JASO C467 ABS 系统的车轮速度传感器

JASO C467 ABS 系统的车轮速度传感器
JASO C467 ABS 系统的车轮速度传感器

高铁传感器总结

高速铁路技术及传感器应用 一、高铁的定义 对于“高速铁路”一词,现时世界上并没有统一的定义,所以不同的组织或国家均对“高速铁路”有各异的标准。但近年各地的标准均趋于接近,现时世界上最为受广泛接受的“高速铁路”定义为:最高(日常/商业)的营运速度达到200公里/小时的铁路。 二、世界高速铁路发展概况 1、高速铁路的兴起 1964年,日本新干线开通运营,开启了世界铁路发展的新时代。1981年,法国高速铁路后来居上,将高速铁路的发展推上一个新台阶,同时带动了欧洲高速铁路的发展,意大利、德国、西班牙等国先后投入建设高速铁路的行列。 2、中国高速铁路 2008年中国大陆拥有了第一条时速350公里的高速铁路-京津城际铁路。2009年中国拥有了世界上一次建成里程最长、运营速度最高的高速铁路-武广客运专线。 3、高速铁路的发展 法国在发展高速列车方面一直居世界领先地位,曾在1990年创造了每小时515.3公里的世界最高时速纪录。 2007年4月3日,在刚刚竣工的巴黎-斯特拉斯堡东线铁路进行了TGV试验,列车时速达到574.8公里。 4、日本高速铁路 面对法、德等发达国家的激烈竞争,日本声言:21世纪是新干线时代。日本要使新干线总长从目前的2000公里增加到7000公里,届时在日本全国将形成以东京为中心的全国一日交通圈(即当日到达东京以外的任一大城市)。 日本高速铁路技术特点: (1)线路中桥、隧比重不断增加,线路标准不断提高 (2)建立试验段,通过试验研究解决技术关键

(3)高速列车采用动力分散型,不断降低轴重,全面提高列车性能 (4)列车运行密度高、定员多、旅客输送量大 (5)安全性能好、无旅客死亡事故 (6)增加服务设施、提高服务质量、方便旅客换乘 5、法国高速铁路 驰名世界的高速铁路是法国技术的骄傲,但在经济上却 使国家背上了沉重的包袱,目前法国高速铁路只有1282公里,法国计划在21世纪的头10年内,把东南线延伸至马赛,还要修建通向意大利和西班牙的南部欧洲线以及巴黎至德国斯特拉斯堡的东部欧洲线。 高速铁路是个典型的法国传奇—技术上的成功与财政方面的灾难密不可分。 法国高速铁路技术特点: (1)动车组采用动力集中方式及铰接式车厢 (2)多电流制供电与简单链型悬挂接触网,能使用一般线路的1500V 3000V直流供电,也能使用高速线25KV交流供电。 (3)采用符合ETCS标准的TVM列车控制系统 (4)注重系统的安全性与可靠性。 (5)高标准、高质量的线路。 6、德国高速铁路 德国的高速铁路技术储备不亚于法国,1988年他们电力牵引的行车试验速度突破每小时400公里大关,达到406.9公里。但是德国的实用性高速铁路直到20世纪90年代初才开始修建。目前已建成总长约2620公里的高速运输走廊。 德国高速铁路技术特点: (1)客货混跑对高速铁路线路的要求更高 (2)三相交流传动技术 (3)计算机控制的机车牵引与列车制动技术

加速度传感器和压电式传感器应用

加速度传感器及压电式传感器应用 摘要:加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。通过加速度的测量,本文简单介绍了加速度传感器的种类、原理及相关应用并着重介绍了压电式加速度传感器。 关键词:加速度,传感器,应用 一加速度传感器概况 加速度检测是基于测试仪器检测质量敏感加速度产生惯性力的测量,是一种全自主的惯性测量,加速度检测广泛应用于航天、航空和航海的惯性导航系统及运载武器的制导系统中,在振动试验、地震监测、爆破工程、地基测量、地矿勘测等领域也有广泛的应用。 测量加速度,目前主要是通过加速度传感器(俗称加速度计),并配以适当的检测电路进行的,在(1~64)Hz的设备频率下典型的加速度测量范围为(0.1~10)g。。加速度传感器的种类繁多,依据对加速度计内检测质量所产生的惯性力的检测方式来分,加速度计可分为压电式、压阻式、应变式、电容式、振梁式、磁电感应式、隧道电流式、热电式等;按检测质量的支承方式来分,则可分为悬臂梁式、摆式、折叠梁式、简支承梁式等。多数加速度传感器是根据压电效应的原理来工作的,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,压电材料产生的变形和由此产生的电荷与加速度成正比,输出电量经放大后就可检测出加速度大小。下表为部分加速度计的检测方法及其主要性能特点。 型式测量范围灵偏稳定性分辨力特点 压电式(5~)g (~)g(~)g固有频率较高,用于冲击 及振动测量,大地测量及 惯性导航等 应变式± (0.5~200)g 低频响应较好,固有频率低,适用于低频振动测量 压阻式± (20~)g 灵敏度较高,便于集成化,耐冲击,易受温度影响 液浮摆式±(1~15)g (~)g(~)g带力反馈和温控,分辨力 高,成本较高,适用于惯 性导航

