电子陶瓷ch7(精简版

电子材料与元器件论文

CMOS图像传感器工作原理和应用 姓名: 学院: 班级: 组号: 日期:2014年12月9日

摘要 随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其集成度高、功耗低、体积小、工艺简单、成本低且开发周期较短等优势,目前在诸多领域得到了广泛的应用,特别是数码产品如数码相机、照相手机的图像传感器应用方面,市场前景广泛,因此对CMOS图像传感器的研究与开发有着非常高的市场价值。 本文首先介绍了CMOS图像传感器的发展历程和工作原理及应用现状。随后叙述了CMOS图像传感器的像元、结构及工作原理,着重说明了成像原理和图像信号的读取和处理过程,以及在数字摄像机,数码相机,彩信手机中的应用方式。 一、CMOS图像传感器的发展历史 上世纪60年代末期,美国贝尔实验室提出固态成像器件概念: 互补金属氧化物半导体图像传感器CMOS —Complementary Metal Oxide Semiconductor 电荷耦合器件图像传感器(CCD) CMOS与CCD图像传感器的研究几乎是同时起步,固体图像传感器得到了迅速发展。 CMOS图像传感器: 由于受当时工艺水平的限制,图像质量差、分辨率低、噪声降不下来,因而没有得到重视和发展。 CCD图像传感器: 光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。 由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 1970年,CMOS图像传感器在NASA的喷气推进实验室JPL制造成功, 80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件, 1995年像元数为(128×128)的高性能CMOS 有源像素图像传感器由喷气推进实验室首先研制成功。 1997年英国爱丁堡VLSI Version公司首次实现了CMOS图像传感器的商品化。 2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS,

材料连接原理复习大纲

材料连接原理与工艺复习大纲 一、熔化焊连接原理 1、熔化焊是最基本的焊接方法,根据焊接能源的不同,熔化焊可分为电弧焊、气焊、电渣焊、电子束焊、激光焊和等离子焊等。 2、获得良好接头的条件:合适的热源、良好的熔池保护、焊缝填充金属。 3、理想的焊接热源应具有:加热面积小、功率密度高、加热温度高等特点。 4、焊件所吸收的热量分为两部分:一部分用于熔化金属而形成焊缝;另一部分使母材近缝区温度升高,形成热影响区。 5、热能传递的基本方式是传导、对流和辐射,焊接温度场的研究是以热传导为主,适当考虑对流和辐射的作用。熔化焊温度场中热能作用有集中性和瞬时性。 6、当恒定功率的热源作用在一定尺寸的焊件上并作匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随热源以同样速度移动,这样的温度场称为准温度场。 7、在焊接热源的作用下,焊件上某点的温度随时间的变化过程称为焊接热循环。决定焊接热循环的基本参数有四个:加热速度、最高加热温度、在相变温度以上的停留时间和冷却速度。常用某温度范围内的冷却时间来表示冷却速度,冷却速度是决定热影响区组织和性能的最重要参数。 8、焊接热循环的影响因素:材质、接头形状尺寸、焊道长度、预热温度和线能量。 9、正常焊接时,焊条金属的平均熔化速度与焊接电流成正比。 10、熔滴:焊条端部熔化形成滴状液态金属。药皮焊条焊接时熔滴过渡有三种形式:短路过渡、颗粒过渡和附壁过渡。其中碱性焊条:短路过渡和大颗粒过渡;酸性焊条:细颗粒过渡和附壁过渡。 11、药皮溶化后的熔渣向熔池过渡形式:①薄膜形式,包在熔滴外面或夹在熔滴内;②直接从焊条端部流入熔池或滴状落入。 12、熔池形成: ①熔池为半椭球,焊接电流I、焊接电压U与熔池宽度B和熔池深度H的关系:I↑,H↑,B↓;U↑,H↓,B ↑。 ②熔池温度不均匀,熔池中部温度最高,其次为头部和尾部。 ③焊接工艺参数、焊接材料的成分、电极直径及其倾斜角度等都对熔 池中的运动状态有很大的影响。 ④为提高焊缝金属质量,必须尽量减少焊缝金属中有害杂质的含量和 有益合金元素的损失,因此要对熔池进行保护。保护方式:熔渣保护、 气体保护、熔渣气体联合保护、真空保护和自保护。 13、熔化焊焊接接头的形成过程:焊接热过程、焊接化学冶金过程和 熔池凝固和相变过程。 14、在一定范围内发生组织和性能变化的区域称为热影响区或近缝区。故焊接接头主要由焊缝和热影响区构成,其间窄的过渡区称为熔合区。如下图所示: 1——焊缝区(熔化区) 2——熔合区(半熔化区) 3——热影响区 4——母材 15、熔化焊接头形式:对接、角接、丁字接和搭接接头等。待焊部位预先加工成一定形状,称为坡口加工。 16、熔合比:局部熔化母材在焊缝金属中的比例。用来计算焊缝的化学成分。 17、金属的可焊性属于工艺性能,是指被焊金属材料在一定条件下获得优质焊接接头的难易程度。包括接合性能和使用性能。金属的可焊性主要与下列因素有关:①材料本身的成分组织;②焊接方法;③焊接工艺条件。 18、焊接热过程贯穿整个焊接过程,对焊接接头的形成过程(化学冶金、熔池凝固、固态相变、缺陷)以及接头性能具有重要的影响。 19、焊接材料的类型:焊条、焊剂、焊丝、保护气。焊条由焊芯和药皮组成,焊芯起到导电和填充金属的作用,药皮作用为①机械保护作用;②冶金处理作用;③工艺性能良好。药皮的组成分为稳弧剂、造渣剂、造气剂、

