上富集电子,Cu2+获得电子沉积为Cu,溶液中Cu2+过少,SO42-过多,溶液带负电荷。由于盐桥的存在,其中Cl-向ZnSO4溶液迁移,K+向CuSO4溶液迁移,分别中和过剩的电荷,使溶液保持电中性,反应可以继续进行。 答案:C。 点拨:与同单池的原电池一样,活泼金属做负极,不活泼的金属做负极;为使溶液保持电中性,盐桥中离子的定向迁移构成了电流通路,盐桥既可沟通两方溶液,又能阻止反应物的直接接触。 2.设计感知 例2:控制适合的条件,将反应2Fe3++2I-2Fe2++I 2设计成如图所示的原电池。下列判断不正确的是

A. 反应开始时,乙中石墨电极上发生氧化反应 B. 反应开始时,甲中石墨电极上Fe3+被还原 C. 电流计读数为零时,反应达到化学平衡状态 D. 电流计读数为零后,在甲中溶入FeCl 固定,乙中石墨电极为负极 2 解析:乙中I-失去电子放电,故为氧化反应,A项正确;由总反应方程式知,Fe3+被还原成Fe2+,B项正确;当电流计为零时,即说明没有电子发生转移,可证明反应达平衡,C项正确。加入Fe2+,导致平衡逆向移动,则Fe2+失去电子生成Fe3+,而作为负极,D项错。 答案:D。 点拨:有盐桥的原电池的两个电极的材料可以不同,也可以相同,但环境绝对不同。一定要从总反应的原理出发,分析原电池的正负极。 3.知识迁移 例3:已知反应AsO 43-+2I-+2H+AsO33-+I2+H2O,现设计如下实验装置,进行下述操作:

高中化学里的盐桥

龙源期刊网 https://www.360docs.net/doc/9115976409.html, 高中化学里的盐桥 作者:杨延光李友银 来源:《化学教与学》2011年第06期 摘要:本文从盐桥的作用,如何制作盐桥,盐桥的创新应用等方面谈谈对盐桥的认识。 关键词:盐桥;作用;制作;创新 文章编号:1008-0546(2011)06-0090-01中图分类号:G633.8文献标识码:B doi:10.3969/j.issn.1008-0546.2011.06.047 在人教版选修4《化学反应原理》第一章第三节“化学能转化为电能”中提到了双液电池的盐桥问题。盐桥的作用是什么?引入盐桥有何应用? 一、关于盐桥的作用 简单来说,双液电池使用盐桥目的就是为了消除液接电势,盐桥中的阴离子和阳离子分别通过定向移动进入到负极池和正极池使双液电池形成闭合回路。 液接电位是指当组成或活度不同的两种电解质接触时,在溶液接界处由于正负离子扩散 通过界面的离子迁移速度不同造成正负电荷分离而形成双电层,这样产生的电位差称为液体 接界扩散电位,简称液接电位。液接电位是引起电位分析误差的主要原因之一。在两种溶液 之间插入盐桥以代替原来的两种溶液的直接接触,即可达到减免和稳定液接电位的目的。 用作盐桥的溶液需要满足以下条件:阴阳离子的迁移速度相近,盐桥溶液的浓度要大, 盐桥溶液不与其所接触溶液发生反应或不干扰测定。盐桥作用的基本原理是:由于盐桥中电解质的浓度很高,两个新界面上的扩散作用主要来自盐桥,故两个新界面上产生的液接电位稳定,又由于盐桥中正负离子的迁移速度差不多相等,故两个新界面上产生的液接电位方向相反、数值几乎相等,从而使液接电位减至最小以至接近消除。常用的盐桥溶液有:饱和氯化钾溶液、4.2mol/LKCl、0.1mol/LLiAc和0.1mol/LKNO 3等。 中学化学里双液电池中使用盐桥,不是一个普通的技术改进,而是对旧的思维模式的一个质的突破。过去认为氧化剂、还原剂只有直接接触、相互作用才能发生电子的转移,而现在,是使氧化剂和还原剂近乎完全隔离,并在不同的区域之间通过特定的装置实现了电子的定向转移,为原电池持续、稳定地产生电流创造了必要的条件,也为原电池原理的实用性开发奠定了理论基础。[1]

高中化学里的盐桥

作创新 在人教版选修4《化学反应原理》第一章第三节“化学能转化为电能”中提到了双液电池的盐桥问题。盐桥的作用是什么?引入盐桥有何应用? 1、关于盐桥的作用 简单来说, 双液电池使用盐桥目的就是为了消除液接电势, 盐桥中的阴离子和阳离子分别通过定向移动进入到负极池和正极池使双液电池形成闭合回路。液接电位是指当组成或活度不同的两种电解质接触时, 在溶液接界处由于正负离子扩散通过界面的离子迁移速度不同造成正负电荷分离而形成双电层, 这样产生的电位差称为液体接界扩散电位, 简称液接电位。液接电位是引起电位分析误差的主要原因之一。在两种溶液之间插入盐桥以代替原来的两种溶液的直接接触, 即可达到减免和稳定液接电位的目的。 用作盐桥的溶液需要满足以下条件:阴阳离子的迁移速度相近,盐桥溶液的浓度要大,盐桥溶液不与其所接触溶液发生反应或不干扰测定。盐桥作用的基本原理是:由于盐桥中电解质的浓度很高, 两个新界面上的扩散作用主要来自盐桥, 故两个新界面上产生的液接电位稳定,又由于盐桥中正负离子的迁移速度差不多相等, 故两个新界面上产生的液接电位方向相反、数值几乎相等, 从而使液接电位减至最小以至接近消除。常用的盐桥溶液有: 饱和氯化钾溶液、4.2mol/L KCl、0.1mol/LLiAc和0.1mol/LKNO3等。 中学化学里双液电池中使用盐桥,不是一个普通的技术改进,而是对旧的思维模式的一个质的突破。过去认为氧化剂、还原剂只有直接接触、相互作用才能发生电子的转移,而现在,是使氧化剂和还原剂近乎完全隔离,并在不同的区域之间通过特定的装置实现了电子的定向转移,为原电池持续、稳定地产生电流创造了必要的条件,也为原电池原理的实用性开发奠定了理论基础。[1] 2、盐桥的制作简介 目前盐桥制作大致有以下几种: ⑴用含饱和氯化钾溶液的琼脂充入U型管制作的;也有人用塑料管充琼脂制成盐桥[2]; ⑵用棉花塞住盛有饱和氯化钾溶液的U型管两头(有的直接用浸渍氯化钾溶液的棉

相关主题
相关文档
最新文档