列车车轮磨损检测开题报告

毕业设计开题报告 毕业设计题目:列车车轮磨损检测仪 1、课题的目的及意义 车轮作为机车车辆走行部的重要部件, 直接关系到行车安全。在实际运用过程中, 由于存在着线路养护条件较差、轮轨外形及材质匹配不合理、转向架技术状态不良和牵引装载定数过大等诸多原因, 导致车轮踏面和轮缘的磨耗加剧, 影响了机车车辆的正常运转, 降低了机车车辆的利用率。因此, 及时准确地掌握车轮的磨耗状况是非常必要的。我国铁路机务车辆部门对各型车轮的磨耗限度均有明确的规定。在检修车轮时, 主要通过测量轮缘踏面外形的几何参数来判断车轮的磨耗程度。这些数据包括, 车轮直径、轮缘厚度、踏面磨耗和垂直磨耗等, 其中以轮缘厚度最为关键。如何准确方便地测量车轮外形参数是迫切需要解决的问题。国外各主要发达国家为此进行了长期研究和探索, 也取得了显著成果。概括起来, 车轮外形几何参数的测量方法基本分为静态检测法和动态检测法。静态检测是指机车车辆在检修时进行的测量; 动态检测则是指机车车辆在运行时进行的测量。 静态检测技术 静态检测技术经历了机械量具测量和电子量具测量等阶段。随着微电子技术和可编程技术的发展,机械量具已逐渐被电子量具所取代。下面简要介绍几种国外典型的电子式测量产品。 1)美国便携式车轮断面测量仪 美国国际电子机械有限公司于80 年代末期研制成功便携式车轮断面测仪。这种仪器可在2 s 的时间内测出轮缘厚度和踏面磨耗等数据, 并能打印记录测量结果, 使用非常方便。在进行任何测量工作以前, 两组控制机构可确保仪器放在车轮正确的位置, 因而其测量精度很高。这种仪器已形成系列产品, 可广泛用于机车车辆和地铁动车组的车轮参数测量, 并可在任何照明和气候条件下正常工作, 测量数据可以自动传送到已有的计算机系统处。利用预先编制的维修程序, 这种仪器能够使检修人员把旋轮和换轮成本降至最低程度。该公司还于同期研制成功便携式的轮径电子测量仪和车轮轮廓测量仪。轮径测量仪能在不拆卸轮对的情况下精确测出车轮的直径, 测量误差不超过0. 76 mm。当同根车轴或同台转向架不同车轮的直径超过用户规定的限度值时, 仪器将发出报警信号。机内预编程序可对不同标称直径的车轮设置相应的公差, 定位机构可以准确地将仪器放在车轮合适的位置, 进而得到精确的读数。轮廓测量仪能够提供完整的轮缘踏面的数字化断面, 可以随时精确地测定踏面各点的磨耗量。仪器还能为评价改变车轮踏面形状、更换车轮的整修计划以及不同的轮缘润滑技术的效果提供所需的数据。 2)芬兰车轮外形测量仪 芬兰铁路已于90 年代初期研制成功车轮外形测量仪。这种仪器可以测绘磨耗车轮的外形并将测得的数据与存储的参考数据比较, 进而计算出车轮外形参

在轨道车辆上使用的速度传感器

在轨道车辆上使用的速度传感器 摘要:在轨道车辆上,车辆系统的稳定性很大程度上取决于它所采集到的速度信号的可靠性和精度,而所采集的速度信号包括当前速度值和速度的变化量。在机车的牵引控制,车轮滑动保护,列车控制,和车门控制过程中都要涉及到速度信号的采集问题。我们可以发现在各种轨道车辆中,这个任务是由许许多多的速度传感器来完成的。 概述 在轨道车辆上,车辆系统的稳定性很大程度上取决于它所采集到的速度信号的可靠性和精度,而所采集的速度信号包括当前速度值和速度的变化量。在机车的牵引控制,车轮滑动保护,列车控制,和车门控制过程中都要涉及到速度信号的采集问题。我们可以发现在各种轨道车辆中,这个任务是由许许多多的速度传感器来完成的。 在过去,用来测速的传感器通常性能不稳定,而且容易出现故障,经常引起车辆事故。主要原因是早期使用的主要是模拟传感器,而当时使用的数字传感器效果也很差。造成上述速度传感器问题的主要原因是轨道车辆应用的环境都极度恶劣。 德国Lenord+Bauer公司经过多年的研究和实际经验的积累,开发出高品质的多功能的速度传感器,而且性能非常稳定,广泛应用于工况恶劣的轨道列车行业。 无轴承速度传感器 虽然有些轨道列车不用传感器,但是大多数的机车控制系统都要用到速度传感器。 最常用的速度传感器类型是双通道速度传感器(如这种类型的速度传感器通常有2个霍尔传感器,永磁体,和信号处理电路组成。当速度传感器扫描旋转的齿轮时,永磁体的磁场发生变化。磁场的变化被霍尔传感器记录下来,在电路的比较环节被转换成方波,在驱动环节被放大。tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