铆接技术原理与工艺特点

关于铆接技术 一、 铆接技术原理与工艺特点 常见的铆接技术分为冷铆接和热铆接,冷铆接是用铆杆对铆钉局部加压,并绕中心连续摆动或者铆钉受力膨胀,直到铆钉成形的铆接方法。冷铆常见的有摆碾铆接法及径向铆接法。摆碾铆接法较易理解,该铆头仅沿着圆周方向摆动碾压。 而径向铆接原理较为复杂,它的铆头运动轨迹是梅花状或者说是以圆为中心向外扩展的,铆头每次都通过铆钉中心点。冷铆接最常见的铆接工具有铆接机,压铆机,铆钉枪和铆螺母枪,铆钉枪和铆螺母枪是最常见单面冷铆接所用的工具。这是冷铆接工艺中最具代表性的冷铆接方法,因为使用方便,也只需在工件的一侧进行铆接,相对双面铆接的铆钉锤来说更方便。 就两种铆接法比较而言,径向铆接面所铆零件的质量较好,效率略高,并且铆接更为稳定,铆件无须夹持,即使铆钉中心相对主轴中心略有偏移也能顺利完成铆接工作。而摆碾铆接机必须将工件准确定位,最好夹持铆件。然而径向铆接机因结构复杂,造价高,维修不方便,非特殊场合一般不采用。相反地,摆碾铆接机结构简单,成本低,维修方便,可靠性好,能够满足90%以上零件的铆接要求,因而受到从多人士的亲睐。此外,利用摆碾铆接的原理,还可以制造适宜于多点铆接的多头铆接机,在现代工业生产中有其独特的优势。 热铆接是将铆钉加热到一定温度后进行的铆接。由于加热后铆钉的塑性提高、硬度降低,钉头成型容易,所以热铆时所需的外力比冷铆要小的多;另外,在铆钉冷却过程中,钉杆长度方向的收缩会增加板料间的正压力,当板料受力后可产生更大的摩擦阻力,提高了铆接强度。热铆常用在铆钉材质塑性较差、铆钉直径较大或铆力不足的情况下。

冷铆接法是以连续的局部变形便铆钉成形,其所施压力离铆钉中心越远越大,这恰恰符合材料变形的自然规律。因此,采用冷铆接技术所需设备小,节省费用。能提高铆钉的承载能力,强度高于传统铆接的80%。铆钉材料具有特别好的形变性能,铆杆不会出现质量问题,寿命较高,同时,只要改变铆头(不同的接杆和不同的铆接配件铆螺母铆钉等)的形状,就可以铆接多种形状。 二、 按工作方式分,铆接可分为手工铆接和自动钻铆。手工铆接由于受工人熟练程度和体力等因素的限制,难以保证稳定的高质量连接。而自动钻铆是航空航天制造领域应自动化装配需要而发展起来的一项先进制造技术。自动钻铆技术即利用其代替手工,自动完成钻孔、送钉及铆接等工序,是集电气、液压、气动、自动控制为一体的,在装配过程中不仅可以实现组件溅部件)的自动定位,同时还可以一次完成夹紧、钻孔、送钉、铆接/安装等一系列工作。它可以代替传统的手工铆接技术,提高生产速率、保证质量稳定、大大减少人为因素造成的缺陷。随着我国航空航天产业在性能、水平等方面的不断提高,在铆接装配中发展、应用自动钻铆技术,己经势在必行。具体原因如下: (1)自动钻铆技术减少操作时间。 ①减少成孔次数,一次钻孔完成; ②自动夹紧,消除了结构件之间的毛刺,节约了分解、去毛刺和重新安装工序; ③制孔后在孔边缘的毛刺可以得到控制: ④送钉、定位、铆接。 (2)自动钻铆机提高制孔质量。 ①制孔孔径公差控制在士0.015mm之内; ②内孔表面粗糙度最低为Ra3.2urn; ③制孔垂直度在士0.50以内; ④制孔时结构件之间无毛刺,背部毛刺控制在0.12ram之内; ⑤孔壁无裂纹。 (3)与手工铆接相比,在成本上有大幅度降低,通过比较人工与自动钻铆机安装相同数量的紧固件,所耗费的工时上,可以看出,对于大量同种类的紧固件的安装,自动钻铆机可以节约的工时成倍数增长。

电子材料知识点总结

电子材料知识点总结 1什么是电子材料? 电子材料是特指适合于电子学这一范围使用的材料,它是电子工业和电子科学技术发展的物质基础。 2电子材料的选用原则 1.根据元器件性能参数 2.根据元器件结构特点 3.根据元器件工艺特点 4.按已知定律或法则 5.按经济原则 3霍尔效应 定义1:在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。定义2:通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。 4电容器电介质材料的要求? 1.介电常数ε尽可能的大 2.损耗角正切tanδ尽可能的小 3.具有高的绝缘电阻值,并保证电阻在不同温度和频率下稳定,避免因杂质分解或材料老化引起绝缘阻值下降; 4.具有高的击穿强度。 5.要求电容器介质的性能在不同的温度、湿度等环境条件及不同的频率、电压等工作条件下保持长期稳定。 5电极材料的要求? 要求制造电极的材料有足够的电导率、热导率和高温硬度,电极的结构必须有足够的强度和刚度,以及充分冷却的条件。此外,电极与工件间的接触电阻应足够低,以防止工件表面熔化或电极与工件表面之间的合金化。 7表征无机介电常数特性的主要参数有哪些(限写三项)? 介电常数除了与材料有关以外,还与温度和电场频率有关。 干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为电的导体。这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。 气体放电有多种多样的形式。主要的形式有辉光放电、电弧放电、电晕放电、火花放电、介质阻挡放电等。 二.描述气体击穿后的放电现象 辉光放电:整个空间发光,电流密度小;低气压、电源功率小;电弧放电:放电通道和电极的温度都很高,电流密度大,电路有短路特征;电源功率大 火花放电:有收细的发光放电通道、贯穿两极的断续的明亮火花;大气压下、电源功率小电晕放电:紧贴尖电极周围有一层晕光;极不均匀场 刷状放电:从电晕放电电极中伸出许多较明亮的细放电通道;极不均匀场 三.压电材料的四个重要参数并解释其含义? 1.介质损耗:是判断材料性能好坏,选择材料和制作器件的重要依据 2.机械品质因数:反映压电振子在谐振时的损耗程度 3.机械耦合系数:是衡量压电体的机电能量转换能力的一个重要参数 4.频率常数N:是指振子的谐振频率f r与主振动方向尺寸(或直径)的乘积。四.经半导体化后的半导体陶瓷的电性能与一般绝缘电子瓷和半导体单晶的性能差别主要体现在那两个方面?: 1.半导体的晶粒电阻率要比其他电子陶瓷低的多,而且可以在约10个数量级范围内变化。 2.半导瓷的晶粒间界上多数存在一定的界面势垒层,并由此产生各种各样的势垒效应。与半导体单晶不同,由于半导体陶瓷一般为多相结构,其主要相虽为半导体,但晶界层则可以是半导体或绝缘体。 五.防止滑石的老化措施有哪些? 1.在瓷料配方中加入形成玻璃的成分,以生成粘度大而数量足够多的玻璃相(一般为20%左右),玻璃相把晶粒紧紧包裹。 2.控制晶粒的大小 3.必须严防游离石英的混入。六.BaTio3半导体陶瓷的ptc效应的内部机理? 在居里温度以下,BaTio3产生自发极化,表面电荷密度被极化强度的垂直分量所补偿。使有效Ns大幅度下降,势垒;Φ0值也随之大幅下降,材料的电阻率很低。而在居里点温度以上,自发极化消失,有效Ns增多,Φ0增高,电阻率急剧提升,产生PTC效应。 晶体结构及其特征: 晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。铁电体:某些晶体在一定的温度范围内具有自发极化,而且其自发极化方向可以因外电场方向的反向而反向,晶体的这种性质称为铁电性,具有铁电性的晶体称为铁电体。 铁磁体:具有铁磁性的物质被称为铁磁体。 铁磁性:物质中相邻原子或离子的磁矩由于它们的相互作用而在某些区域中大致按同一方向排列,当所施加的磁场强度增大时,这些区域的合磁矩定向排列程度会随之增加到某一极限值的现象。 磁滞回线 :在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线

