Improving Query Translation for Cross-Language Information Retrieval using Statistical Mode

Improving Query Translation for Cross-Language Information Retrieval using Statistical Mode
Improving Query Translation for Cross-Language Information Retrieval using Statistical Mode

Improving Query Translation for Cross-Language Information Retrieval using Statistical Models

Jianfeng Gao *,Jian-Yun Nie **,Endong Xun *,Jian Zhang #,Ming Zhou *,Changning Huang *

*

Microsoft Research China,Email:{jfgao,mingzhou,cnhuang}@https://www.360docs.net/doc/9216927073.html,

**

Universitéde Montréal,Email:nie@iro.umontreal.ca

#

Tsinghua University,China,Email:ajian@https://www.360docs.net/doc/9216927073.html,

**#

This work was done while these authors were visiting Microsoft Research China.

ABSTRACT

Dictionaries have often been used for query translation in cross-language information retrieval (CLIR).However,we are faced with the problem of translation ambiguity,i.e.multiple translations are stored in a dictionary for a word.In addition,a word-by-word query translation is not precise enough.In this paper,we explore several methods to improve the previous dictionary-based query translation.First,as many as possible,noun phrases are recognized and translated as a whole by using statistical models and phrase translation patterns.Second,the best word translations are selected based on the cohesion of the translation words.Our experimental results on TREC English-Chinese CLIR collection show that these techniques result in significant improvements over the simple dictionary approaches,and achieve even better performance than a high-quality machine translation system.

Keywords

Query translation,CLIR,Statistical model

1.INTRODUCTION

With the explosion of on-line non-English documents,cross-language information retrieval (CLIR)systems have become increasingly important in recent years.

Research in the area of CLIR has focused mainly on methods for query translation.In particular,dictionary-based translation has been a commonly used method because of its simplicity and the increasing availability of machine readable bilingual dictionaries.However,besides the problem of completeness of the dictionary,we are also faced with the problem of ambiguity in translation,i.e.the selection of the correct translation word(s)from the dictionary.

In this paper,we explore several methods to improve query translation for English-Chinese CLIR.First,we try to identify noun phrases (NP)in a query and translate them as units.Phrases usually have fewer senses,thus the translation of a multi-word concept as a phrase is more precise.In addition to the NPs stored in the dictionary,new multi-word NPs are

identified automatically using a statistical model.They are translated using translation patterns and a language model.Second,to deal with the translation ambiguity problem,we propose a method based on statistics of co-occurrences.The method tries to select the best translation according to its coherence with the other translation words.Finally,to increase the coverage of the bilingual dictionary,additional words and translations are automatically generated from a parallel bilingual corpus.We tested our methods using TREC Chinese documents.Our results show that each of the methods can bring significant improvement over simple dictionary approaches.A combination of the methods achieves even better retrieval performance than a high-quality machine translation (MT)system.

The remainder of this paper is organized as follows.In Section 2,we provide a brief survey on related work.In Section 3,we describe in detail our techniques for NP identification and translation.In Section 4,we describe the method of translation selection.In Section 5,experimental results are presented.Finally,we present our conclusion in Section 6.

2.DICTIONARY-BASED QUERY TRANSLATION

Bilingual dictionaries have been used in several CLIR experiments.However,previous work showed that English-Chinese CLIR using simple dictionary translation yields a performance lower than 60%of the monolingual performance [14].The main problems observed are:(1)the dictionary may have a poor coverage;and (2)it is difficult to select the correct translation of a word among all the translations provided by the dictionary.

For the first problem,much effort has been spent on collecting larger lexical resources either manually or automatically [14,16,20].The coverage of the dictionary can be increased to some extent.

A technique often used to deal with the second problem -translation ambiguity -is to identify phrases in the query and translate them as a whole using a phrase dictionary.It has been shown that this technique can improve IR performance.Hull and Grefenstette [13]showed that the performance achieved by manually translating phrases in queries is significantly better than that of a word-by-word translation using a dictionary.Davis and Ogden [7]showed that by using a phrase dictionary

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.To copy otherwise,or republish,to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.

SIGIR’01,September 9-12,2001,New Orleans,Louisiana,USA.Copyright 2001ACM 1-58113-331-6/01/0009…$5.00.

extracted from parallel sentences in French and English,the performance of CLIR is improved.Ballesteros and Croft[3] performed phrase translation using information on phrase and word usage contained in the Collins machine readable dictionary. They demonstrated that translations of multi-word concepts as phrases are more precise.However,a critical problem remains: if a phrase is not stored in a lexicon,how can one identify it in a query and translate it correctly?It is unrealistic to expect a "complete"phrase dictionary.New phrases are constantly created.Therefore,we will always face the problem of identification and translation of unknown phrases,no matter how complete a phrase dictionary may be.This problem is one of the foci of this paper.

Another possible solution to the problem of translation ambiguity is by using word sense disambiguation.The impact of disambiguation for CLIR is debatable.Xu and Weischedel[19] estimated an upper bound on CLIR performance.They concluded that even if the translation ambiguity were solved correctly,only limited improvement can be obtained.In contrast, Ballesteros and Croft[3]showed that using co-occurrence statistics from corpora can help with reducing translation ambiguity.Other studies including[1,10,12]also used similar approaches to select the best translation(s).In this paper,by extending the work in[1,3],we present a disambiguation method,which can be combined with phrase translation and achieves further improvement.

Our query translation process may be summarized as follows:

-NPs are first identified in English(source language)queries using a statistical method;

-The translation of the identified phrases is determined by both a set of phrase translation patterns and probabilities of the translated phrases obtained from a Chinese language model;

-The remaining words in the query are translated as words.

Our problem is to determine the best word translation among all that are stored in the dictionary.

3.PHRASE IDENTIFICATION AND TRANSLATION

Although the translation of multi-word phrases is usually more precise than a word-by-word translation,many significant NPs are not stored in the dictionary.For instance,in TREC-9queries, more than50%of noun phrases,which can be detected by our method described in this section,are not in our dictionary.

In the previous IR research,NPs have been identified using a set of syntactic patterns[2,8]:Sequences of nouns and adjective-noun pairs were taken as phrases.However,this simple method has not produced consistent improvement.Fagan[8]reported a decrease in performance,while Ballestero and Croft[2]did not obtain a significant improvement over single words.One of the problems is that this simple approach often over-generates NPs: non-NPs may be identified as NPs.This may negatively affect the monolingual IR performance(because of a deformed distribution of occurrences of these items).In addition,the identified phrases are still translated word-by-word in[2].

In our approach,we try to translate NPs as units as much as possible.To do so,we first identify English NPs,and translate them as units.If the translations have been used as document indexes(i.e.they are stored in our Chinese dictionary),then the translated NPs can directly match documents.Otherwise,these translations will be segmented into several words which can also match document indexes.So NP identification and translation are means to suggest possible long Chinese NPs.This is a query processing compatible with the longest-matching segmentation method used for document pre-processing.

Unlike previous methods,our approach uses a more sophisticated NP identification process.It is carried out in a bottom-up manner:we first identify base NPs,and then complex NPs.The reason to separate the process into two steps lies in the fact that base NPs can be identified with high accuracy,while the complex NPs cannot be.Therefore,we only use a small set of syntactic patterns in the second step in order to select sufficiently reliable complex NPs.

3.1Identification of base NPs

3.1.1Principle

A base NP is a simple noun phrase that does not contain other noun phrases recursively.For example,the elements within[...] in the example shown in Figure1are base NPs.The part-of-speech(POS)tags NNS(plural noun),IN(preposition),and VBG(verb-ing)etc.are those defined in[15].

[Measures/NNS]of/IN[manufacturing/VBG activity/NN]fell/VBD more/RBR than/IN[the/DT overall/JJ measures/NNS]./.

Figure1:An example sentence with base NP brackets.

The identification of base NPs usually involves two steps:(1) POS tagging,and(2)base NP chunking.

In classical statistical approaches[6,17],these two steps have been separated.POS tagging often serves as a precursor,and noun phrase chunking uses POS patterns(e.g.DT-JJ-NNS)that are learnt from a tagged corpus.

By separating the two steps,the solution of the first step is used in the second step as if it is certain.The uncertainty involved in the first step is no longer taken into account in the second step. In fact,the correct solution of the first step may be ranked second,third,etc.This is particularly the case when the probabilities of these solutions are close to that of the first solution.Therefore,a too early selection in the first step may be an important source of error.

In our approach,we try to integrate the two steps and their uncertainties together,and use a unified statistical model to choose the globally optimal solution[22]:We keep the N-best (N>1)ranked POS assignments in the first step.Then,in the second step,we determine the best base NPs by considering both the probability of POS tagging and that of base NP pattern. The value of N is chosen empirically to obtain the optimum balance between efficiency and accuracy.

3.1.2Mathematical formulation

Let us formulate the above two steps in mathematical terms. Given an English sentence E={e1,…,e n},its POS tag sequence is denoted by T={t1,…,t n}.The most probable base NP sequence B*={b1,…,b m}(m<=i)is expressed as Equation(1).

,

|

(

)

|

(

(

max

arg

))

|

(

(

max

arg

*T

B

P

E

T

P

E

B

P

B

B

B

×

=

=(1)

In this formula:P (T |E )aims to determine the best POS tags for a sentence E ,and P (B |T,E )aims to determine the best base NP tag sequences from them.In practice,in order to reduce the search space,only N-best POS tagging of E are retained in the first step (N=4in our experiments).

To determine the N-best tags from P (T |E ),we make use of Bayes’rule as follows:

))

()|((max arg ))|((max arg )(,...,,...,11T P T E P E T P best N T N

N

T T T T T T ×==?==(2)

We now assume independence among the relationships between tags and English words;and we use a tag trigram model to approximate P (T ).Then P (E |T )and P (T )can be evaluated as follows:

=≈

n

i i i t e P T E P 1

)

|()|((3)∏=??≈

n

i i i i t t t P T P 1

12)

,|()((4)

In the Viterbi search algorithm,P (e i |t i )is called the output probability of a word given the POS tag,and P (t i |t i-2,t i-1)is called the transition probability whose value is determined by a POS trigram model.Both probabilities can be estimated from a POS tagged corpus.