加速度传感器传感器课程设计

一、 设计要求 1、功能与用途 加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 2、指标要求 分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。 二、设计方案及其特点 依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。三种加速度传感器的设计及特点分别叙述如下: 1、方案一 压电式加速度传感器 压电加速度测量系统结构框图如图1所示: 压电加速度传感器采用具有压电效应的压电材料作基本元件 ,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料 ,当沿着一定 压电加速度 传感器 电荷放大器 信号处理电 路 A/D 转 换电路 图1 压电加速度测量系统结构框图

方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后 ,又重新恢复不带电的状态;当作用力的方向改变时 ,电荷的极性也随着改变。电信号经前置放大器放大 ,即可由一般测量仪器测试出电荷(电压)大小 ,从而得出物体的加速度 加速度计的使用上限频率取决于幅频曲线中的共振频率图2。 方案二 电阻应变式加速度传感器 应变式加速度传感器主要用于物体加速度的测量。其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m 。 图3中1是等强度梁,自由端安装质量块2,另一端固定在壳体3上。等强度梁上粘贴四个电阻应变敏感元件4 。 测量时,将传感器壳体与被测对象刚性连接,当被测物体以加速度a 运动时,质量块受到一个与加速度方向相反的惯性力作用, 使悬臂梁变形,该变形被粘贴在悬臂梁上的应变片感受到并随之产生应变,从而使应变片的电阻发生变化。 电阻的变化引起应变片组成的桥路出现不平衡,从而输出电压, 即可得出加速度a 值的大 图2 压电式加速度计的幅频特性曲线 3 2 1 4 1—等强度梁;2—质量块;3—壳体; 4—电阻应变敏感元体 图3 应变式加速度传感器结构

别克凯越-轮速传感器故障

5.4.4.6 C0035-C0052-轮速传感器故障 电路说明 车轮旋转时,车轮速度传感器将产生一个交流信号。电子制动控制模块(EBCM) 根据交流信号的频率计算车轮速度。 运行故障诊断码的条件 点火开关至于ON的位置 设置故障诊断码的条件 诊断程序支持如下故障诊断码: DTC C0035 左前轮速度传感器开路或短路 DTC C0036 左前轮速度传感器偏差过大或左前轮速度传感器间歇性故障(被动式传感器) DTC C0037 左前轮速度传感器输入信号为零 DTC C0040右前轮速度传感器开路或短路 DTC C0041右前轮速度传感器偏差过大或右前轮速度传感器间歇性故障(被动式传感器) DTC C0042右前轮速度传感器输入信号为零 DTC C0045左后轮速度传感器开路或短路 DTC C0046左后轮速度传感器偏差过大或左后轮速度传感器间歇性故障(被动式传感器) DTC C0047左后轮速度传感器输入信号为零

DTC C0050右后轮速度传感器开路或短路 DTC C0051右后轮速度传感器偏差过大或右后轮速度传感器间歇性故障(被动式传感器) DTC C0052右后轮速度传感器输入信号为零 C0035, C0040, C0045, 或C0050 ?点火开关ON( 开) ?电子制动控制模块检测到车轮速度传感器电路或低电压电路中有开路、对地短路或对电源短路。 C0036, C0041, C0046, 或C0051 ?未设置故障诊断码C0035, C0040, C0045, 或C0050。 ?制动踏板未压下。 ?防抱死制动系统未激活。 ?至少有两个车轮速度不为0 公里/ 小时。 ?电子制动控制模块检测到车轮速度有急剧变化超出合理的限值。 C0037, C0042, C0047, 或C0052 ?未设置故障诊断码C0035, C0040, C0045, 或C0050。 ?制动踏板未压下。 ?防抱死制动系统未激活。 ?可疑的车轮速度为0,其它车轮速度大于8 公里/ 小时(5 英里/ 小时)达至少2.5秒。