电子陶瓷工艺原理1-图文

电子陶瓷 第三章电子陶瓷工艺原理 1 第三章电子陶瓷工艺原理 一电子陶瓷工艺概述 二电子陶瓷原料与粉碎 三电子瓷料合成原理 四电子陶瓷成型原理 五电子陶瓷烧结原理 六电子陶瓷表面加工 2 一电子陶瓷工艺概述 1 电子陶瓷基本工艺: 通常,从性能的改进来改善陶瓷材料的功能,需要从两方面入手:①内部组成:从材料的组成上直接调节,优化其内在品质②外界条件:改变工艺条件以改善和提高陶瓷材料性能,达到获得优质电子陶瓷材料的目的。 电子陶瓷基本工艺一般包括如下过程: 原料处理和加工、电子瓷料合成、成型、烧结、表面加工等基本单元操作。 3

(a(b (c(d(e (g (f (h 一电子陶瓷工艺概述 2 电子陶瓷工业化流程:造粒与成型 喷雾造粒干压成型 6 一电子陶瓷工艺概述

2电子陶瓷工业化流程: 烧结与表面金属化 陶瓷烧结印刷电极 7 一电子陶瓷工艺概述 2 电子陶瓷工业化流程: 测试与包装 测试分选编带包装 8 二电子陶瓷原料与粉碎 1 电子陶瓷原料 2原料粒度与粉碎 3球磨法原理 9 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料对电子陶瓷的性能至关重要,对于电子陶瓷的粉料,必须了解下列三方面情况: ?化学成分

包括纯度、杂质的种类与含量、化学计量比 ?颗粒度 包括粉粒直径、粒度分布与颗粒外形等 ?结构 包括结晶形态、稳定度、裂纹与多孔性等 10 二电子陶瓷原料与粉碎 1 电子陶瓷原料 原料的化学成分,直接关系到电子陶瓷的各项物 理性能是否能够得到保证,而颗粒度与结构主要决定 坯体的密度及其可成型性。 粒度越细,结构越不完整,则其活性(不稳定性、可烧结性越大,越有利于烧结的进行。 电子陶瓷原料有天然原料和化工原料两类。 11 二电子陶瓷原料与粉碎 1 电子陶瓷原料 ?天然原料: 直接来源于大自然,如粘土,石英,菱镁矿,刚玉矿等。

题库---微电子工艺原理

微电子工艺原理复习知识点与题库 一、绪论微电子工艺的概述 知识点:集成度、摩尔定律、微电子系统的概念 1集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。 2评价发展水平:最小线宽,硅晶圆片直径,DRAM容量 二、晶体结构和晶体生长 知识点: 5金刚石结构特点:共价四面体,内部存在着相当大的“空隙” 6面心立方晶体结构是立方密堆积,(111)面是密排面。 7金刚石结构可有两套面心立方结构套购而成,面心立方晶格又称为立方密排晶格。 8双层密排面的特点:在晶面内原子结合力强,晶面与晶面之间距离较大,结合薄弱。两个双层面间,间距很大,而且共价键稀少,平均两个原子才有一个共价键,致使双层密排面之间结合脆弱 9金刚石晶格晶面的性质:由于{111}双层密排面本身结合牢固,而双层密排面之间相互结合脆弱,在外力作用下,晶体很容易沿着{111}晶面劈裂。 由{111}双层密排面结合牢固,化学腐蚀就比较困难和缓慢,所以腐蚀后容易暴露在表面上。因{111}双层密排面之间距离很大,结合弱,晶格缺陷容易在这里形成和扩展。 {111}双层密排面结合牢固,表明这样的晶面能量低。由于这个原因,在晶体生长中有一种使晶体表面为{111}晶面的趋势。 10肖特基缺陷:如果一个晶格正常位置上的原子跑到表面,在体内产生一个晶格空位,称肖特基缺陷。 11弗伦克尔缺陷:如果一个晶格原子进入间隙,并产生一个空位,间隙原子和空位是同时产生的,这种缺陷为弗伦克尔缺陷。 12堆垛层错:在密堆积的晶体结构中,由于堆积次序发生错乱 13固溶体:当把一种元素B(溶质)引入到另一种元素A(溶剂)的晶体中时,在达到一定浓度之前,不会有新相产生,而仍保持原来晶体A的晶体结构,这样的晶体称为固溶体。 14固溶度:在一定温度和平衡态下,元素B能够溶解到晶体A内的最大浓度,称为这种杂质在晶体中的最大溶解度 15固溶体分类:替位式固溶体,间隙式固溶体 16某种元素能否作为扩散杂质的一个重要标准:看这种杂质的最大固溶度是否大于所要求的表面浓度,如果表面浓度大于杂质的最大固溶度,那么选用这种杂质就无法获得所希望的分布。 题目 三扩散工艺 知识点:

