高等数学第18章第1节隐函数

高等数学第18章第1节隐函数
高等数学第18章第1节隐函数

第十八章 隐函数定理及其应用

§1 隐函数

一 、 隐函数概念(P144)

在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12

+=x y ,).sin sin (sin zx yz xy e

u xyz

++=

这种形式的函数称为显函数。

但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。这种形式的函数我们称为隐函数。 ☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;

☆ 下一节将介绍由方程组??

?==0

),,,,(0

),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。

设R X ?,R Y ?,函数.:R Y X F →?

注.

:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示

2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。

结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y =

.,J y I x ∈∈则成立恒等式......

.,0))(,(I x x F x F ∈≡

例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。

其显函数形式为:.11

x

y +=

例: 圆方程12

2

=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数

21x y -=;

又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。 注.

:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。 2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。

3)并不是任一方程都能确定出隐函数,如方程

.02

2=++c y x

当0>c 时,就不能确定任何函数()x f ,使得[].0)(22

≡++c x f x

而只有当0≤c 时,才能确定隐函数。因此,我们必须研究方程0),(=y x F 在什么条件下才能确定隐函数。

4)倘若方程0),(=y x F 能确定隐函数,一般并不都像前面的一些例子那样,能从方程 中解出y ,并用自变量x 的算式来表示(即使),(y x F 是初等函数)。例如,(证明见P149)

例1)对于方程 .0sin 2

1

=-

-y x y 可以证明确实存在一个定义在),(+∞-∞上的函数)(x f ,使得 ,0sin 2

1

)(≡+-y x x f 但这函数)(x f 却无法用x 的算式来表达。

5) 由上述讨论可知:在一般情况下,我们主要考虑方程0),(=y x F 能否确定隐函数 以及这个隐函数的连续性、可微性,而不管它是否能用显式表示。 二 、隐函数存在性条件的分析(P145)

分析1:满足方程0),(=y x F 的(x , y )应满足方程组??

?==0

)

,(z y x F z ,即(x , y )应属于曲

面),(y x F z =与坐标平面0=z 的交集。(∵0=z ,∴该交集在0-xy 平面上)

结论..:若.方程..0),(=y x F 能确定一个函数,则至少要求曲面...............),(y x F z =与坐标平面.....0=z 的交集非空,即存在.........0-xy 平面上的点.....),(000y x P 使.0),(000=y x F 。.

分析2:其次,对上述0P 而言,若方程0),(=y x F 能在点0P 附近确定一个连续函数,则从 几何意义上表现为上述交集是一条通过点0P 的连续曲线段(该曲线段在0-xy 平面上)(P145

图18-1)。

如果曲面),(y x F z =在点0P 处存在切平面, 且切平面与坐标平面0=z 相交于直线l (同样l 也在0-xy 平面上),那么曲面),(y x F z =在点

0P 附近亦必与坐标平面0=z 相交(其交线在点

0P 处的切线正是l )。为此,我们有以下结论。

结论..:若.),(y x F z =在点..0P 可微,且....),0,0())(),((00≠P F P F y x (.2.).

则.),(y x F z =在点..0P 存在切平面,并与........0=z 相交成直线。......

事实上:由P113 Th17.4可知,若),(y x F z =在点0P 可微,则),(y x F z =在点0P 存在切 平面,又),0,0())(),((00≠P F P F y x 所以切平面不平行于0-xy 平面,所以必与0=z (即0-xy 平面)相交成直线。 ▋

分析3:如果进一步要求上述隐函数)(x f y =(或)(y g x =)在点0P 可微,则在F 为可微 的假设下,通过方程0),(=y x F 在点0P 处对x 求导,依链式法则得到可得到以下结论。 结论..:若隐函数....)(x f y =(或..)(y g x =)在点...0P 可微,且....),(y x F z =也可微,则.....

当.0)(0≠P F y 时,..

()().000

P F P F dx dy

y x x x -

== (.4.). 类似地,当.....()00≠P F x 时,..

()()

.000

P F P F dy

dx x y y y -

==

事实上:由0),(=y x F ,两端对x 求导,依链式法则可得

()()00

00=?

+=x x y x dx

dy

P F P F (3)

所以,当0)(0≠P F y 时,由上式可解出(4) 同理,当()00≠P F x 时,可得

()()

.000

P F P F dy

dx x y y y -

==▋

注.