传感器在高铁中的应用

1、转向架 转向架是支承车体并沿着轨道走行的装置。转向架是车辆最重要的组成部件之一,它的结构是否合理直接影响车辆的运行品质、动力性能和行车安全。 CHR1动车组转向架上安装有用于多个系统用的速度传感器。 速度传感器 (1)光电式车速传感器--由带孔的转盘两个光导体纤维,一个发光二极管,一个作为光传感器的光电三极管组成。发光二极管透过转盘上的孔照到光电二极管上实现光的传递与接收。 (2)磁电式车速传感器--模拟交流信号发生器,产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。输出信号的振幅与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。 (3)霍尔式车速传感器--它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场。 红外轴温探测传感器 列车在运行中,车轴与轴承相互摩擦产生热能。当车轴与轴承间出现故障时,摩擦力增大,产生的热能就随之增加,轴箱的温度也随之升高。因此,测定轴箱的温度变化,可以确定轴箱的工作状态是否正常。铁路行车早期,采用手摸轴箱的办法来判断温度的变化情况,并以手的感觉来确定车辆与轴承间的工作状态。采用这种方法,检测人员劳动强度大,效率低,而且人的手感有差异,没有标准。 红外线轴温探测设备由探头、轴温信息处理装置、传输线路、信号报警装置等部分组成。探头由光敏器件和光电转换器件组成。 轨道清障器 CHR1动车组两个端部转向架上各装有一个轨道清障器,用来防止轨道有异物导致出现脱轨现象。 2、弓网系统 电弓是电力牵引机车从接触网取得电能的电气设备,安装在机受车或动车车顶上。受电弓与接触电网直接接触,为电力机车提供电力。(包括高压牵引电机电力以及车厢照明等低压电力)受电弓可分单臂弓和双臂弓两种,菱形受电弓,也称钻石受电弓,以前非常普遍,后由于维护成本较高以及容易在故障时拉断接触网而逐渐被淘汰,近年来多采用单臂弓(图)。 弓网电弧是指由于接触导线的不平顺、接触网的振动、受电弓弓头的振动、轨道的不平顺等多种因素的影响,受电弓与接触导线在相对高速滑动中分离而产生的气体放电现象。弓网电弧的危害有:侵蚀和磨损接触导线和受电弓滑板;产生过电压;产生高频噪声;使电力机车的供电质量下降等

压电式加速度传感器及其应用备课讲稿

压电式加速度传感器 及其应用

压电式加速度传感器及其应用 一、 压电式加速度传感器原理 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 二、压电式加速度传感器构成元件 常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。 预压弹簧压电元件外壳质量 块基座

三、压电式加速度传感器幅频特性 图1 压电式加速度计的幅频特性曲线 加速度 限频率取决于幅频曲线中的共振频率图(图1)。一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。 四、压电式加速度传感器的灵敏度 压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。前者是加速度计输出电压(mV)与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。一般来说,加速度计尺寸越大,其固有频率越低。因此

压电型加速度传感器的频率特性

压电加速度传感器的频率特性 1、固有共振频率 压电型加速度传感器基本上由质量块m、弹性常数k的压电体、空气阻抗等的阻尼器D 以及基座构成的。 图1压电型加速度传感器的弹性质量系 现在我们假设没有阻尼器D和外力的情况,如图1(a)此时的共振频率为: m b:基座的质量 上式中f n 是弹性质量系(质量块m)的共振频率,用以下公式表示。 图1(b)中,当基座固定在质量无限大的物体上时,mb远大于m,f0约等于fn。 我们将fn 称为不衰减固有共振频率。 接下来我们假设有衰减的情况,实际上自由振动不可能一直进行,一定会受到某些衰减并随时间变弱。 衰减状态由衰减比h的大小决定,分为3种状态。另外衰减比h 是衰减系数 D 比上临界衰减系数Dc,即D/Dc 得出。

图2 衰减自由振动 h<1 时,后续振幅比如下式所示。 由此我们可以得知,包络线会随时间以指数函数减少。此时将fd 作为共振频率的话, 可用以下公式表示。 fd 就称作衰减固有共振频率。 h≥1 时,则fd=0。变为失去振动性的无周期运动。从振动测量精度上来看,自由衰减振动需要尽可能快得使其衰减,但衰减比h并不是越大越好。这一点可从图上记公式中得知。 衰减比h 的大小也受到谐振锐度即Qm 值的影响。h 越小Qm 就越大,形成尖锐的共振。其关系由下记公式来表示。 在设计压电型加速度传感器时,会尽可能使h 值小,Qm 值大,形成尖锐共振后,扩大平坦的频率范围。