电子材料复习参考

电子材料考试重点 1、什么是电子材料? 是以发挥其物理性能(如光、电、磁、声、热等)或物理与物理性能之间相互转换的特性为主而用于电子信息工业的材料。 2电子材料的选用原则 根据元器件性能参数先用材料。 2、根据元器件结构特点选用材料。 3、根据元器件工艺特点选用材料。 4、按已知定律或法则选用材料。 5、按经济原则选用材料。 3霍尔效应 定义1:在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。 定义2:通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。 4电容器电介质材料的要求? 1.介电常数ε尽可能的大:提高比率电容量(单位体积的电容量),以制造 小体积、轻重量的电容器; 2.损耗角正切tanδ尽可能的小:(1~6)×10-4,避免因极化过程造成能量损失; 3.具有高的绝缘电阻值,并保证电阻在不同温度和频率下稳定,避免因杂质分 解或材料老化引起绝缘阻值下降; 4.具有高的击穿强度。 5.要求电容器介质的性能在不同的温度、湿度等环境条件及不同的频率、电压 等工作条件下保持长期稳定。 5电极材料的要求? 要求制造电极的材料有足够的电导率、热导率和高温硬度,电极的结构必须有足够的强度和刚度,以及充分冷却的条件。此外,电极与工件间的接触电阻应足够低,以防止工件表面熔化或电极与工件表面之间的合金化。 6晶体中那些缺陷影响材料的导电性?这些缺陷产生的原因是什么? 晶体结构缺陷的种类繁多,有的是晶格畸变,有的是品格中杂质或掺质原子缺陷,有的涉及到品体组成的非化学计量比,有的对应于电磁结构中有序的跃迁等。人们按照晶体结构缺陷在三维空间延伸的线度,把它们分为点、线、面、体等四类结构缺陷。 1 点缺陷 晶体中的一些原子被外界原子所代替,或者留有原子空位等,这些变化破坏了晶体规则的点阵周期性排列,并引起质点间势场的畸变,这样造成的晶体结构不完整性仅仅局限在某些位置,只影响临近的几个原子,在三维空间方向上的尺度远远小于晶体或晶粒的尺度,所以称为点缺陷,点缺陷参与晶体中的质量输运与电荷输运过程, 它对晶体结构敏感性能有时起到决定性的作用。 1.1 晶格位置缺陷 晶格位置缺陷一般指空位和间隙原子所造成的点缺陷,主要是内部质点运动偏离其平衡位置所产生的缺陷,由于原子的热运动与温度有关,所以这类缺陷的形成主要受温度影响,

微电子工艺原理习题

微电子工艺原理习题 一、填空题 1.传统集成电路制造工艺的发展以的出现作为大致的分界线,现代集成电路制造工艺进入超大规模集成电路后又以工艺的作为划分标志。 2.能提供多余空穴的杂质称为,P型半导体中的多子是。 3.多晶硅转变成单晶硅的实质是。 4.单晶硅拉制过程中引晶阶段的温度选择非常重要,温度过高时会造成,温度过低时会形成。 5.SiO 2 网络中氧的存在有两种形式,其中原子浓度越高,网络的强度越强;原子浓度越高,网络的强度越弱。 6.目前常用的两种掺杂技术是和。 7.完整的光刻工艺应包括和两部分,随着集成电路生产在微细加工中的进一步细分,后者又可独立成为一个工序。 8.伴随刻蚀工艺实现的图形转换发生在和之间。 9.按照功能和用途进行分类,集成电路可以分为和两类。 10.能提供多余电子的杂质称为,N型半导体中的少子是。11.固溶体分为替位式固溶体和间隙式固溶体,两类大部分施主和受主杂质都与硅形成 固溶体。 12.单晶硅的性能测试涉及到的测试、的测试和缺陷检验等多个方面。 13.SiO 2中掺入杂质的种类对SiO 2 网络强度的影响表现在:掺入Ⅲ族元素如硼时,网络强 度;掺入Ⅴ族元素如磷时,网络强度。 14.常用的芯片封装方法有、和陶瓷封装。 15.光刻胶又叫,常用的光刻胶分为和两类。

1.下列有关集成电路发展趋势的描述中,不正确的是。 (A)特征尺寸越来越小(B)晶圆尺寸越来越小 (C)电源电压越来越低(D)时钟频率越来越高 2.下面几种薄膜中,不属于半导体膜的是。 (A)SiO 2 膜(B)单晶硅膜(C)多晶硅膜(D)GaAs膜 3.下列有关芯片封装的描述中不正确是。 (A)金属封装热阻小有良好的散热性能(B)塑料封装机械性能差,导热能力弱(C)金属封装成本低,塑料封装成本高(D)陶瓷封装的气密性好,但脆性较高4.下列选项中属于光刻工艺三要素之一的是。 (A)曝光(B)光刻胶(C)显影(D)刻蚀 5.下列有关扩散的几种描述中不正确的是。 (A)扩散是一种掺杂技术。(B)扩散有气态扩散、液态扩散和固态扩散三种。(C)替位型杂质在硅中的扩散方式有替代扩散、空位扩散以及间隙扩散三种。(D)替位型杂质的掺入不会改变材料的电学性质。 6.下列关于光刻胶的描述中正确的是。 (A)负胶具有较高的固有分辨率(B)正胶成本低,适合大批量生产(C)正胶的分辨率高,抗干法腐蚀能力强(D)负胶粘附性差,抗湿法腐蚀能力弱7.硅片中同时有浅施主和浅受主时,导电类型和载流子浓度由决定。 (A)杂质浓度差(B)施主杂质(C)受主杂质(D)杂质浓度和 8.下面几种材料的薄膜中,不属于介质膜的是。 (A)SiO 2膜(B)Si 3 N 4 膜(C)多晶硅膜(D)Al 2 O 3 膜 9.下列因素中对扩散系数大小不会造成影响的是。 (A)温度(B)杂质种类(C)扩散环境(D)杂质浓度变化率10.关于干法刻蚀的正确描述是。 (A)化学性刻蚀选择比高且是各向异性刻蚀; (B)反应离子刻蚀(RIE)兼具各向异性与高选择比等优点; (C)化学性刻蚀方向性好,可获得接近垂直的刻蚀侧墙; (D)物理性刻蚀的选择性好。