In the second step,we determine the best base NP sequence,given the N-best POS sequences.A similar approach to the first step is used.According to Bayes’rule,we have

)

()|()

()|(),|(),|(T P T E P B P B T P T B E P E T B P ×××=

(5)

For a given E and its T ,we have P (T )P (E |T )=P (E,T )=constant .By assuming words in E to be independent,we have

1)|,,()|(1

,==

=n

i j i j i b t t P B T P L .Thus,we have

P (B |T,E )∝P (E |B,T )×P (B )

(6)

The two elements on the right side can be estimated as follows

n

j i i b t e P T B E P )

,|(),|((7)∏

=

??≈

m

i i i b b b P B P 12)

,|()((8)

where b j is the element in the base NP sequence corresponding to e i .

Similarly,P (e i |t i ,b j )is called the output probability of a word given the POS tag and the base NP tag,and P (b i |b i-2,b i-1)is

called the transition probability whose value is determined by a base NP trigram model.Again,both probabilities can be estimated from a base NP tagged corpus.

Finally,substituting Equations (2)and (6)in Equation (1),we have

))

(),|()()|((max arg *,...,,1B P T B E P T P E T P B N

T T T B ×××==(9)

In summary,for a given input English sentence E ,in the first step,the Viterbi N-best searching algorithm is applied for POS tagging.Every resulting T is assigned a probability P t by Equation (2).In the second step,for each T ,the Viterbi algorithm is applied again to search for the best base NP sequence.Every resulting B*is assigned another probability P b by Equation (6).The final integrated probability of a base NP sequence is determined by P t αP b ,where αis a normalization coefficient (α=2.4in our experiments).

3.1.3Model estimation and evaluation

The models used in this study are trained on Penn Treebank [15].We used the section 20as test data,while the other 24sections are used as training data.

At first,all possible base NP patterns are extracted from the tagged training corpus.There are more than 6000patterns in the Penn Treebank.After being filtered by linguistic rules described in [21],1169patterns are kept.Then,all parameters in our statistical model are estimated using MLE (maximum likelihood estimation)from the training corpus.These parameters are:(1)P (t i |t i-2,t i-1),(2)P (e i |t i ),(3)P (b i |b i-2,bi -1),and (4)P (e i |t i ,b j ).A detailed description can be found in [22].

Our tests showed that our integrated approach achieves 92.3%in precision and 93.2%in recall.The result is slightly better than the current state of the art.

3.2Identification of complex NPs

Unlike base NP,there is not a widely accepted definition of complex NP.It is even worse in Chinese.In addition,a lot of complex NPs in English cannot be translated into Chinese as a unit.Therefore,with the help of a linguist,we selected 40frequently used English NP patterns,which can be translated into Chinese as a unit.Some examples are shown in Figure 2.Any sequence of words or base NPs corresponding to one of the patterns is identified as a complex https://www.360docs.net/doc/9216927073.html,plex NP patterns

Examples

Base NP of Base NP [the sales]of [Chinese ships]Base NP in Base NP [human rights violations]in [China]Base NP and Base NP

[China 's Panda bear population]and [research organizations]

Figure 2:Examples of complex NP patterns from TREC-9CLIR queries

3.3NP translation

3.3.1Principle

The dictionary contains a certain number of NPs and their translations.However,many more NPs that we identified are not stored in the dictionary.Then,how can we translate these NPs better than a word-by-word method?

We observed that there are some translation patterns between English NPs and Chinese NPs.For example,a[NN-1NN-2] phrase is usually translated into a[NN-1NN-2]sequence in Chinese,and a[NN-1of NN-2]phrase is usually translated into a[NN-2NN-1]sequence in Chinese.So for an English phrase corresponding to such a pattern,if its translation is not stored in the dictionary,we can still generate its possible translation.For instance,we can derive the translation of the multi-word phrase “drug sale”as _(drug)/?\(sale),and the translation of “security committee of UN”as? (UN)/s (security committee).

Possible translation patterns can be extracted from a word-aligned bilingual corpus.We first used the NP identification method described above to tag POS,base NP,and complex NP for English sentences.Then,for each English NP pattern(EPT), we extracted its Chinese translation patterns(CPT).An example is shown in Figure3.For an English sentence,each word is marked its POS tag and position.Elements within[…]are base NPs,or complex NPs.The aligned Chinese sentence is segmented into a sequence of words,which are associated with their positions.A word alignment(x,y)indicates that an English word in position x is connected to a Chinese word in position y. When an English word is connected to no Chinese words,it is denoted by(x,e).Some examples of translation pattern we can extract are also illustrated in Figure3.The estimation of the probability of translation patterns will be described in section 3.3.3.

English Sentence [[The/DT/1natural/JJ/2language/NN/3 computing/NNP/4group/NNP/5]at/IN/6 [Microsoft/NNP/7Research/NNP/8 China/NNP9]]…

Chinese Sentence ??/1? /2 ? /3%?/4) /5??/6?/7…

Aligned word-pair (1,e)(2,4)(3,5)(4,6)(5,7)(6,e)(7,1)(8,3) (9,2)…

Translation Patterns [DT JJ NN NNP-1NNP-2]

![JJ NN NNP-1NNP-2],P=0.48 [NNP-1NNP-2NNP-3]

![NNP-1NNP-3NNP-2],P=0.26 [Base NP-1at Base NP-2]

![Base NP-2Base NP-1],P=0.67

Figure3:English NP patterns and their Chinese translation patterns

As we mentioned earlier,the obtained NP translations do not always correspond to document indexes.If they do not,the segmentation process will break them down into several words. Even in this case,we can still benefit from the word selection in this process that solves part of the translation ambiguity problem.3.3.2Mathematical formulation

Given an English NP,ENP={e1,…,e n},with its NP pattern,EPT; for each English term e i in ENP,we retrieve all the possible Chinese translations from the bilingual dictionary.We also get all the possible translation patterns CPT for EPT.Then the best Chinese translated phrase,CNP*={c1,…,c m},is the one that maximizes the Equation(10)below.

)

|

(

max

arg

*ENP

CNP

P

CNP

CNP

=

)

(

)

|

(

max

arg CNP

P

CNP

ENP

P

CNP

×

=

(10)

where P(ENP|CNP)is the translation probability.P(CNP)is a priori probability of words of the translated Chinese NP.

We consider an NP(ENP or CNP)as a set of words(E or C) assembled by an NP pattern(EPT or CPT).Assuming that the translation of words and NP patterns are independent,we have

)

,

|

,

(

)

|

(CPT

C

EPT

E

P

CNP

ENP

P=

)

,

|

(

)

,

|

(CNP

C

EPT

P

CNP

C

E

=

)

|

(

)

|

(CNP

EPT

P

C

E

=

(11) Substituting Equation(11)in Equation(10),we have

)

(

)

|

(

)

|

(

max

arg

*CNP

P

CPT

EPT

P

C

E

P

CNP

CNP

×

×

=(12)

where P(E|C)is the translation probability from Chinese words C in CNP to English words E in ENP.P(EPT|CPT)is the probability of the translation pattern EPT(i.e.the order of translation words),given the Chinese pattern CNP.

These probabilities are estimated as follows:

)

(

)

,

(

)

|

(

CPT

C

CPT

EPT

C

CPT

EPT

P=

(13)

where C(CPT)represents the number of occurrences of CPT in the Chinese portion of the aligned bilingual corpus,and C(EPT,CPT)represents the number of times EPT corresponds to CPT in the aligned sentences.

P(CNP)is determined by the Chinese trigram language model as follows:

=

?

?

=

=

n

i

i

i

i

n

c

c

c

P

c

c

P

CNP

P

1

1

2

1

)

,

|

(

)

...

(

)

((14)

3.3.3Model estimation

As described in section3.3.2,for NP translation,there are three probabilities to be estimated:(1)P(EPT|CPT),(2)P(c i|c i-2,c i-1), and(3)P(E|C).

P(EPT|CPT)is estimated from a bilingual corpus.In our cases, we used a word-aligned bilingual corpus containing approximately100,000English-Chinese sentence pairs. Translation patterns are first extracted automatically from the corpus,and then filtered by a linguist.The probability is then estimated according to Equation(13).For each Chinese NP pattern,there are4.53translation patterns on average.

The Chinese trigram language model is trained on a Chinese corpus consisting of approximately 1.6billion Chinese characters.It contains documents of different domains,style, and period of time[9].

For P(E|C),we simply assumed a uniform distribution on a word’s translation in our experiments.If a Chinese word c has n translations in our bilingual dictionary,each of them will be assigned equal probability,i.e.P(e|c)=1/n.There are two reasons for this.First,there are no translation probabilities in our original bilingual dictionary.Second,we do not have enough parallel corpora for its accurate estimation.

At this stage,it is interesting to compare our translation method to the methods proposed in[2,3,4].Ballesteros and Croft used a word-by-word strategy for phrase translation[2,3].It is based on two assumptions that are sub-optimal.First,they assume that there is a one-one mapping between words in English NP and words in Chinese N.However,in our experiments,we found that only56%NP translation patterns have such one-one mappings.Second,they assume that the translation words in a phrase will remain in the same order as in the source language phrase.In our experiments,we found that35%of translation patterns change word order.On the other hand,The IBM statistical models incorporate very little linguistic knowledge[4]. It is hard to capture non-local dependencies of the language with “local”models such as n-gram models.So even if the translation model generates the correct set of words,the language model will not assemble them correctly.In our method,we incorporate the language model with translation patterns.While the language model captures the“local”dependency,the translation patterns provide information on global dependency within a phrase.Although the method is not powerful enough for sentence-level translation,it performs well for NP translation. 4.THE SELECTION OF WORD TRANSLATION

Words that are not included in phrases are translated word-by-word.However,this does not mean that they should be translated in isolation from each other.Instead,while translating a word,the other words(or their translations)form a"context" that helps determine the correct translation for the given word. This is the principle of our translation selection process.Our assumption is that the correct translations of query words tend to co-occur in target language documents and incorrect translations do not.Therefore,given a set of original English query words, we select for each of them the best translation word such that it co-occurs most often with other translation words in Chinese documents.