2、 电荷增幅中的低频截止频率 上述已经提到,电荷放大器中传感器产生的电荷全部储存在反馈电容 Cf 中。 因此低频特性与输入电路中的时间常数(电缆电容 Cc 、传感器电容 Cd 等)没有关系, 而是由反馈电路的时间常数 Cf ?Rf 决定。即低频截止频率 fc 为: 由于一般情况下Rf 会选定10MΩ 以上的高阻抗值,比 Cf 的电感器大很多,因此实际上 fc 的值主要由 Cf 的值来决定。Cf 值越大 fc 就越小,适合低频的振动测量。但是这也有一定限度,从之前公式可以看出,Cf 值非常大时电荷—电压的转换率下降造成灵敏度下降,导致 S/N 比的恶化。一般情况下,大多选择 1000pF 左右。 3、 电压增幅中的低频截止频率 将压电型加速度传感器连接到电压放大器上的等价电路如图3所示。 图3 电压增幅的等价电路 途中 V 和 V in 之间的关系可用以下公式表示。 在低频截止频率 fc 中,因为丨 Vin/V 丨=1/√2,因此将上记公式的分母 1+w2Rin2(Cd+Cc )2=2,得到: 则 f c 为: Cd :传感器的静态电容 Cc :电缆的静态电容 Rin :电压放大器的输入阻抗 Vin :电压放大器的输入电压

传感器测转速的原理【详述】

传感器测转速的原理【详述】

作者: 日期:

内容来源网络,由“深圳机械展(1 1万m2,1100多家展商,超10万观众)”收集整理! 更多cn c加工中心、车铳磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数 字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就 在深圳机械展? 转速测量原理 转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法卜T法(测周期法)和M PT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢 固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装 一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。脉冲信号的周期与电机的转速有以下关系: 閒 11 ?—- FT, 霍尔传感器如何测转速—霍尔传感器测转速原理 式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期根据公式即可计 算出直流电机的转速。 测量电机转速的第一步就是要将电机的转速表示为单片机可以识别的脉冲信号,从而进 行脉冲计数。霍尔器件作为一种转速测量系统的传感器,它有结构牢固、体积小、重量轻、 寿命长、安装方便等优点,因此选用霍尔传感器检测脉冲信号,其基本的测量原理如图所示

当电机转动时,带动传感器运动,产生对应频率的脉冲信号,经过信号处理后输出到计数器或 其他的脉冲计数装置,进行转速的测量。 低号址理 霍尔传感器如何测转速_霍尔传感器测转速原理 霍尔传感器测转速方案 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为: U H=K H IB K H=l/nq (金属) 霍尔传感器如何测转速—霍尔传感器测转速原理

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

汽车ABS传感器简介

一?制动防抱死系统(ABS)概述 ABS是通过安装在各车轮或传动轴上的转速传感器等不断检测各车轮的转速,由计算机计算出当时的车轮滑移率,并与理想的滑移率相比较,做出增大或减小制动器制动压力的决定,命令执行机构及时调整制动压力,以保持车轮处于理想的制动状态。 因此,ABS装置能够使车轮始终维持在有微弱滑移的滚动状态下制动,而不会抱死,达到提高制动效率的目的,同时也提高了刹车时汽车的稳定性及较差路面条件下的汽车制动性能。 二. ABS轮速传感器的功用 检测车轮的速度,并将速度信号输入ABS的电控单元。当齿圈的转速发生变化时,感应电动势的频率也变化。ABS电控单元通过检测感应电动势的频率来检测车轮转速。 用于ABS系统的轮速传感器主磁电式和霍尔式两种。 三. ABS传感器的安装位置 ABS传感器在车轮上的安装位置如下图所示: 转逮传感番在车轮上的安婪位置 四.磁电式ABS传感器 结构如下图所示:

£凿式极轴b)柱式极轴 车轮转連传感器剖视图 1 ?电裟 2 ?永磁俸 3 ?外売乩感应倔 5 .极轴&齿88 磁电式ABS传感器由永磁体2、极轴5和感应线圈4等组成,极轴头部结构有凿式和柱式两种。 齿圈6旋转时,齿顶和齿隙交替对向极轴。在齿圈旋转过程中,感应线圈内部的磁通量 交替变化从而产生感应电动势,此信号通过感应线圈末端的电缆1输入ABS的电控单元。 当齿圈的转速发生变化时,感应电动势的频率也变化。ABS电控单元通过检测感应电动 势的频率来检测车轮速度。 磁电式ABS传感器结构简单、成本低,但也存在下述缺点: 1?其输出信号的幅值随转速的变化而变化。若车速过慢,其输出信号低于1V,电控单元 就无法检测; 2?其响应频率不高。当转速过高时,传感器的频率响应跟不上; 3.其抗电磁波干扰能力差。 五.霍尔式ABS传感器 霍尔式ABS传感器结构示意图: 1.进淙2■霍尔元件 霍尔式ABS轮速传感器也是由传感头和齿圈组成。传感头由永磁体,霍尔元件和电子电 路组成。 当齿轮位于图示中(a)所示位置时,穿过霍尔元件的磁力线分散,磁场相对较弱;而当齿轮位于图中(b)所示位置时,穿过霍尔元件的磁力线集中,磁场相对较强。 (b)