微电子器件原理总结

三种管子的工作原理、符号、结构、电流电压方程、电导、跨导、频率 然后还有集边效应,二次击穿 双极型晶体管: 发射极电流集边效应: (1)定义:由于p-n 结电流与结电压的指数关系,发射结偏压越高,发射极边缘处的电流较中间部位的电流越大 (2)原因:基区体电阻的存在引起横向压降所造成的 (3)影响:增大了发射结边缘处的电流密度,使之更容易产生大注入效应或有效基区扩展效应,同时使发射结面积不能充分利用 (4)限制:限制发射区宽度,定义发射极中心到边缘处的横向压降为kT /q 时所对应的发射极条宽为发射极有效宽度,记为2S eff 。S eff 称为有效半宽度。 发射极有效长度 : (1)定义:沿极条长度方向,电极端部至根部之间压降为kT/q 时所对应的发射极长度称为发射极有效长度 (2)作用:类似于基极电阻自偏压效应,但沿Z 方向,作用在结的发射区侧 二次击穿和安全工作区: (1)现象:当晶体管集电结反偏增加到一定值时,发生雪崩击穿,电流急剧上升。当集电结反偏继续升高,电流I c 增大到某—值后,cb 结上压降突然降低而I c 却继续上升,即出现负阻效应。 (2)分类: 基极正偏二次击穿(I b >0)、零偏二次击穿和(I b =0)、反偏二次击穿(I b <0)。 (3)过程:①在击穿或转折电压下产生电流不稳定性; ②从高电压区转至低电压区,即结上电压崩落,该击穿点的电阻急剧下降; ③低压大电流范围:此时半导体处于高温下,击穿点附近的半导体是本征型的; ④电流继续增大,击穿点熔化,造成永久性损坏。 (4)指标:在二次击穿触发时间t d 时间内,消耗在晶体管中的能量 ?=d t SB IVdt E 0 称为二次击穿触发能量(二次击 穿耐量)。晶体管的E SB (二次击穿触发功率P SB )越大,其抗二次击穿能力越强。 (5)改善措施: 1、电流集中二次击穿 ①由于晶体管内部出现电流局部集中,形成“过热点”,导致该处发生局部热击穿。

半导体器件原理简明教程习题答案傅兴华教学内容

半导体器件原理简明教程习题答案傅兴华

半导体器件原理简明教程习题答案 傅兴华 1.1 简述单晶、多晶、非晶体材料结构的基本特点. 解 整块固体材料中原子或分子的排列呈现严格一致周期性的称为单晶材料; 原子或分子的排列只在小范围呈现周期性而在大范围不具备周期性的是多晶材料; 原子或分子没有任何周期性的是非晶体材料. 1.6 什么是有效质量,根据E(k)平面上的的能带图定性判断硅鍺和砷化镓导带电子的迁移率的相对大小. 解 有效质量指的是对加速度的阻力.k E h m k ??= 21*1 由能带图可知,Ge 与Si 为间接带隙半导体,Si 的Eg 比Ge 的Rg 大,所以 Ge μ>Si μ.GaAs 为直接带隙半导体,它的跃迁不与晶格交换能量,所以相对来说 GaAs μ>Ge μ>Si μ. 1.10 假定两种半导体除禁带宽度以外的其他性质相同,材料1的禁带宽度为1.1eV,材料2的禁带宽度为3.0eV,计算两种半导体材料的本征载流子浓度比值,哪一种半导体材料更适合制作高温环境下工作的器件? 解 本征载流子浓度:)exp( )( 1082.42 15 T dp dn i k Eg m m m n ?= 两种半导体除禁带以外的其他性质相同 ∴)9.1exp()exp()exp(0.31.121T k k k n n T T ==-- T k 9.1>0 ∴21n n > ∴在高温环境下2n 更合适 1.11 在300K 下硅中电子浓度330102-?=cm n ,计算硅中空穴浓度0p ,画出半导体能带图,判断该半导体是n 型还是p 型半导体.

解 3 173 2 1002 02 0010125.110 2)105.1(p -?=??==→=cm n n n p n i i ∴>00n p 是p 型半导体 1.16 硅中受主杂质浓度为31710-cm ,计算在300K 下的载流子浓度0n 和0p ,计算费米能级相对于本征费米能级的位置,画出能带图. 解 317010-==cm N p A 2 00i n p n = T=300K →310105.1-?=cm n i 330 2 01025.2-?==∴cm p n n i 00n p > ∴该半导体是p 型半导体 ) 105.110ln(0259.0)ln(1017 0??==-i FP i n p KT E E 1.27 砷化镓中施主杂质浓度为31610-cm ,分别计算T=300K 、400K 的电阻率和电导率。 解 316010-==cm N n D =?=?=?=-i i n K T cm n K T 4001023003 6 0 02 n n p n p n i i o o = ?= 电导率p n qp qn μμσ00+=,电阻率σ ρ1= 1.40 半导体中载流子浓度314010-=cm n ,本征载流子浓度31010-=cm n i , 非平衡空穴浓度31310-=cm p δ,非平衡空穴的寿命s n 6010-=τ,计算电子-空穴的复合率,计算载流子的费米能级和准费米能级. 解 因为是n 型半导体 t p N C n 1 0= τ cm n p p N C R t o 190 10===τδδ )ln( 0i i Fn n p n kT E E δ+=- )ln(i o Fp i n p p kT E E δ+=- 2.2 有两个pn 结,其中一个结的杂质浓度3 17315105,105--?=?=cm N cm N A D ,另一 个结的杂质浓度319317105,105--?=?=cm N cm N A D ,在室温全电离近似下分别求它们的接触电势差,并解释为什么杂质浓度不同接触电势差的大小也不同.