Finding such an optimal set is computationally very costly. Therefore,an approximate greedy algorithm is used.It works as follows:Given a set of n original query terms{s1,…,s n},we first determine a set T i of translation words for each s i through the

dictionary.Then we try to select the word in each T i that has the highest degree of cohesion with the other sets of translation words.The set of best words from each translation set forms our query translation.

The cohesion is based on term similarity.The EMMI weighting measure[18]has been successfully used to estimate the term similarity in[1,3].We take a similar approach.However,we also observe that EMMI does not take into account the distance between words.In reality,we observe that local context is more important for translation selection.If two words appear in the same document but at two distant places,it is unlikely that they are strongly dependent.Therefore,we add a distance factor in our calculation of word similarity.Formally,the similarity between terms x and y is

)

,(

log

)

)

(

)

(

)

,

(

(

log

)

,

(

)

,

(

2

2

y

x

Dis

K

y

p

x

p

y

x

p

y

x

p

y

x

SIM×

?

×

×

=(14) where

)

(

)

,

(

)

(

)

,

(

)

,

(

y

c

y

x

c

x

c

y

x

c

y

x

p+

=(15)

=

x

x

c

x

c

x

p

)

(

)

(

)

((16)

c(x,y)is the frequency that term x and term y co-occur in the same sentences in the collection,c(x)is the number of occurrence of term x in the collection,Dis(x,y)is the average distance(word count)between terms x and y in a sentence,and K is a constant coefficient,which is chosen empirically.(K=0.8 in our experiments).

The cohesion of a term x with a set X of other terms is the maximal similarity of this term with every term in the set,i.e.

Cohesion(x,X)=Max y∈X SIM(x,y)(17)

Figure4depicts a left-to-right greedy algorithm for the selection of the best translation.Term-similarity is estimated using the same1.6billion character Chinese corpus mentioned earlier.

For each source query word s i(i=1to n),retrieve a set of translations T i from the lexicon;

For each set T i(i=1to n),do

For each term t ij in T i,do

For each set T k(k=1to n&k≠i),compute the cohesion

Cohesion(t ij,T k);

Compute the score of t ij as the sum of Cohesion(t ij,T k)(k=1

to n&k≠I);

Select the term t ij in T i with the highest score,and add the

selected sense into the set T.

Figure4.Greedy algorithm to find the best translations

5.EXPERIMENTAL RESULTS AND DISCUSSION

In this section,we present the results of our CLIR experiments on TREC Chinese corpora.The TREC-9corpus contains articles published in Hong Kong Commercial Daily,Hong Kong Daily News,and Takungpao.They amount to260MB.A set of25 English queries has been set up and evaluated by people at NIST (National Institute of Standards and Technology).The TREC 5&6corpus contains articles published in the People's Daily from1991to1993,and a part of the news released by the Xinhua News Agency in1994and1995.A set of54English queries(with translated Chinese queries)has been set up and evaluated by people at NIST.

Each of the TREC queries has three fields:title,description,and narratives.In our experiments,we used two versions of queries, short(only titles)and long(all the three fields).

The bilingual lexical resources we used include three human compiled bilingual lexicons and a bilingual lexicon generated from a parallel bilingual corpus automatically[16].The resulting combined dictionary contains401,477English entries, including109,841words,and291,636phrases.

For our experiments,we used a slightly modified version of the SMART system[5].We used the ltc weighting scheme.The main evaluation metric is interpolated11-point average precision.Statistical t-test[11]and query-by-query analysis are also employed.To decide whether the improvement by method X over method Y is significant,the t-test calculates a p-value based on the performance data of X and Y.The smaller the p-value,the more significant is the https://www.360docs.net/doc/9216927073.html,ually,if the p-value is small enough(p-value<0.05),we can conclude that the improvement is statistically significant.

We first carried out a set of preliminary experiments to investigate the impact of lexicon sources,phrase,and ambiguity on query translation.Our results confirmed our intuition. Results showed that larger lexicon sources,phrase translation, and disambiguation techniques improve CLIR performance significantly and consistently on TREC-9corpus.

5.1Impact of NP translation and translation selection

The following methods are compared to figure out the impact of NP translation and translation selection:

1.Monolingual:retrieval using the manually translated

Chinese queries provided with the corpus.

2.Simple translation:retrieval using query translation

obtained by look up the bilingual dictionary.

3.Best-sense translation:retrieval using query

translation selected manually.

4.Machine translation:retrieval using translation

queries obtained by a machine translation system.

5.Our methods that incorporate NP detection and

translation,as well as word translation selection.

For simple translation,phrase entries in the dictionary are first used for phrase matching and translation,and then the remaining words are translated by their translations stored in the dictionary.

For best-sense translation,we manually disambiguated the queries in order to get an upper bound of performance using dictionary look-up and disambiguation.In this method,a native Chinese speaker selected one translation from the dictionary for each English word or phrase.If no translation is correct,the first one is randomly chosen.

For machine translation,a commercial English-Chinese machine translation system-IBM HomePage Dictionary TM 2000-is used.This system was released recently by IBM.It contains an English-Chinese dictionary with480,000entries, including words,frequently used phrases(such as"information retrieval"),acronyms(such as"IBM"),and proper nouns(such as"Microsoft").According to our survey,this system is one of the best machine translation products currently on the market. The result of query translation by the IBM system seems reasonable;less than3%of the words are left untranslated,most phrases are translated as a whole,and the translation ambiguity problem is solved to some degree for most of the words.

The average precision of this series of experiments on query translation is summarized in Table1.The precision-recall(P-R) curves using short and long queries are shown in Figures5and 6.It is interesting to compare the results of our NP translation method(in row4in Table1)with that of phrase translation using dictionary look-up(in row2).It turns out that by using NP identification and translation,we obtained better performance.For example,in short query retrieval,in25queries, only11multi-word phrases are stored in the dictionary,and translated as a phrase,while using our method,26NPs are identified and translated.It thus results in a102.6% improvement,which is statistically significant(p-value=0.015).

Short queries Long queries Translation

method Avg.P.

%Mono.

IR

Avg.P.%Mono.

IR

1Monolingual0.26840.3099

2Simple

translation

0.117443.74%0.182358.83%

3Best-sense

translation

0.161160.02%0.261884.48%

42+NP

translation

0.237988.64%0.239877.38%

54+Translation

selection

0.246891.95%0.295695.38%

6Machine

translation

0.130348.55%0.246679.57% 75+60.239589.23%0.3280105.84% Table1:Average retrieval precision results,using TREC-9short queries and long queries

Figure5:P-R curves,using TREC-9short queries

Figure6:P-R curves,using TREC-9long queries

Row5shows that further improvement can be obtained using our translation selection technique.We obtain23.3% improvement for long queries and3.7%improvement for short queries.It is not surprising the improvement in the first case is statistically significant(p-value=0.05),but the improvement in the second case is not.The reason is that long queries provide much richer context information for translation disambiguation/selection.

Our results in row5are even better than best-sense translation results in row3(although it is not statistically significant), which are regarded as the upper bound on performance of any disambiguation techniques.This shows again the positive impact of our NP identification and translation methods.

Row6shows that the using the MT system,we can achieve 79.57%of monolingual effectiveness for long queries.This performance is comparable to those reported by others using an MT system.We can see that our method outperforms the MT system.This confirms that there may be better ways for query translation than MT systems.The best performance is achieved by combining linearly two sets of translation queries obtained by machine translation method and our method.While using long query retrieval,it is over 105%of monolingual effectiveness.The intuition of combination of different translation methods is that different translation systems would complement each other.This result confirms the intuition.It also shows that monolingual performance is not necessarily the upper bound of CLIR performance.An important reason for this is that there is an implicit query expansion effect during translation because related words/phrases may be added.

In summary,the improvement by using NP translation for short queries is statistically significant(p-value=0.015).The addition of translation selection is also statistically significant for long queries(p-value=0.05).The improvement obtained with the combination of both approaches(i.e.NP translation and translation selection)are statistically significant for both short queries(p-value=0.03)and long queries(p-value=0.001).The comparison with the MT approach shows that at least for short queries,the improvement brought by our methods is statistically significant(p-value=0.02).

Due to the limited number of the TREC-9queries,we also tested our methods on TREC5&6Chinese collection.The results are similar,as shown in Table2.This further confirms our conclusions made above.

5.2Analysis

In order to analyze the effectiveness and remaining problems of our query translation approach,for the25queries of TREC9, we display in Figure7a comparison of the long query retrieval results of row1and row5in Table1.We observe that the queries may be classified into three categories:

1)5queries that have both monolingual and CLIR result of average precision lower than0.1(#58,#61,#67,#69,and#77). The bad effectiveness in these cases is not due to translation,but to the high difficulty of query topics.

No.Translation Method Avg.P.%Mono.

IR

1Monolingual0.5150

2Simple translation0.272252.85%

3Best-sense translation0.376273.05% 42+NP translation

+translation selection

0.388375.55%

5Machine translation0.389175.40% 64+50.440085.44% Table2:Average retrieval precision results,using TREC-

5&6long

queries

Figure7:TREC-9results for25queries:monolingual IR vs. CLIR using long queries

2)11queries with monolingual average precision lower than

CLIR.There might be two possible reasons.One is that by

accepting several translations for a key concept,we are in fact

making query expansion.Some examples are:"public key"in query#68is translated to??w as well as??w , "Olympics"in query#71to' ZG(Olympic)and'- (Olympic games),and"Panda bear"in query#76to ē and ē,etc.The second reason is that sometimes,the translations obtained are more natural expressions than those

given in the original Chinese queries.For example,"violation" in query#56is translated to a more common word??rather than- in the manually translated Chinese query(provided with the corpus).

3)9queries with monolingual average precision higher than

CLIR.Most of them are due to the bad translations of key

concepts,which are not stored in the dictionary as a phrase.We

divide NP into two types:compositional NP and non-

compositional NP.