利用加速度传感器测量物体的倾斜角度

利用加速度传感器测量物体的倾斜角度 1 说明测量物体的倾斜角度是加速器传感器的一种常见的应用。虽然其基本原理十分简单,但是在具体实现中仍然会遇到很多困难,比如倾斜角度的精度问题,数学计算过于复杂等等。本文将对精度问题进行详细讨论,并给出一种简化的计算方法。 2 基本原理由于加速度传感器在静止放置时受到重力作用,因此会有1g 的重力加速度。利用这个性质,通过测量重力加速度在加速度传感器的X 轴和Y 轴上的分量,可以计算出其在垂直平面上的倾斜角度。这样,根据以上原理一个2 轴加速度传感器可以测量在X-Y 平面上的倾斜角度。需要注意的是,2 轴加速度传感器只能测量X 轴和Y 轴上的重力分量,因而只能测量因而只能测量X-Y平面上的倾斜角度。可是由于物体在空间倾斜的时候,很难保证倾斜完全在X-Y 平面上,这样只使用2 轴加速度传感器进行测量会存在局限性,因此,我们考虑使用 3 轴加速度传感器。如下图所示,3 轴加速度传感器可以测量X 轴、Y 轴和Z 轴的重力分量,计算空间倾斜角度的公式可以推广为 。这个公式就是本文中用来测量物体倾斜角度的基本原理。

需要说明的是,这里利用的是物体在静止时受到重力的性质,如果物体同时也有运动加速度的话,那么这个公式将不再准确。所以必须为公式增加一个限制条件,即3 硬件实现目前,在消费类产品中使用的加速度传感器分为数字输出(例如ADXL345)和模拟输出(例如ADXL335)两种。数字输出的加速度传感器可以直接通过I2C 或SPI 总线与MCU 进行连接;模拟输出的加速度传感器则需要使用ADC 进行采样。现在,普遍使用的MCU 中基本都有内置的ADC 通道,所以无论是数字输出还是模拟输出的加速度传感器都可以非常容易地和MCU 进行连接,进而实现测量功能。

从设计原理上详细介绍加速度传感器的特性

加速度传感器性能、特性详细介绍 一、原理及应用 为什么用加速度传感器? 在各种工程领域中,在各种结构物和各种机器的开发、试验和运行监测中,冲击和振动测量是至关重要的。加速度传感器具有测量精度高,频率和幅值响应宽,体积小,重量轻,寿命长,易于安装等优点而广为采用。endevco是唯一的能同时提供压电式加速度传感器、集成电路压电式加速度传感器、压阻式加速度传感器、变电容式加速度传感器的厂家。 传感器与信号调理器 传感器:将感受到的物理量作为输入并按一定规律转换成测量所需物理量后输出的一种装置。它通常由敏感元件和转换元件组成。 信号调理器:将传感器的输出信号进行阻抗变换,放大,滤波,归一化,数字化等处理统称为信号调理,顾名思义,适调(Conditioning)意指根据测试和后续读显,数据采集,记录仪器的要求对信号进行适当的调节,实现上述功能的仪器称为信号调理器(Signal Conditioner),必要时信号调理器还有供电,积分,平衡,校准,过载指示,电平检测等功能。 机电传感器 将被测的机械量(应变,力,运动等);按一定规律转换成电量或电参数量的一种装置。用于振动和冲击的有: 1)压电加速度传感器;2)集成电路压电加速度传感器;3)压阻加速度传感器;4)可变电阻传感器;5)可变电容传感器;6)应变计;7)可变磁阻传感器;8)磁致伸缩传感器;9)电涡流式传感器;10)动圈式传感器;11)电感传感器;12)压力传感器;13)力传感器;14)阻抗头。 惯性传感器 利用惯性系统中有关元件的相对运动产生输出信号的传感器。(见国家标准GB/T 2298-80) 由单自由度系统中质量与基座的相对运动而产生与基座运动成比例的输出信号的传感器。 压电式(PE)加速度传感器 压电电子学定义: 压电加速度传感器采用了质量—弹簧结构,它产生的作用力与振幅和频率成正比,作用到压电陶瓷上,使其末端产生电荷,它是自发电式,不需外接电源,可在极高极低温度下工作,结构牢固性好。 石英是天然压电材料,灵敏度低,常用的是人造的铁电材料,由人工极化可获得高灵敏度、高工作温度和输出稳定性。Endevco的压电元件采用人工极化,具有高稳定性。 压电式加速度传感器 在加速度传感器设计中采用了各种结构型式: 压缩式和单端压缩式(SEC) 通过中心螺柱上的质量块M给敏感元件K施加预紧力,敏感元件可看作弹簧。 特点:灵敏度高,共振频率高;适合于一般用途。 基座隔离式 通过特定外型的底座来隔离各种非振动环境。 特点:大大地减小了底座各种耦合因素的影响,减小了底座应变和瞬态温度的影响,使加速度传感器更适合于低振级测量。 环形剪切式 环形质量块紧紧地固定在环形敏感元件的外周边,以产生剪切力。 特点:尺寸小、重量轻、适用于冲击测量和轻型结构物的测量,敏感元件与基座做到了很好的隔离,因