材料连接原理课后答案全..上课讲义

1.焊接热源有哪些共同要求?描述焊接热源主要用什么指标?(简05.07.09) 答:能量密度高、快速实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。 主要指标:最小加热面积、最大功率密度和正常焊接规范条件下的温度。 2.试述焊接接头的形成过程及对焊接质量的影响。 答:(1)预压阶段;(2)通电加热阶段;(3)冷却结晶阶段。 对焊接质量的影响: 3.溶滴比表面积的概念及对焊接化学冶金过程的影响? 答:熔滴的表面积Ag与其质量之比称为熔滴的比表面积S。 熔滴的比表面积越大,熔滴与周围介质的平均相互作用时间越长,熔滴温度越高,越有利于加强冶金反应。 4.焊条熔化系数、熔敷系数的物理意义及表达式?真正反映焊接生产率的指标是什么?答:焊条金属的平均融化速度:在单位时间内熔化的焊芯质量或长度; 损失系数:在焊接过程中由于飞溅、氧化和蒸发而损失的金属质量与熔化的焊芯质量之比; 平均熔敷系数(真正反映焊接生产率的指标),由于损失系数不等于零,单位时间内真正进入焊接熔池的金属质量称为平均熔敷速度。 5.试简述不锈钢焊条药皮发红的原因?有什么解决措施?(简05.08.10) 答:药皮发红的原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。 解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。 6.熔合比的表达式和影响因素?多层焊时,如果各层间的熔合比是恒定的,试推导第n层焊缝金属的成分? 答:表达式: 影响因素:焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目、母材热物理性能等。 7.从传热学角度说明临界板厚δcr的概念?某16Mn钢焊件,采用手工电弧焊,能量E=15KJ/cm求δcr? 答:由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc和t8/5不再变化,此时板厚即为临界板厚δcr。 δ== 1.95 cr cm 8.手工电弧焊接厚12mm的MnMoNbB钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5?附λ=0.29J/(cm s℃) CP=6.7 J/(cm s℃)

半导体器件原理2009年试题(贵州大学)

贵州大学2008-2009学年第二学期考试试卷 A 科目名:固体电子器件原理 注意事项: 1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。 2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。 4. 满分100分,考试时间为120分钟。 题 号 一 二 三 四 五 六 七 总 分 统分人 得 分 一、能带图 (27分) 1. 画出硅pn 结零偏、反偏和正偏条件下的能带图,标出 有关能量。 (9 分) 2. 画出n 型衬底上理想的金属-半导体接触(理想金属-半导体接触的含义:金属-半导体界面无界面态,不考虑镜像电荷的作用)的能带图,(a) φm > φs , (b) φm < φs . 分别指出该接触是欧姆接触还是整流接触? (要求画出接触前和接触后的能带图)( 8 分 ) φm > φs , 得 分 评分人

φm < φs, 3. 画出p型硅衬底上理想MOS结构(理想MOS结构的含义:栅极材料与衬底半导体无功函数差,栅极-氧化层-衬底无界面态,氧化层为理想的介质层)半导体表面处于反型状态时的能带图。(5分) 4. 重掺杂的n+多晶硅栅极-二氧化硅-n型半导体衬底形成的MOS结构,假定氧化层电荷为零。画出MOS结构在平衡态的能带图,说明半导体表面状态。(5分)

二、器件工作机理和概念(35 分) 1. 简述突变空间电荷区近似的概念。 (5分) 现在以突变pn 结为例来研究平衡pn 结的特性。我们知道,在p 型半导体中,空穴是多数载流子,电子是少数载流子;而在n 型半导体中,电子是多数载流子,空穴是少数载流子。于是,在pn 结冶金界面的两侧因浓度差而出现了载流子的扩散运动。 p 区的空穴向n 区扩散,在冶金界面的p 型侧留下电离的不可动的受主离子; 同理,n 区的电子向p 区扩散,在冶金界面的n 型侧留下电离的不可动的施主离子。电离的受主离子带负电,电离的施主离子带正电。于是,随着扩散过程的进行,在pn 结界面两侧的薄层内,形成了由不可动的正负电荷组成的非电中性区域。我们把这一区域称为pn 结空间电荷区, 如图所示。 空间电荷的出现,在pn 结两侧产生了由正电荷指向负电荷的电场E bi , 即由n 区指向p 区的电场。这一电场称为自建电场或内建电场。在自建电场的作用下,空间电荷区内n 型侧空穴向p 区漂移,p 型侧电子向n 区漂移,同时产生与p 区空穴和n 区电子的扩散方向相反的“推挡”作用,减弱了浓度差引起的扩散运动对载流子的输运作用。当扩散运动与自建电场的作用达到动态平衡时, 载流子通过pn 结界面的净输运为零,空间电荷区的宽度不再变化,自建电场的大小也不再变化。 由于自建电场的作用,可近似认为空间电荷区内的自由载流子—电子和空穴 被完全“扫出”该区域,只剩下电离受主和电离施主原子,空间电荷区是一个高阻区,所以空间电荷区又称为耗尽区或阻挡层。此外,空间电荷区的边界虽然是缓变的,但计算表明过度区很窄,因此,可近似认为空间电荷区边界是突变的。这两个近似条件,称为突变空间电荷区近似或突变耗尽近似。在突变耗尽近似条件下,如图在-x p 到x n 之间,没有自由载流子,电阻为无穷大;在-x p 和x n 的外侧是电中性的;在-x p 和x n 处,存在一个由电中性区到耗尽区的突变界面。 得 分 评分人