Compositional NP is the phrase whose translation can be

assembled by translations of words within the phrase,such as "computer hacker"( $6?),"public key"(??w ),and "environmental protection laws"(?9 ? ),etc.Generally speaking,our method is good for compositional NP translation. For some domain-specific NPs,it failed.For example,"stealth technology"( ? )and"stealth countermeasure"( ? )in#59,and"synthetic aperture radar"( ?? ?)in #66have special terminology in Chinese and are not translated correctly.

A non-compositional NP is a phrase whose translation cannot be

assembled by translations of its component words.Our method

is unable to deal with the translation of non-compositional NPs. Examples include"three-links"( -)in#65,"vehicle fatalities"(? )in#68,"most-favored nation"( ),and "World Conference on Women"( ),etc.A large portion of non-compositional NPs in queries are political abbreviations. If these NPs are not stored in the dictionary,they are most likely to be translated incorrectly.This indicates that the coverage of the dictionary is still an important problem to be solved to improve the performance of CLIR.6.CONCLUSION

Dictionary-based query translation has been widely used in CLIR because of its simplicity and the increasing availability of machine-readable bilingual lexicons.However,besides the problem of completeness of the lexicon,we are also faced with the problem of selecting the best translation word(s)from the dictionary.

In this paper,we proposed several approaches to improve dictionary-based query translation for CLIR.We focused on translation of phrases,which has been demonstrated to be one of most effective ways to obtain more accurate translations.We presented a method to identify and translate unknown NPs. English NPs in queries are first identified statistically,and then translated into Chinese phrases using a new method that combines translation patterns and a Chinese language model. We also presented a method of translation selection based on the cohesion among translation words.

Through our experiments,we showed that each of the above methods leads to some improvement,and that the combined approach significantly improves CLIR performance.The fact that our approach outperformed one of the best commercial MT systems indicates that some specific translation tools designed for query translation in CLIR may be better than on-the-shelf MT systems.The combination of our approach with the MT system leads to a high effectiveness of105%of that of monolingual IR.This shows that even if a high-quality MT system is available,our approach can still lead to additional improvement.

Though our method shows very promising improvement in experiments,we are faced with some unsolved problems.First, the lack of large amount of word/phrase-aligned parallel corpus prevents us from extracting more reliable translation patterns. Second,to translate queries in a specific domain,it would be better to use a domain-specific translation and language model. This could help with selecting the correct domain-specific translations.Then there come the problems of building domain-specific translation/language models,and activating the corresponding model when a specialized query is submitted. These are some of the topics of our future work. ACKNOWLEDGEMENTS

The authors would like to thank Prof.K.L.Kwok for his helpful suggestions,Aitao Chen,Douglas Oard,and David Hull for their comments on the paper.

REFERENCES

[1]Adriani,M.(2000).Using statistical term similarity for

sense disambiguation in cross-language information https://www.360docs.net/doc/9216927073.html,rmation Retrieval.2,69-80.

[2]Ballesteros,L.,and Croft,W.B.(1997).Phrasal translation

and query expansion techniques for cross-language information retrieval.In:Proceedings of the20th International Conference on Research and Development in Information Retrieval.84-91.

[3]Ballesteros,L.,and Croft,W. B.(1998).Resolving

ambiguity for cross-language retrieval.In Proceedings of the21st International Conference on Research and

Development in Information Retrieval.Melbourne, Australia.

[4]Brown,P.F.,Della Pietra,S.A.,Della Pietra,V.J.,and

Mercer,R.L.(1993).The Mathematics of Statistical Machine Translation:Parameter Estimation.

Computational Linguistics,19(2):263-311

[5]Buckley, C.(1985).Implementation of the SMART

information retrieval system,Technical report,#85-686, Cornell University.

[6]Church,K.,(1988)A stochastic parts program and noun

phrase parser for unrestricted text.In Proceedings of the Second Conference on Applied Natural Language Processing,pages136-143.Association of Computational Linguistics.

[7]Davis,M.W.,and Ogden,W.C.(1997).Free resources

and advanced alignment for cross-language text retrieval.

In:The Sixth Text Retrieval Conference(TREC-6).NIST, Gaithersbury,MD.

[8]Fagan,J.(1988).Experiments in Automatic Phrase

Indexing for Document Retrieval:A Comparison of Syntactic and Non-Syntactic https://www.360docs.net/doc/9216927073.html,puter Science, Cornell University.

[9]Gao,J.,Wang,H.F.,Li,M.and Lee,K.F.(2000).A

unified approach to statistical language modeling for Chinese.ICASSP-2000,Istanbul,Turkey,June.

[10]Hiemstra, D.,and Jong, F.(1999).Disambiguation

strategies for cross-language information retrieval.In: Proceedings of the third European Conference on Research and Advanced Technology for Digital Libraries.

274-293.

[11]Hull,D.(1993).Using statistical testing in the evaluation

of retrieval experiments.In:Conference on Research and Development in Information Retrieval,ACM-SIGIR,1993.

[12]Hull, D. A.(1997).Using structured queries for

disambiguation in cross-language information retrieval.In: AAAI Symposium on Cross-Language Text and Speech Retrieval.

[13]Hull,D.A.,and Grefenstette,G.(1996).Querying across

languages:a dictionary-based approach to multilingual

information retrieval.Research and Development in Information Retrieval,pp46-57.

[14]Kowk,K.L.(2000).Exploiting a Chinese-English

bilingual wordlist for English-Chinese cross language information retrieval.In:Fifth International Workshop on Information Retrieval with Asian Languages,IRAL-2000.

Hong Kong,September30to October1,2000.

[15]Marcus,M.,Marcinkiewicx,M.,and Santorini,B.(1993).

Building a large annotated corpus of English:the Penn https://www.360docs.net/doc/9216927073.html,putational Linguistics,19(2):313-330. [16]Nie,J.Y.,Simard,M.,Isabelle,P.,and Durand,R.(1999).

Cross-language information retrieval based on parallel texts and automatic mining of parallel texts from the web.In: Conference on Research and Development in Information Retrieval,ACM-SIGIR,1999.

[17]Ramshaw,L.A.,and Marcus,M.,(1998).Text chunking

using transformation-based learning.In Natural Language Processing Using Very large Corpora.Kluwer.Originally appeared in The second workshop on very large corpora WVLC’95,pp.82-94.

[18]van Rijsbergen,D.J.(1979).Information retrieval,2nd ed.

Butterworths,London.

[19]Xu,J.,and Weischedel,R.(2000a).Cross-lingual

information retrieval using Hidden Markov models.In: Proceeding of the2000Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora.Hong Kong,October7-8,2000. [20]Xu,J.,and Weischedel,R.(2000b).TREC-9cross-

language retrieval at BBN.In:The Ninth Text Retrieval Conference(TREC-9).NIST,Gaithersbury,MD.

[21]Xun, E.(1999).Incremental English parsing using

combination of statistic and learning methods.Ph.D.thesis.

Harbin Institute of Technology,China.

[22]Xun,E.,Zhou,M.,and Huang,C.(2000).A unified

statistical model for the identification of English base NP.

In:The38th Annual Meeting of the Association for

Computational Linguistics,Hong Kong3-6October.

医疗器械企业排名

医疗设备公司排名 深圳迈瑞生物医疗电子有限公司 2 北京京精医疗设备有限公司 3 泰尔茂医疗用品(杭州)有限公司 4 微创医疗器械(上海)有限公司 5 山东淄博山川医用器材有限公司 6 苏州碧迪医疗器械有限公司 7 瑞声达听力技术(中国)有限公司 8 航卫通用电气医疗系统有限公司 9 上海德尔格医疗器械有限公司 10 欧姆龙(大连)有限公司 11 优利康听力技术(苏州)有限公司 12 沈阳东软数字医疗系统股份有限公司 13 浙江大学医学仪器有限公司 14 鸿邦电子(深圳)有限公司 15 双鸽集团有限公司 16 广州骏丰医疗器械有限公司 17 通用电气医疗系统(中国)有限公司 18 克林尼科医疗器械(南昌)有限公司 19 深圳迈迪特仪器有限公司 20 秦皇岛康泰医学系统有限公司 21 上海阿洛卡医用仪器有限公司 22 山东新华医疗器械集团 23 浙江康德莱医疗器械股份有限公司 24 杭州市桐庐医疗光学仪器总厂 25 北京万东医疗设备股份有限公司 26 福建梅生医疗科技股份有限公司 27 挪度医疗器械(苏州)有限公司 28 上海医疗器械(集团)有限公司手术器械厂 29 上海西门子医疗器械有限公司 30 深圳市匹基生物工程股份有限公司 31 无锡祥生医学影像有限责任公司 32 北京拨晖创新光电技术服务有限公司 33 上海美华医疗器具股份有限公司 34 北京伏尔特医疗器材科技有限公司 35 力斯顿听力技术(苏州)有限公司 36 北京周林频谱科技有限公司 37 大连库利艾特医疗制品有限公司 38 上海医疗器械厂有限公司 39 汕头超声仪器研究所 40 深圳市雷杜生命科学股份有限公司 41 天津哈娜好医材有限公司