加速度传感器的选择

加速度传感器的选择 传感器的种类选择 压电式传感器的敏感芯体材料和结构形式 压电式加速度传感器的信号输出形式 传感器灵敏度,量程和频率范围的选择 传感器的整体封装设计与电缆 外界环境对测量传感器的影响 工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 ?传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

加速度传感器在汽车电子上的应用

加速度传感器在汽车电子上的应用 南京晓庄学院 谢军 江苏南京211171 摘要:本课题以汽车电子为背景,结合飞思卡尔C 型车模双后轮驱动的特点,以STM32C8T6最小系统版为平台搭建硬件系统,通过加速度传感器检测到的倾斜角度,及时调整小车行驶速度,使小车能自动完成上下坡时的加速、减速。 关键词:汽车电子; 加速度传感器; 倾斜角度 绪论 现在的汽车相较于以前的汽车来说,在性能上更加的智能化,而且人们在使用汽车的过程中会感到更加的轻便。因此,现在在制造汽车的过程中所面临的挑战就是增加传感器的需求量。本文是以汽车电子为背景,利用加速度传感器能够测量汽车在行驶过程中的倾斜角度以及加速度等信息,来实时反馈汽车的动态信息,并调整行驶速度,满足人们的舒适性要求,保证驾车人的安全。 1.系统总体设计 1.1 系统组成 系统组成框图如图1-1所示: 图1-1 系统组成框图 1.2 系统工作原理 本小车使用STM32C8T6最小系统版作为主控单元,当小车在平地(倾角范围-5~+5)行驶时,PMW 的值为1000,这时小车会以相对较慢的速度匀速行驶。上坡时,随着倾角范围不断增大(+6~+80),PWM 的值也会逐渐增加,电机的转速随之变快,当倾角达到最大值时(+80),PWM 的值也达到峰值6000(可更改),为了保护车身不受损坏,倾角大于+80,电机停止运转。下坡时,随着倾角范围不断增大(-6~-80),PWM 的值会逐渐减小,电机的转速随之变慢,当下坡倾角达到最大值时(-80),PWM 的值也达到最小值800(可更改),为了保护车身不受损坏,倾角大于-80,电机停止运转。 在这个过程中,可通过OLED 液晶屏随时查看小车的运动状态,包括车身周围的温度,倾斜角度,PWM 值和加速度等信息。 2.硬件设计 2.1 主控电路设计 STM32C8T6最小系统版内有最新一代的嵌入式ARM 处理器。因此,这种芯片构成的最小系统功能部件种类全,功能强。用STM32C8T6最小系统版时,只要将相关模块接上时钟电路 MPU6050 STM32C8T6最小系统版 控制模块 OLED 显示模块 直流电机 电机驱动模块 稳压电源模块

速度传感器的种类以及对应的工作原理

速度传感器的种类以及对应的工作原理 速度传感器的普及从推广到市场以来得到了广泛的应用,很多厂商在其原理之上,又开发了多种速度传感器,具体有以下几种: (1)光电式车速传感器--由带孔的转盘两个光导体纤维,一个发光二极管,一个作为光传感器的光电三极管组成。一个以光电三极管为基础的放大器为发动机控制电脑或点火模块提供足够功率的信号,光电三极管和放大器产生数字输出信号(开关脉冲)。发光二极管透过转盘上的孔照到光电二极管上实现光的传递与接收。 (2)磁电式车速传感器--模拟交流信号发生器,产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。输出信号的振幅与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。发动机控制电脑或点火模块正是靠这个同步脉冲信号来确定触发电火时间或燃油喷射时刻的。 (3)霍尔式车速传感器--它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场。 (4)车轮转速传感器—检测车轮转速并将检测结果输出ECU,主要是的作用是在汽车制动的控制和驱动控制这两方面; (5)发动机转速传感器---检测发动机的转速,通常利用曲轴位置传感器来检测发动机的转速并输出来实现的。用于燃油喷射量、点火提前角、动力传动控制等; (6)减速传感器---其主要的是要检测汽车在减速的时候的减速速度,也是将这个信号回传到ECU,汽车制动的控制和驱动控制这两方面。 (7)车速传感器---通常是直接或者间接检测汽车轮胎的转速来来获得的,主要是体现在我们可以在汽车行驶的时候可以知道自己的形式的车速。 (8)旋转式速度传感器的结构和特征 旋转式速度传感器按安装形式分为接触式和非接触式两类。 接触式旋转式速度传感器与运动物体直接接触。当运动物体与旋转式速度传感器接触时,摩擦力带动传感器的滚轮转动。装在滚轮上的转动脉冲传感器,发送出一连串的脉冲。每个脉冲代表着一定的距离值,从而就能测出线速度。(9)接触式旋转速度传感器结构简单,使用方便。但是接触滚轮的直径是与运动物体始终接触着,滚轮的外周将磨损,从而影响滚轮的周长。而脉冲数对每个传感器又是固定的。影响传感器的测量精度。要提高测量精度必须在二次仪表中增加补偿电路。另外接触式难免产生滑差,滑差的存在也将影响测量的正确性。因此传感器使用中必须施加一定的正压力或着滚轮表面采用摩擦力系数大的材料,尽可能减小滑差。非接触式旋转式速度传感器与运动物体无直接接触,非接触式测量原理很多,以下仅介绍两点,供参考。 [1].光电流速传感器