电子工艺材料授课教案

第1讲 实践教学目标 1、了解手工焊接的目的及意义; 2、掌握手工焊接的相关理论; 3、了解焊接的材料及工具; 4、掌握手工焊接的方法及技巧; 5、利用铜线焊制六面体及工艺品。 实践教学内容 [教学内容] 1、焊结概念 焊接是电子工业中应用最普遍的技术,在电气工程中占有重要的地位,也是电工、电子实践操作应掌握的技能之一。 焊接是金属加工的主要方法之一,它是将两个或两个以上分离的工件,按一定的形式和位置连接成一个整体的工艺过程。焊接的实质,是利用加热或其它方法,使焊料与被焊金属原子之间互相吸引、互相渗透,依靠原子之间的内聚力使两种金属达到永久、牢固地结合。 2、焊接特点 (1)焊料熔点低于焊件,焊接时将焊件与焊料共同加热到最佳焊接温度,焊料熔化而焊件不熔化,一般加热温度较低,对母材组织和性能影响小,变形小。 (2)锡焊连接的形式是由熔化的焊料润湿焊件的焊接面产生冶金、化学反应形成结合层而实现的,只需要简单的加热工具和材料即可加工,投资少。 (3)焊点有好的电气性能,适合于金属及半导体等电子材料的连接。 (4)焊接接头平整光滑,外形美观;焊接过程可逆,易于拆焊。 3、焊接原理 对于锡焊操作来说最基本的就是润湿、扩散和结合层这三点。 (1)润湿 润湿就是焊料对焊件的浸润。熔融焊料在金属表面形成均匀、平滑、连续并附着牢固的焊料层就称为润湿,它是发生在固体表面和液体之间的一种物理现象。只有焊料能润湿焊件,才能进行焊接。金属表面被熔融焊料润湿的特性叫可焊性。 (2)扩散 锡焊的本质就是焊料与焊件在其界面上的扩散。正是扩散作用,形成了焊料和焊件之间的牢固结合,实现了焊接。 (3)结合层 将表面清洁的焊件与焊料加热到一定温度,焊料熔化并润湿焊件表面,由于焊料和焊件金属彼此扩散,所以在两者交界面形成一种新的金属合金层,这就是我们所说的结合层。结合层的作用就是将焊料和焊件结合成一个整体。

《新型电子元器件研发生产制造新工艺新技术与材料选用及质

《新型电子元器件研发生产制造新工艺新技术与材料选用及质量检测标准规范实用全书》 本书作者:编委会 图书册数:1158 出版社:电子工业出版社 定价:1158元 现价:570元 《新型电子元器件研发生产制造新工艺新技术与材料选用及质量检测标准规范实用全书》本店是实体店,坚决抵制各类盗版、劣质图书及附件,严格控制图书进货渠道,遵守国家新闻出版、发行的相关规定,直接从经过国家出版发行行政部门审核批准的出版社进货,与国图、中华书局、三联书店、商务印书馆、人民文学、上海古籍、上海世纪出版集团、中国社科、社科文献、电子工业、机械工业、化学工业、科学、法律、上海外教、北大、清华、人大、复旦、武大、南大、广西师大、北京出版集团、浙江少儿、江苏少儿、21世纪、作家、春风文艺、长江文艺、接力、漓江等全国知名的300余家出版社建立了良好的合作关系,所采购的图书均经所在地图书市场审读办公室审读合格后,方上市发行,100%正版、优质,订购速度快,数据提供及时,加工全方位,能全面符合客户的需求。

公司经营的图书科目品种齐全,涉及学科面广,涵盖文学、文化、教育、体育、科技、历史、工具图书、艺术、哲学、语言、政治、经济、学术专著、工具书及其它社科综合类图书等。经营风格全方位,适合各文化层次读者学习和阅读需要。 内容介绍:商品简介 商品编码:pdf93559 出版社:电子工业出版社 册   数: 作者:编委会 出版时间:2012年3月

印刷时间2012年3月 isbn: 版次:第三版 装帧:精装 纸张:胶版纸 印次:第三次 页数: 正文语种:中文 开本:16开 目录 新型电子元器件研发生产制造新工艺新技术与材料选用及质量检测标准规范实用全书 新型电子元器件研发生产制造新工艺新技术与材料选用及质量检测标准规范实用全书 详细目录 第一篇常用电子元器件 第一章半导体二极管 第二章半导体三极管 第三章电阻器 第四章电位器 第五章开关

电子陶瓷工艺原理复习重点整理

一、瓷绪论 1、广义瓷定义:采用原料粉碎—浆料(泥料)制备—坯体成型—高温烧结,这 一工艺制备过程所制备的产品,称为瓷。 2、新型瓷定义:采用人工精制的无机粉末为原料,通过结构上的设计,精确的化学计 量、合适的成型方法和烧成制度而达到特定的性能,经过加工处理使之符合要求尺寸精度的无机非金属材料制品。 3、新型瓷与传统瓷的区别 4新型瓷的特性与应用 (1)高度绝缘性和良好的导热性 (2)铁电性、压电性和热释电性 (3)半导性或敏感性 二、电子瓷瓷料制备原理 1、原料评价:化学成份、结构、颗粒度、形貌四个方面。 工业纯(IR)Industrial Reagent 98.0% 化学纯(CP)Chemical Purity 99.0% 分析纯(AR)Analytical Reagent 99.5% 光谱纯(GR)Guaranteed Reagent 99.9% 电子级原料专用 2、电子瓷原料的选择 (1)、在保证产品性能的前提下,尽量选择低纯度原料; 主晶相原料一般采用化学纯(CP99%)或电子级粉料 掺杂原料则应采用光谱纯(GR99.9%)。 (2)、各种杂质及种类对产品的影响要具体分析。 利:能对影响产品的不利因素进行克制,能与产品的某成份形成共熔物或固溶体从而促进烧结,降低烧结温度,使瓷件致密。 害:产生各种不必要的晶相及晶格缺陷,影响产品性能。 3、原料的颗粒度 要求:愈细愈好,在10μm以下(称细粉)。有利于各组份混合均匀,提高坯体的成型密度,提高粉料活性,降低烧成温度。