中国医疗设备公司的排行

中国最具投标实力医疗器械品牌供应五十强 由中国采购与招标网、中国名企排行网联合主办的首次从招投标的角度进行的医疗器械招标评价预审,按国产、进口、诚信及《国家医疗器械分类目录》中单项产品分类,以2008年度企业的经济运行数据为口径,采取综合评分法进行评价。总分为1000分,具体评价指标(权重)包括:医疗器械销售额(权重30%)、企业总资产(权重15%)、注册资金(权重10%)、经营年限(权重10%)、利润(权重15%)、税金(权重10%)、网上投票(权重10%)、加减分项等,经企业报名、资格审查、网上公示、业内投票、综合评价等阶段,历时3个多月,在初榜出来后,又与各医疗器械候选单位反复沟通,补充、核实数征求各方面的意见,现正式公布“中国最具投标实力医疗器械品牌供应商五十强”榜单。 1 威高集团有限公司 2 深圳迈瑞生物医疗电子股份有限公司 3 沈阳东软医疗系统有限公司 4 山东新华医疗器械股份有限公司 5 江苏鱼跃医疗设备股份有限公司 6 上海医疗器械股份有限公司 7 北京万东医疗装备股份有限公司 8 北京谊安医疗系统股份有限公司 9 北京航天长峰股份有限公司 10 乐普(北京)医疗器械股份有限公司 11 上海医疗器械厂有限公司 12 苏州六六视觉科技股份有限公司 13 先健科技(深圳)有限公司 14 双鸽集团有限公司 15 秦皇岛市康泰医学系统有限公司 16 广东冠昊生物科技股份有限公司 17 力新仪器(上海)有限公司 18 西北医疗器械(集团)有限公司 19 邦盛医疗装备(天津)有限公司 20 烟台冰科集团有限公司 21 八乐梦床业(中国)有限公司

22 玛西普医学科技发展(深圳)有限公司 23 北京倍肯恒业科技发展有限责任公司 24 虎丘影像科技(苏州)有限公司 25 成都市新津事丰医疗器械有限公司26 深圳市邦健电子有限公司 27 西安华海医疗信息技术股份有限公司 28 惠州科美思医用仪器有限公司 29 有研亿金新材料股份有限公司 30 长春迪瑞实业有限公司 31 浙江龙飞实业股份有限公司 32 共创实业集团衡阳医疗器械有限公司 33 山东育达医疗设备有限公司 34 汕头市超声仪器研究所有限公司 35 青岛海尔特种电器有限公司 36 佛山市东方医疗设备厂有限公司 37 创生医疗器械(江苏)有限公司 38 深圳市开立科技有限公司 39 长春光机医疗仪器有限公司 40 宁波戴维医疗器械有限公司 41 北京圣喻华技术开发有限责任公司 42 爱奥乐医疗器械(深圳)有限公司 43 重庆海扶(HIFU)技术有限公司 44 烟台开发区宝威生物技术有限公司 45 北京市奥斯比利克新技术开发有限公司 46 浙江苏嘉医疗器械股份有限公司 47 宁波鑫高益磁材有限公司 48 江苏金鹿集团医疗器械有限公司 49 杭州龙鑫科技有限公司 50 沈阳市医疗设备厂

药店质量管理制度及岗位职责

前言 为加强企业经营管理,保证药品质量,规范经营行为,根据《中华人民共和国药品管理法》及《药品经营质量管理规范》,结合企业实际,制订本制度。 制定日期: 执行日期: ****************药店

企业药品经营质量管理文件系统 目录 第一部分有关业务和管理岗位的质量责任 1企业负责人职责 4 2质量负责人职责 5 3采购员职责 6 4验收员职责 7 5处方审核、调配职责 8 6营业员职责 9 第二部分管理制度 1质量否决权管理制度10 2药品购进的管理制度 11 3药品验收的管理制度 13 4药品养护的管理制度 15 5药品陈列的管理制度 16 6首营企业和首营品种审核的制度 17 7药品销售的管理制度 19 8处方药销售管理制度 21 9拆零药品的管理规定 22 10质量事故的处理和报告的规定 23 11质量信息管理的制度 24 12药品不良反应报告的规定 26 13环境卫生管理制度、人员健康管理制度 27 14员工个人卫生管理制度 28

15员工培训管理制度 29 16药品召回管理制度 30 17国家有专门管理要求的药品销售管理制度 31 18药品效期的管理制度 32 19计算机系统的管理 33 20执行药品电子监管的规定 34 21不合格药品管理规定。 35 22服务质量的管理规定 37第三部分操作规程 1药品采购操作规程 38 2药品验收操作规程 44 3药品销售操作规程 47 4处方审核、调配、核对操作规程 48 5药品拆零销售操作规程 49 6营业场所药品陈列与检查操作规程 50 7营业场所冷藏药品存放操作规程 52 8计算机系统的操作与管理操作规程 53 9陈列药品的存储和养护的操作规程 55

医疗器械上市公司名单

中国医疗器械上市公司 601607 上海医药部分医疗器械上海1994 600055 万东医疗X放射北京1997.5 600587 新华医疗消毒灭菌X放射山东2002.9 600718 东软股份医用影像 600763 通策医疗口腔医疗浙江1996 600196 复兴医药8个医疗器械公司上海 600288 大恒科技放疗系统北京2000 600661 新南洋上海交大南洋医疗器械公司上海1993 600056 中国医药部分医疗器械销售、北京 600079 人福医药药品、计生用品器械武汉1997.6 600690 青岛海尔制冷设备洁净柜山东1993 600216 浙江医药部分医疗器械销售浙江1999.10 600855 航天长峰麻醉机北京2005.1 中小企业板: 002016 世荣兆业威尔科技超声波器械广东2004 002030 达安基因医学检验、病理检验、试剂广东2004.8 002432 九安医疗电子血压计、低频治疗仪生产天津2010

000603*ST 威达广东1996 002223 鱼跃医疗医疗设备上海2008.4 002022 科华生物检验、生化分析仪、试剂上海2004 000566 海南海药主营医药人工耳蜗海南1994 002144 宏达高科威德耳B 超浙江2007.8 000676 思达高科其中两个公司有医疗影像河南1996.12 000423 东阿阿胶医药体温计、血压计山东1996.7 000705 浙江震元医药、两个公司有器械销售浙江1997 创业板 300003 乐普医疗支架北京2009.10 300030 阳普医疗实验室设备广州2009.12 300015 爱尔眼科眼科医院湖南2009.10 00325HK创生控股生产及销售骨科植入器械。江苏2005 00233HK 铭源医疗蛋白芯片体检上海2002 00853HK微创医疗支架、骨科器械上海2010 08143HK华夏医疗综合医院 00648HK 中国仁济医疗伽玛刀等肿瘤设备租赁香港 08116HK 中国公共医疗医院管理软件香港2007 00801HK 金卫医疗采写输血设备耗材、血液科医院香港2001 08130HK 杏林医疗信息国康医疗器材公司

中国医疗器械公司排名

中国医疗器械公司排名2011-12-1111:47:18|分类:公司研究|字号大中小订阅 排名企业名称 1深圳迈瑞生物医疗电子有限公司 2北京京精医疗设备有限公司 3泰尔茂医疗用品(杭州)有限公司 4微创医疗器械(上海)有限公司 5山东淄博山川医用器材有限公司 6苏州碧迪医疗器械有限公司 7瑞声达听力技术(中国)有限公司 8航卫通用电气医疗系统有限公司 9上海德尔格医疗器械有限公司 10欧姆龙(大连)有限公司 11优利康听力技术(苏州)有限公司 12沈阳东软数字医疗系统股份有限公司 13浙江大学医学仪器有限公司 14鸿邦电子(深圳)有限公司

15双鸽集团有限公司 16广州骏丰医疗器械有限公司 17通用电气医疗系统(中国)有限公司 18克林尼科医疗器械(南昌)有限公司 19深圳迈迪特仪器有限公司 20秦皇岛康泰医学系统有限公司 21上海阿洛卡医用仪器有限公司 22山东新华医疗器械集团 23浙江康德莱医疗器械股份有限公司 24杭州市桐庐医疗光学仪器总厂 25北京万东医疗设备股份有限公司 26福建梅生医疗科技股份有限公司 27挪度医疗器械(苏州)有限公司 28上海医疗器械(集团)有限公司手术器械厂29上海西门子医疗器械有限公司 30深圳市匹基生物工程股份有限公司 31无锡祥生医学影像有限责任公司 32北京拨晖创新光电技术服务有限公司

33上海美华医疗器具股份有限公司34北京伏尔特医疗器材科技有限公司35力斯顿听力技术(苏州)有限公司36北京周林频谱科技有限公司 37大连库利艾特医疗制品有限公司38上海医疗器械厂有限公司 39汕头超声仪器研究所 40深圳市雷杜生命科学股份有限公司41天津哈娜好医材有限公司 42北京蒙太因医疗器械有限公司 43武汉康桥医学新技术有限公司 44西安西京医疗用品有限公司 45上海安亭科学仪器厂 46戴维医疗器械有限公司 47深圳市威尔德电子有限公司 48天津东华医疗系统有限公司 49河北路德医疗器械有限公司 50珠海市和佳医疗设备有限公司

医药公司各岗位职责

企业负责人(总经理)职责编号:ZX-ZR-2014-001 目的:确保企业实现质量目标并按照GSP要求经营药品。 依据:规范第十四条 要求:1、符合有关法律法规及GSP规定的资格要求,不得有相关法律法规禁止从业的情形。 2、具有大学专科以上学历或者中级以上专业技术职称,经过基本的药学专业知识培训,熟悉有关药品管理的法律法规及GSP。 内容: 1、企业负责人是药品质量的主要责任人,全面负责企业日常管理。 2、负责提供必要的条件,保证质量管理部门和质量管理人员有效履行职责,确保企业实现质量目标并按照GSP要求经营药品。 3、贯彻药品经营管理和质量控制的基本准则,在药品采购、储存、销售、运输等环节采取有效的质量控制措施,确保药品质量。 4、坚持诚实守信,依法经营原则,禁止任何虚假、欺骗行为。 5、审批质量管理体系文件,依据有关法律法规及GSP的要求,确定质量方针,开展质量策划、质量控制、质量保证、质量改进和质量风险管理等活动。 6、制定质量方针文件 6.1、明确企业总的质量目标; 6.2、明确企业总的质量要求; 6.3、贯彻到药品经营活动的全过程。 7、主持质量管理体系内审。 8、组织对药品供货单位、购货单位的质量管理体系进行评价和实地考察。 9、配备符合要求的岗位人员,提供必要的条件保证企业全员参与质量管理。 10、负责设立与企业经营活动和质量管理相适应的组织机构;确保质量管理部门能独立、客观地行使质量管理的职能并对药品质量具有否决权。 11、提供与药品经营范围、经营规模相适应的经营场所和库房。