加速度传感器

武汉理工大学《传感器原理及应用》课程设计说明书 绪言 传感器原理课程设计是测控技术与仪器专业的必须完成的一个课程设计。是一个重要的教学环节,通过本设计,培养学生理论联系实际的设计思想,训练综合运用传感器设计和有关先修课程的理论,结合实际分析和解决工程实际问题的能力,巩固加深有关传感器设计方面的知识。 通过制定检测系统设计方案,合理选择传感器及其他元件,正确计算、选择各零件和元件参数,确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,达到了解和掌握检测系统综合设计过程和方法的目的。进行设计基本技能的训练。如:计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和数据处理及计算机应用的能力。 电阻应变式的加速度传感器应用越来越广泛,其测量精度、响应速度、测量范围以及使用的场合都在更进一步的提升。本次的传感器课设,就是以测量加速度为目的而进行传感器的设计。

2 设计目的与内容 2.1设计目的与要求 采用电阻应变片设计一种电阻应变式加速度传感器,设计要求工作范围:-50 ~ +1500C ;工作频率:0 ~ 100Hz ;检测范围:0 ~ 100 m/s2;灵敏度:2mv/v。 2.2设计内容 ●正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥; ●选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析,并根据测试 极限范围进行校核; ●完成传感器的外观与装配设计; ●完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通滤波电路) 的设计和相关电路参数计算,并绘制传感器电路原理图; ●按学校课程设计说明书撰写规范提交一份课程设计说明书(6000字左右); ●按机械制图标准绘制弹性元件图(4号图纸),机械装配图各一张(3号图纸);

车速传感器与轮速传感器介绍

车速传感器 车速传感器检测电控汽车的车速,控制电脑用这个输入信号来控制发动机怠速,自动变速器的变扭器锁止,自动变速器换档及发动机冷却风扇的开闭和巡航定速等其它功能。车速传感器的输出信号可以是磁电式交流信号,也可以是霍尔式数字信号或者是光电式数字信号,车速传感器通常安装在驱动桥壳或变速器壳内,车速传感器信号线通常装在屏蔽的外套内,这是为了消除有高压电火线及车载电话或其他电子设备产生的电磁及射频干扰,用于保证电子通讯不产生中断,防止造成驾驶性能变差或其他问题,在汽车上磁电式及光电式传感器是应用最多的两种车速传感器,在欧洲、北美和亚洲的各种汽车上比较广泛采用磁电式传感器来进行车速(VSS)、曲轴转角(CKP)和凸轮轴转角(CMP)的控制,同时还可以用它来感受其它转动部位的速度和位置信号等,例如压缩机离合器等。 1)磁电式车速传感器磁电式车速传感器是一个模拟交流信号发生器,它们产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。这两个线圈接线柱是传感器输出的端子,当由铁质制成的环状翼轮(有时称为磁组轮)转动经过传感器时,线圈里将产生交流电压信号。磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。输出信号的振幅(峰对峰电压)与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。传感器磁芯与磁组轮间的气隙大小对传感器的输入信号的幅度影响极大,如果在磁组轮上去掉一个或多个齿就可以产生同步脉冲来确定上止点的位置。这会引起输出信号频率的改变,而在齿减少时输出信号幅度也会改变,发动机控制电脑或点火模块正是靠这个同步脉冲信号来确定触发电火时间或燃油喷射时刻的。测试步骤可以将系统驱动轮顶起,来模拟行驶时的条件,也可以将汽车示波器的测试线加长,在行驶中进行测试。波形结果车轮转动后,波形信号在示波器显示中心处的零伏平线上开始上下跳动,并随着车速的提高跳动越来越高。波形显示与例子十分相似,这个波形是在大约30英里/小时的速度下记录的,它又不像交

相关文档
最新文档