4、原料的粉碎方法及原理 粉碎方法:用机械装置对原料进行撞击、碾压、磨擦使原料破碎圆滑。 粉碎原理:机械能转换为粉料的表面能和缺陷能,能量转换过程。 5、球磨效率影响因素及优缺点、粉碎程度 1-转速太快贴壁,太慢沉底。 2-磨球形状球间点接触,柱间线接触。 3-筒体直径常用滚筒式球磨机的直径围一般在100cm~200cm之间。 4-磨球与衬的质料氧化铝(Al2O3)、氧化锆(ZrO2)、玛瑙(SiO2)、氧化锆 增韧氧化铝、钢球。 5-球磨时间一般为24~48小时,时间长杂质混入较多。 6-料、球和水的配比料/球/水=1/1/(0.6~1)体积比。 优—设备简单,混合料均匀,粒形好(圆形)。 缺—研磨体在有限高度泻落或抛落,产生撞击力和磨剥力,作用强度较弱;筒体 转速受临界转速限制,即碾磨能力也受到限制;不起粉碎作用的惰性区较广,间歇 作业。 粉碎程度:粗磨:50~10μm 细磨:10~2μm 超细磨:< 2μm 6、振磨效率影响因素及优缺点、粉碎程度 影响振磨效率的主要因素有球质量、振磨振动频率及振动幅度。(均正相关) 优—粉料在单位时间受研磨体的冲击与研磨作用次数极大,其作用次数成千倍于 球磨机,因此粉碎效率很高。粉碎粒度细,混入杂质较少。一方面粉碎是靠疲劳破 坏而粉碎,另一方面由于研磨效率高,所用时间短,因此减少了混入杂质的可能性。 缺—粒形较差,呈棱角,混合效果及均匀度较球磨差。振动噪音大,机械零件易 疲劳而损坏,装料尺寸应小于250μm(60目筛)。 粉碎程度:当进料尺寸不大于250μm,则成品料平均细度可达2~5μm。 7、砂磨效率影响因素及优缺点、粉碎程度 砂磨主要以剪切、滚碾磨擦为主,故中轴转速、磨体直径(指球形)及数量对砂磨 效率具有重要影响。 优—研磨时间短,效率高,是滚筒式球磨机的十倍。粒径细,分布均匀,研磨粒 径可达0.5μm。对环境污染小,基本没有粉尘,连续进料出料,便于自动化大批量 粉碎。 缺—进料要求细。 8、气流磨优缺点、粉碎程度 优—干磨式粉碎,粉碎平均粒径大约1μm,粒度分布狭窄陡直。产量大、效率高,机械磨损少,很适合对坚硬物料(莫氏硬度9.5)的加工。 缺—粉尘多、噪音较大,对环境有污染。 9、研磨粉料饱和极限及助磨剂原理 极限:电子瓷粉料通常都是无机氧化物或含氧的酸、碱性盐类,属离子晶体,破碎 后小粒的外层都带有电荷,即破碎后粉粒表面均带有电荷。还有些颗粒在粉碎过程 中获得能量被极化而产生电偶极矩,它们依赖极化作用力而聚合。同时粉料研磨达 到一定细度后,其表面增大,活性增强,表面吸附力也加大,表面吸附力增加到一 定程度也导致粉粒的聚合。 助磨剂:一般都是呈酸性或碱性的有机液体,且为极性基团(官能团)的极性分子。 (类似肥皂机理)①分散作用②润滑作用③劈裂作用 三、电子瓷的成型

2007试卷_固体电子器件原理_参考答案

贵州大学2006-2007学年第二学期考试试卷 A 卷 科目名:固体电子器件原理 参考答案 注意事项: 1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。 2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。 4. 满分100分,考试时间为120分钟。 一、能带理论 (共22分) 1.画出零偏理想条件下金属-n 型硅半导体接触后的能带图(不考 虑界面态和表面态),(a) 金属功函数大于半导体功函数;(b) 金属功 函数小于于半导体功函数。分别说明是整流接触还是欧姆接触。(8分)

2. 画出p型硅衬底上的理想MOS结构在零偏、负偏和正偏条件下的能带图,指出半导体表面的积累、耗尽和反型状态。(共14分) 零偏时能带图 表面积累状态 表面耗尽状态

表面反型状态 或参考

二、器件模型与概念 (共34分) 1. 说明pn 结复合电流、产生电流的成因,它们对pn 结的电流-电压关系有什么影响?(8分) 提要:pn 结处于非平衡态时,空间电荷区载流子浓度关系式为 )/ex p(.2kT qV n np i = pn 结正偏时,V > 0, 2 i n np >,耗尽区有电子-空穴复合而形成的复合电流,电流大小等 于 )2/exp(2kT qV W qn i τ ,小的正偏压下,复合电流是pn 结的主要电流。 pn 结反偏时,V < 0, 2 i n np <,耗尽区有电子-空穴产生,产生的电子空穴在电场的作用下 形成反向电流,电流大小等于 τ 2W qn i ,称为反向产生电流。计算表明,pn 结反向产生电流比反向饱和电流大3—4个数量级。因此,反向产生电流总是pn 结反向电流的主要成分。 2. 简述pn 结空间电荷区(耗尽区)形成的原因,说明“突变空间电荷区近似”的概念。(8分) 提要:冶金界面两边的浓度差—多数载流子扩散—界面n 型侧留下不可动的带正电的电离施主,界面p 型侧留下不可动的带负电的电离受主。电离施主和电离受主形成的区域称为空间电荷区。由电离施主指向电离受主的电场称为自建电场。自建电场对载流子有反方向的漂移作用。当扩散作用与漂移作用达到动态平衡时,空间电荷区电荷固定,自建电场的大小固定,接触电势差为定值。 “突变空间电荷区近似”模型认为,由于自建电场的作用,可近似认为空间电荷区内的自由载流子—电子和空穴 被完全“扫出”该区域,只剩下电离受主和电离施主原子,空间电荷区是一个高阻区,所以空间电荷区又称为耗尽区或阻挡层。此外,空间电荷区的边界虽然是缓变的,但计算表明过度区很窄,因此,可近似认为空间电荷区边界是突变的。空间电荷区外是电中性的,与空间电荷区内相比,电阻率很小,可近似为零。这三个近似条件,称为突变空间电荷区近似或突变耗尽近似。 3.简述正向有源状态下双极型晶体管的发射结注入效率、基区输运系数两参数的物理意义。(6分) 提要:以npn 晶体管为例,正偏的BE 结,既有发射区电子向基区的注入,也有基区空穴向发射区的注入。就晶体管的使用而言,希望发射区电子向基区的注入的比例越大越好,可称其为正向有效注入。发射结注入效率指正向有效注入与总注入的比例。 发射区向基区注入的电子,进入基区边界后继续向BC 结空间电荷区边界输运,输运过程中部分电子与基区多数载流子空穴复合。基区输运系数定义到达BC 结空间电荷区边界处的电子电流与进入基区BE 结空间电荷区边界处的电子电流之比,因此,基区输运系数表示基区复合损失的大小。 4.什么是pn 结耗尽层电容(势垒电容)?什么是pn 结的扩散电容?(6分) 提要:pn 结空间电荷区的电荷随外加电压的变化而变化的电容效应就是pn 结耗尽层电容

相关文档
最新文档