12、组织校准或者检定和验证 13、批准验证方案和验证报告。 14、建立能够符合经营全过程管理及质量控制要求的计算机系统。 15、负责或委托质量负责人对采购和销售活动进行审批。 16、负责或委托采购人员与供货单位签订质量保证协议。 17、掌握供货单位和购货单位发票情况。 18、根据GSP的有关规定批准直调方式购销药品。 19、组织对库存药品定期盘点。 20、采取有效措施保证运输过程中的药品质量与安全,督促运输人员按照质量管理制度的要求,严格执行运输操作规程。 21、组织制定冷藏、冷冻药品运输应急预案。 22、负责或委托质量管理人员与承运方签订《委托运输质量保证协议》。 23、组织审定质量管理奖惩措施,并严格执行,做到奖惩分明。 24、主持各种质量分析会议,总结质量工作,确定质量工作重点和目标。 25、负责组建企业应急预案处理小组。 26、研究、解决质量管理工作方面的重大问题和重大质量事故的处理。

2016中国医疗器械行业市场深度研究报告

2016中国医疗器械行业市场深度研究报告 中国GDP增长情况2016年上半年国内生产总值34.06万亿元,按可比价格计算,同比增长6.7%。分季度看,一季度同比增长6.7%,二季度增长6.7%。分产业看,第一产业增加值22097亿元,同比增长3.1%;第二产业增加值134250亿元,增长6.1%;第三产业增加值184290亿元,增长7.5%。从环比看,二季度国内生产总值增长1.8%。中国收入增长情况统计数据显示,2015年我国城镇居民人均可支配收入31195元,比上年增长8.2%,扣除价格因素,实际增长6.6%;城镇居民人均可支配收入中位数为29129元,增长9.4%。农村居民人均可支配收入11422元,比上年增长8.9%,扣除价格因素,实际增长7.5%;农村居民人均可支配收入中位数为10291元,增长8.4%。全年农村居民人均纯收入为10772元。行业社会环境分析 人口老龄化趋势据统计,2015年60岁及以上人口达到2.22亿,占总人口的16.15%。预计到2020年,老年人口达到2.48亿,老龄化水平达到17.17%,其中80岁以上老年人口将达到3067万人;2025年,六十岁以上人口将达到3亿,成为超老年型国家。考虑到70年代末,计划生育工作力度的加大,预计到2040我国人口老龄化进程达到顶峰,之后,老龄化进程进入减速期。人口城镇化进程在人口总量在不断增

加的同时,我国城镇化的步伐也在不断加快。2001-2010年城市化水平明显加速,十年间城市化率从36%上升至50%左右,高于世界银行公布的2009年中等收入国家城市化水平(48%),与美国20年代、日本50-60年代的城市化水平相当。2015年末,中国大陆总人口137462万人,城镇常住人口77116万人,城镇化率为56.10%,比上年提高1.33个百分点。 行业技术环境分析 行业技术发展水平 通过科技开发,国内产品种类对进口产品的替代率已超过90%。中国目前已能生产包括医用电子仪器、光学仪器、超声仪器、激光仪器、放射设备、医学影像设备、手术器械、消毒设备、冷藏设备、及人工器官、医用高分子材料制品、卫生材料等在内的68大门类,3400多品种,1.1万个规格的产品,而且随着科学技术的发展还在出现新的门类。中国年开发新产品在300-400项。行业技术最新发展动向目前,有十大重要的医疗器械技术正影响着病人诊治、临床实践、产品研制和医疗器械工业,它们分别是:植入式涂层器械、颈动脉支架、心脏辅助装置、人工骨和皮肤移植物、人工矫形盘、基于核酸的IVD(体外诊断)装置、医用激光、医用成像技术、无线技术、计算机辅助外科。中国医疗器械行业发展运营状况中国医疗器械行业发展状况分析

药品岗位职责

药品岗位职责

企业负责人职责 一、企业负责人是药品质量的主要责任人,全面负责企业日常管理; 二、保证质量管理部门和质量管理人员有效履行职责,确保企业 实现质量目标,并按照本规范要求经营药品; 三、建立质量管理体系,确定质量方针,制定质量管理体系文 件,开展质量策划、质量控制、质量保证、质量改进和质量风险管理等活动; 四、定期以及在质量管理体系关键要素发生重大变化时,组织开 展内审; 五、坚持质量第一的原则,在经营中落实质量否决权; 六、主持重大质量事故的处理和重大质量问题的解决和质量改进; 七、签发质量管理体系文件; 八、协调和处理部门之间,从业人员之间的利益关系,培育企业 团队精神; 九、主持制定和组织实施企业发展规划,人才发展规划和企业重 大决策; 十、任命部门负责人。

质量负责人职责 一、在法定代表人的授权下,企业负责人的直接领导下,分管质 量管理工作,兼任公司质量管理授权人; 二、质量负责人由公司管理人员担任,全面负责药品质量管理工 作,独立履行职责,在企业内部对药品质量管理具有裁决 权; 三、组织建立和完善本企业经营质量管理体系,对该体系进行监 控,确保其有效运行; 四、定期对本企业经营质量管理体系进行监督检查,检查结果直 接上报所在地食品药品监督部门; 五、对企业购进、储存。销售、运输过程中涉及的可能影响产品 质量等问题行使决定权; 六、对企业的购销资质证明文件、产品标签说明书、合同、票 据、汇款单位、产品来源及真伪等进行审查和甄别; 七、授权人在行使职权时,企业其它人员必须予以配合和服从; 八、审核质量管理制度,组织对各项质量管理制度执行情况的检 查与考核; 九、负责对首营企业和首营品种的质量审批。

中国医疗器械公司排名

中国医疗器械公司排名 2011-12-11 11:47:18| 分类:公司研究|字号大中小订阅排名企业名称 1 深圳迈瑞生物医疗电子有限公司 2 北京京精医疗设备有限公司 3 泰尔茂医疗用品(杭州)有限公司 4 微创医疗器械(上海)有限公司 5 山东淄博山川医用器材有限公司 6 苏州碧迪医疗器械有限公司 7 瑞声达听力技术(中国)有限公司 8 航卫通用电气医疗系统有限公司 9 上海德尔格医疗器械有限公司 10 欧姆龙(大连)有限公司 11 优利康听力技术(苏州)有限公司 12 沈阳东软数字医疗系统股份有限公司 13 浙江大学医学仪器有限公司 14 鸿邦电子(深圳)有限公司 15 双鸽集团有限公司 16 广州骏丰医疗器械有限公司 17 通用电气医疗系统(中国)有限公司 18 克林尼科医疗器械(南昌)有限公司 19 深圳迈迪特仪器有限公司 20 秦皇岛康泰医学系统有限公司

21 上海阿洛卡医用仪器有限公司 22 山东新华医疗器械集团 23 浙江康德莱医疗器械股份有限公司 24 杭州市桐庐医疗光学仪器总厂 25 北京万东医疗设备股份有限公司 26 福建梅生医疗科技股份有限公司 27 挪度医疗器械(苏州)有限公司 28 上海医疗器械(集团)有限公司手术器械厂 29 上海西门子医疗器械有限公司 30 深圳市匹基生物工程股份有限公司 31 无锡祥生医学影像有限责任公司 32 北京拨晖创新光电技术服务有限公司 33 上海美华医疗器具股份有限公司 34 北京伏尔特医疗器材科技有限公司 35 力斯顿听力技术(苏州)有限公司 36 北京周林频谱科技有限公司 37 大连库利艾特医疗制品有限公司 38 上海医疗器械厂有限公司 39 汕头超声仪器研究所 40 深圳市雷杜生命科学股份有限公司 41 天津哈娜好医材有限公司 42 北京蒙太因医疗器械有限公司 43 武汉康桥医学新技术有限公司 44 西安西京医疗用品有限公司 45 上海安亭科学仪器厂

GSP质量管理职责,

XX大药房连锁有限责任公司岗位质量管理职责 1.目的:明确质量管理部的职能与职责,对公司药品经营过程中的质量进行控制。 2.依据:《药品管理法》、《药品经营质量管理规范》和公司质量管理制度。 3.职能:根据公司质量方针与目标,组织建立与运行公司质量管理体系,并进行经 营、管理、服务过程中各项流程的控制与改进,指导、监督《GSP的实施;定期审核 质量管理体系,持续完善质量管理体系。 4.职责 4.1认真执行《药品管理法》、《药品经营质量管理规范》等法律、法规和公司质量管理制度,并监督、检查公司其他职能部门严格落实《药品管理法》、《药品经营质量管理规范》、《公司质量管理制度》等法规、制度要求; 4.2组织制订公司药品质量管理体系文件,并指导、监督文件的执行; 4.3负责对供货单位和购货单位的合法性、购进药品的合法性以及供货单位销售人员、购货单位采购人员的合法资格进行审核,并根据审核内容的变化进行动态管理; 4.4组织对药品供货单位质量管理体系和服务质量进行考察和评价; 4.5负责首营企业和首营品种的质量审核; 4.6负责药品的验收,指导并监督药品采购、储存、养护、销售、退货、运输等环节的质量管理工作; 4.7收集和管理药品质量信息,建立药品质量档案。 4.8负责药品质量查询; 4.9指导药品销售和售后服务,负责药品质量投诉和质量事故的调查、处理及报告; 4.10负责药品召回管理工作; 4.10负责药品不良反应的报告; 4.11负责质量不合格药品的确认,对不合格药品的处理过程实施监督; 4.12负责假劣药品的报告; 4.13负责组织实施对药品储藏、运输设施设备的性能、状态、效果、标准进行验证、校准; 4.14负责指导设定计算机系统质量控制功能,负责计算机系统操作权限和质量管理基础数据的建立及更新; 4.15负责公司质量管理体系的内审和风险评估工作; 4.16负责对被委托运输的承运方运输条件和质量保障能力的审查; 4.17负责制订公司年度质量管理教育、培训计划,并协助开展质量管理教育和培训。 4.18承担其他应当由质量管理部门履行的职责。

医药有限公司质量管理体系文件

医药有限公司质量管理文件 质量管理职责 目录 1. 质量领导小组质量职责 (4) 2.内审小组质量职责 (5) 3.质量管理部质量职责 (7) 4. 办公室质量职责 (9) 5. 财务部质量职责..................................................... 1 0 ...................................................................... 6. 采购部质量职责..................................................... 1 (2) ......................................................................

7. 销售部质量职责..................................................... 1 (3) ...................................................................... 8. 仓储部质量职责..................................................... 1 (5) ...................................................................... 9. 运输部质量职责..................................................... 1 (6) ...................................................................... 10. 信息部质量职责.................................................... 1 (7) ...................................................................... 11. 总经理质量职责.................................................... 1 (9) ...................................................................... 12. 质量副总质量职责.................................................. 2..1 ...................................................................... 13. 质量管理部经理质量职责............................................ 2...2... 14. 办公室主任质量职责................................................ 2..4 ...................................................................... 15. 财务部经理质量职责................................................ 2..5 ...................................................................... 16. 采购部经理质量职责................................................ 2..7 ...................................................................... 17. 销售部经理质量职责................................................ 2..8 ...................................................................... 18. 仓储部经理质量职责................................................ 2..9 19. 运输部经理质量职责................................................ 3..0 20. 质量管理员质量职责................................................ 3..1 21. 药品验收员质量职责................................................ 3..3 22. 药品采购员质量职责................................................ 3..5 23. 药品养护员质量职责................................................ 3..7 24. 药品保管员质量职责................................................ 3..9

医疗设备公司排名

检验设备公司排名:排 排名名公公司名称司名称 销售额 总资产 利润 三项综合得 分 三项综合得 分 注册资金 经营年限 年上缴税金 三项综合得分 金 经营年限 年上缴税金 三项综合得分 加减分 公示得票 两项综合得 分 评价 总得分 1深圳迈瑞生物医疗电子股份有限公司5542262921072 2东芝医疗系统(中国)有限公司457.52802841021.5 3天津九安医疗电子股份有限公司540240195975 4沈阳东软医疗系统有限公司529.5140272941.5 5无锡市欧普兰科技有限公司525194213932 6南京普朗医用设备有限公司417.5191290898.5 7长春迪瑞实业有限公司535.5116246897.5 8桂林优利特医疗电子销售有限公司487.5131.9277896.4 9重庆天海医疗设备有限公司550.5159.5179889 10江西特康科技有限公司408206266880 11长沙爱威科技实业有限公司487.5147244878.5 12上海迅达医疗仪器有限公司430.5138299867.5 13长春市曼特诺医疗器械有限公司483219163865 14深圳市康立高科技有限公司552142170864 15深圳市凯特生物医疗电子科技有限公司501159189849 16重庆西山科技有限公司447233162842 17希森美康医用电子(上海)有限公司454.5200186840.5 18深圳市恩普电子技术有限公司445.5198193836.5 19英科新创(厦门)科技有限公司496.5189146831.5 20华美生物工程有限公司510159160829 21山东高密彩虹分析仪器有限公司435223.5170828.5 22深圳匹基生物工程有限公司508.5163155826.5 23中生北控生物科技股份有限公司516153.5149818.5 24深圳市雷杜电子有限公司480165.5170815.5 25深圳市锦瑞电子有限公司442.5101268811.5 26深圳市希莱恒医用电子有限公司435188.5186809.5 27艾康生物技术(杭州)有限公司483143.5180806.5 28江苏奥迪康医学科技有限公司402204.5198804.5 29中山大学达安基因股份有限公司426214154794

中国医疗器械类企业名单汇总

基础外科手术器械;显微外科手术器械;神经外科手术器械;眼科手术器械;耳鼻喉科手术器械;口腔科手术器械;胸腔心血管科手术器械;腹部外科手术器械;泌尿肛肠外科手术器械;矫形外科(骨科)手术器械;妇产科用手术器械;计划生育手术器械;注射穿刺器械;烧伤(整形)科手术器械;普通诊察器械、医用电子仪器设备;医用光学器具;仪器及内窥镜设备;医用超声仪器及有关设备;医用激光仪器设备;医用高频仪器设备;物理治疗设备;中医器械;医用磁共振设备;医用X射线设备;医用X射线附属设备及部件;医用高能射线设备;医用核素设备;医用射线防护用品、装置;临床检验分析仪器;医用化验和基础设备器具;体外循环及血液处理设备;植入材料和人工器官;手术室、急救室、诊疗室设备及器具;口腔科设备及器具;病房互利设备及器具;消毒和灭菌设备及器具;医用冷疗、低温、冷藏设备及器具;口腔科材料;医用卫生材料及敷料;医用缝合材料及粘合剂;医用高分子材料及制品;软件;介入器材等。 1.基础外科手术器械: 北京黑马震宇不锈钢制品公司辽宁福音医疗器械有限公司 北京中科恒健(济南)国际医学科技有限公司杭州美美科技有限公司 扬州市华冠科技发展有限公司云南康适医疗器械有限公司 陕西祥泰伟业有限责任公司深圳市海鑫医疗净化设备有限公司 太平洋医材股份有限公司上海联众医疗器械有限公司 上海普益医疗器械有限公司北京神鹿医疗器械有限公司 深圳市荣光科技有限公司上海市申丁实业有限公司 北京清大德人健康科技有限公司上海三友外科器材有限公司 中美合资常州健瑞宝医疗器械有限公司上海交大南洋医疗器械有限公司 上海汇丰医疗器械有限公司上海沪通电子有限公司 北京天长福医疗设备制造有限公司北京亚都科技股份邮箱公司 北京鑫紫竹兴业医疗器械有限公司北京鑫护神航天医学工程技术有限公司北京鑫和黎明医疗器械有限公司上海博迅实业有限公司 济南鑫贝西生物技术有限公司德迈特医学技术(北京)有限公司 北京市普华永泰科技发展有限责任公司金牛药械有限公司 2. 显微外科手术器械 郑州市久安医疗器械有限公司广州市博勒泰贸易有限公司 北京普利生仪器有限公司长春迪瑞实业有限公司 北京中兴名业科技发展有限公司北京天长福医疗设备制造有限公司 北京思雅龙凌科贸有限公司北京永新诺华科技有限公司 宁波医用缝针有限公司北京鑫和黎明医疗器械有限公司 扬州市尖新医疗器械有限公司济南鑫贝西生物技术有限公司 张家港市奥斯卡医疗器械有限公司上海安信光学仪器制造有限公司

医药公司质量管理职责部门质量管理职责

质量管理领导小组的质量职责 1.组织并监督公司实施《药品管理法》、《药品经营质量管理规范》等药品管理法律、法规和行政规章制度; 2.建立公司的质量管理体系; 3.制定公司的质量方针和质量目标,组织并监督实施; 4.负责编制、分解、实施公司年度质量目标; 5.负责公司质量管理部的设置,确定各部门的质量管理职能; 6.审定公司质量管理制度和质量管理体系文件,并指导检查、督促实施; 7.研究和确定公司质量管理工作的重大问题; 8.制定公司质量奖惩措施。

质量管理部的质量职责 1.贯彻执行有关药品质量管理法律、法规和行政规章制度; 2.负责起草公司药品质量管理制度,并指导、督促质量管理制度的执行; 3.定期组织质量管理体系的内部审核,实施质量体系的持续改进; 4负责药品的验收并指导和监督药品储存、养护和运输中的质量工作; 5.负责建立公司所经营药品并包含质量标准等内容的质量档案; 6.负责药品质量的查询和药品质量事故或质量投诉的调查、处理及报告; 7.负责质量不合格药品的审核,对不合格药品的处理过程实施监督; 8.负责收集和分析药品质量信息; 9.协助开展对公司职工进行药品质量管理方面的教育或培训;努力提高职工质量意识和质量专业知识,推进各项工作的规范化和服务专业化; 10.收集由本公司售出药品的不良反应情况,并按规定进行药品不良反应的报告: 11.在公司总经理和质量领导小组的领导下行使质量管理职能,在药品采购进货、检查验收、储存养护、出库运输等环节做好质量指导与监督管理。 12.负责指导设定系统质量控制功能; 13.负责系统操作权限的审核,并定期跟踪检查; 14.监督各岗位人员严格按规定流程及要求操作系统; 15.负责质量管理基础数据的审核、确认生效及锁定; 16.负责经营业务数据修改申请的审核,符合规定要求的方可按程序修改; 17.负责处理系统中涉及药品质量的有关问题。

医疗器械公司排名

医疗器械公司排名Revised on November 25, 2020

中国医疗器械公司排名 疗器械企业利润总额排名排名企业名称 1 深圳迈瑞生物医疗电子有限公司 2 北京京精医疗设备有限公司 3 泰尔茂医疗用品(杭州)有限公司 4 微创医疗器械(上海)有限公司 5 山东淄博山川医用器材有限公司 6 苏州碧迪医疗器械有限公司 7 瑞声达听力技术(中国)有限公司 8 航卫通用电气医疗系统有限公司 9 上海德尔格医疗器械有限公司 10 欧姆龙(大连)有限公司 11 优利康听力技术(苏州)有限公司 12 沈阳东软数字医疗系统股份有限公司 13 浙江大学医学仪器有限公司 1 4 鸿邦电子(深圳)有限公司 15 双鸽集团有限公司 16 广州骏丰医疗器械有限公司 17 通用电气医疗系统(中国)有限公司 18 克林尼科医疗器械(南昌)有限公司 19 深圳迈迪特仪器有限公司 20 秦皇岛康泰医学系统有限公司 21 上海阿洛卡医用仪器有限公司 22 山东新华医疗器械集团 2 3 浙江康德莱医疗器械股份有限公司 24 杭州市桐庐医疗光学仪器总厂 25 北京万东医疗设备股份有限公司 26 福建梅生医疗科技股份有限公司 27 挪度医疗器械(苏州)有限公司 28 上海医疗器械(集团)有限公司手术器械厂 29 上海西门子医疗器械有限公司 30 深圳市匹基生物工程股份有限公司 31 无锡祥生医学影像有限责任公司 32 北京拨晖创新光电技术服务有限公司 33 上海美华医疗器具股份有限公司 34 北京伏尔特医疗器材科技有限公司 35 力斯顿听力技术(苏州)有限公司36 北京周林频谱科技有限公司 37 大连库利艾特医疗制品有限公司 38 上海医疗器械厂有限公司39 汕头超声仪器研究所 40 深圳市雷杜生命科学股份有限公司 41 天津哈娜好医材有限公司 42 北京蒙太因医疗器械有限公司 43 武汉康桥医学新技术有限公司 44 西安西京医疗用品有限公司 4 5 上海安亭科学仪器厂 46 戴维医疗器械有限公司 47 深圳市威尔德电子有限公司 48 天津东华医疗系统有限公司 49 河北路德医疗器械有限公司 50 珠海市和佳医疗设备有限公司医疗器械企业销售收入排名排名企业名称 1 航卫通用电气医疗系统有限公司 2 欧姆龙(大连)有限公司 3 山东淄博山川医用器材有限公司 4 深圳迈瑞生物医疗电子有限公司 5 力斯顿听力技术(苏州)有限公司 6 双鸽集团有限公司 7 上海西门子医疗器械有限公司 8 泰尔茂医疗用品(杭州)有限公司 9 瑞声达听力技术(中国)有限公司 10 沈阳东软数字医疗系统股份有限公司 11 通用电气医疗系统(中国)有限公司 12 山东新华医疗器械集团 13 优利康听力技术(苏州)有限公司 14 江苏鱼跃医疗设备有限公司 15 扬州中惠集团公司 16 北京万东医疗设备股份有限公司 17 东软飞利浦医疗设备系统有限责任公司 18 深圳迈迪特仪器有限公司 19 北京通用电气华伦医疗设备有限公司 20 微创医疗器械 ...

国内医疗器械上市公司一览表

国内医疗器械上市公司一览表 [1]、鱼跃医疗(002223):听诊器、血压计、供氧设备、电动吸引器 是国内最大的康复护理和医用供氧系列医疗器械的专业生产企业,生产的产品共计36个品种、225个规格,是国内同行业生产企业中产品品种最丰富的企业之一。该公司秉承做专做精的理念,力争每个主要产品做到行业前三名,目前公司前六大产品有制氧机、超轻微氧气阀、雾化器、血压计、听诊器五个产品的市场占有率达到国内第一、轮椅车的市场占有率国内第二。公司两大系列产品生产涉及到精密制造和机电一体化制造,主要生产设备和部分流水线可以共用; [2]、万东医疗(600055):医用X射线机、移动式X射线机、口腔综合治疗仪 医用X射线机是公司主营收入和利润的主要来源,虽然公司医用X射线机在国内市场占有率第一,但是面对日益激烈的市场竞争,特别是国外医疗器械巨头,如美国GE公司、德国西门子等的介入,公司原本盈利能力较强的中、高端产品如高频X射线机的市场不断被实力雄厚的跨国公司“蚕食”,导致公司毛利率同比下降9.6%。目前公司产品主要集中于中低端市场,医用X射线机是各基层医院必备设备。 [3]、新华医疗(600587):X射线机、消毒灭菌设备、清洗消毒机、手术器械 公司是我国最大的消毒灭菌设备研制生产基地,也是国内生产放射治疗设备品种最多的企业,主要产品有消毒灭菌设备,放射治疗设备等,目前已发展成为国内最大的感染控制设备和放射治疗设备研发和制造基地。

[4]、科华生物(002022):半自动生化仪,全自动生化仪 根据公司诊断仪器和试剂同步发展的战略,公司医疗仪器业务快速推进,“卓越”全自动生化分析仪基本形成系列,已有8款产品上市,既满足了不同层次用户的需求,也顺应了新医改大量基层医疗机构仪器配置的趋势。诊断仪器业务快速增长,使仪器在公司整体业务构成中的比重不断提升:今年以来,诊断仪器需求在政策的支持下加快释放,政府对医疗服务提供方的投入直接且迅速,在对医疗资源的重新分配中,各类医疗机构对基础诊疗设备的需求增大。受惠于此,公司主要仪器类产品均保持较快的增长。 [5]、东软股份(600718):医用影像设备 公司控股67%的沈阳东软,是我国唯一同时拥有CT、磁共振、数字X 光机、彩超等全部四大高技术影像设备的企业。东软股份1997年研制成功我国第一台医用全身CT,2000年4月成功研制出螺旋CT并先后获得ISO9001、欧洲CE 认证和美国FDA认证,并先后5次填补国内同类产品空白,产品达7大门类近30个品种,开放式磁共振和CT国内市场占有率已分居第一和第二位。数字医疗设备业务已经成为东软股份最主要的收益来源。 [6]、复星医药(600196):医用带线缝合针、医用手术刀片、钛合金眼科器械、尿袋、保健刀等 淮阴医疗器械有限公司创建于1959年,是上海复星医药(集团)股份有限公司的全资子公司,公司拥有一流的富有创新和协作精神的职工团队和装备精良的生产、检测设备以及符合国家医疗器械行业规范标准的生产厂房,是全国最大的医用手术刀片和可吸收线、非吸收线医用带线缝合针的生产和出口企业。公司产品主要有医用带线缝合针、医用手术刀片、钛合金眼科器械、尿袋、保健刀等系列。

全球十大医疗器械公司的排行榜

全球十大医疗器械公司排行榜: 迈瑞(中国最大的医疗器械企业,医疗器械第一品牌) 西门子(世界品牌,全球最大的电气和电子公司之一,德国) 通用电气(GE) (世界品牌,世界上最大的多元化服务性公司) 东软(中国第一家上市的软件企业,医疗系统软研发领导品牌) 飞利浦PHILIPS (中国驰名商标,世界上最大的电子公司之一,荷兰品牌) 新华(中国名牌,中国医疗器械影响力品牌) 微创(高科技微创医疗产品影响力品牌) 强生Johnson (世界消费品,护理,医药和医疗器材等领域影响品牌) 美敦力Medtronic (世界领先的医疗产品公司,美国品牌) 洁瑞(中国驰名商标,中国名牌) 知名医疗器械品牌: 世界知名医疗器械品牌:美敦力Medtronic,西门子SIEMENS,通用电气,飞利浦,强生,百斯,欧姆龙OMRON 中国知名医疗器械品牌:深圳迈瑞,沈阳东软,山东新华,上海微创,北京京精,上海德尔格,北京源德,威海威高,美高仪MEIGAOYI(北京),航天长峰(北京),北京迈特利,天惠华(北京),苏州碧迪,泰尔茂杭州,苏州楼氏,淄博山川,浙江双鸽,江西洪达,合信医疗 全球50强医疗器械公司排行榜: 迈瑞(中国最大的医疗器械企业,医疗器械第一品牌) 西门子(世界品牌,全球最大的电气和电子公司之一,德国) 通用电气(GE) (世界品牌,世界上最大的多元化服务性公司) 东软(中国第一家上市的软件企业,医疗系统软研发领导品牌) 飞利浦PHILIPS (中国驰名商标,世界上最大的电子公司之一,荷兰品牌) 新华(中国名牌,中国医疗器械影响力品牌) 微创(高科技微创医疗产品影响力品牌) 强生Johnson (世界消费品,护理,医药和医疗器材等领域影响品牌) 美敦力Medtronic (世界领先的医疗产品公司,美国品牌) 洁瑞(中国驰名商标,中国名牌) 知名医疗器械品牌: 世界知名医疗器械品牌:美敦力Medtronic,西门子SIEMENS,通用电气,飞利浦,强生,百斯,欧姆龙OMRON 中国知名医疗器械品牌:深圳迈瑞,沈阳东软,山东新华,上海微创,北京京精,上海德尔格,北京源德,威海威高,美高仪

医药公司质量管理职责

公司经理质量职责一、目的:对公司经理质量管理职责予以规定,以促进有效的质 量管理。二、范围:适用于公司经理质量管理职责、权限的规定。三、职责: 1、坚持“质量第一”的原则,认真贯彻执行国家有关药品监督管 理的法律、法规及行政规章,加强质量管理。在连锁总店内组织贯彻 公司质量方针、目标,并主持公司质量方针、目标的分解落实,对公 司经营的质量管理工作负全面领导负责。 2、正确理解并积极推进企业质量管理体系在公司的正常运行,建 立健全并带头贯彻落实质量责任制和各项质量管理规章制度。 3、在经营和奖惩中严格执行质量否决权制度。 4、抓好质量教育,主持对各门店负责人进行质量意识及业务素质

的考核。 5、努力提高公司质量保证能力,创造必要的物质,技术条件,使 之与经营质量要求相适应,保证提供必要的质量活动经费。 6、及时掌握经营过程中的质量动态,发现质量问题及时与公司质 量管理部联系,负责公司重大质量问题改进措施的落实。 7、重视客户意见和投诉处理,发现质量事故应及时报告,并本着 “三不放过”的原则及时分析处理。 8、创造必要的物质,技术条件,使之与经营药品质量要求相适应。 9、负责总店及连锁门店的全员培训教育工作的实施。 公司质量部长质量职责一、目的:对公司质量管理部部长职责予以规定,以促进有效的

质量管理。二、范围:适用于公司质量管理部部长质量管理职责和权了限的 规定。三、职责: 1、指导各部门有效展开质量方针目标编制年度质量计划的指标, 并督促质量目标的完成。 2、负责组织起草、编制质量管理制度、质量责任及经营环节的质 量程序文件,并保证文件的实施;定期检查制度执行情况,对存在的 问题提出改进措施,并做好记录。 3、负责连锁门店质量管理工作的指导和督促,定期组织召开质量 分析会,质量管理人会议,听取质量动态的汇报并作出有关质量问题 的处理意见,接受并处理门店对药品质量的报告及查询,对上报的质 量问题进行复查、确认、处理、追踪。 4、负责对药品养护工作的业务技术进行指导。

相关文档
最新文档