:1)应关注条件),0,0())(),((00≠P F P F y x 对隐函数的存在性及对隐函数的求导的重要性。

三 、 隐函数定理(P146)

证明:由条件(iv),不妨设()00,y x F x >0(若()00,y x F x <0,则可讨论-),(y x F =0). 一).先证隐函数)(x f y =的存在性...与惟一性.....

①∵y F 在D 内连续(由条件(iii))

∴由连续函数的局部保号性,存在点0P 的某一闭的方邻域

[]ββ+-00,x x ?[]ββ+-00,y y D ?,使得在其上每一点处都有),(y x F y >0.

因此,对每个固定的∈x []ββ+-00,x x ,()y x F ,作为y 的一元函数,必定在

[]ββ+-00,y y 上严格增且连续.

②由0),(00=y x F (初始条件(ii))可知()0,00<-βy x F , ()β+00,y x F >0 ③又由F 的连续性条件(i )可知道函数()β-0,y x F 与()β+0,y x F 在

[]ββ+-00,x x 上也是连续的。因此由保号性存在()βαα≤>0,当()

αα+-∈00,x x x 时恒有()().0,,0,00>+<-ββy x F y x F

如图18-2所示,在矩形

''A ABB 的AB 边上F 取负值,

在''B A 边上F 取正值.④因此对

),(00αα+-x x 内每个固定值x ,

同样有0),(0<-βy x F ,0),(0>+βy x F 。

根据前已指出的),(y x F 在[]ββ+-00,y y 上严格增且连续,由介值性保证存在唯一的

),(00ββ+-∈y y y ,使得满足0),(=y x F .

⑤由x 在),(00αα+-x x 中的任意性,这样就确定了一个隐函数)(x f y =,它的定义域为),(00αα+-x x ,值域含于),(00ββ+-y y .若记

),

,(),()(00000ββαα+-?+-=y y x x P U

则 )(x f y = 即为所求 (满足结论1°的各项要求.) 二). 再证明f 的连续性. (前面已证)(x f y =,现证其连续性)

只须证明:对),(00αα+-x x 中的任x 及唯一对应的)(x f y =,使得对任0>ε,存在0>δ,当δ<-x x 时ε<-)()(x f x f 即可。

①由上述结论可知: 对于∈x ),(00αα+-x x 内的任意点,有唯一的

∈y ),(00ββ+-y y ,使得)(x f y =且满足0),(=y x F .

②所以,对任给0>ε,不妨设{}

,,min 00ββε+--+

则在],[εε+-y y 上同样有:0),(<-εy x F ,0),(>+εy x F .成立 ③由F 的连续性及保号性存在x 的某邻域),,(),(00ααδδ+-?+-x x x x 使得当∈x ),(δδ+-x x 时(即δ<-x x 时),有0),(<-εy x F ,0),(>+εy x F

④因此由介值性定理,存在唯一的∈y ),(εε+-y y ,使得0),(=y x F ,ε<-y y . ⑤由y 的唯一性,推知)(x f y =.

这就证得:对任0>ε,存在0>δ,当δ<-x x 时ε<-)()(x f x f ,即)(x f 在x

连续.由x 的任意性,证得)(x f 在),(00αα+-x x 内处处连续. ▋

注.

:1) 本“隐函数存在惟一性定理” 仅保证了在点0P 的某邻域D P U ?)(0内,方程()y x F ,=0唯一地确定了一个定义在某区间),(00αα+-x x 内的函数(隐函数))(x f y =,

并非保证在使()y x F ,=0有意义的全体区域内存在隐函数,所以该定理仅仅给出了由

()y x F ,=0确定的某局部存在隐函数的一个充分条件。

例如:见(P150)例2

2)(P147倒10-倒3行)定理18.1的条件仅仅是充分而非必要的.

例如: 方程03

3=-x y 在点)0,0(不满足条件(iv) )0)0,0((=y F ,但它仍能确定

惟一的连续函数x y =.

当然,由于条件(iv)不满足,往往导致定理结论的失效。 例如:(P147倒8-13行)图18-3所示的双纽线,

其方程为.0)(),(2

2

2

22

=+-+=y x y x y x F 由于0)0,0(=F ,F 与y y x y F y 2)(42

2

++= 均连续,故满足定理条件(i)(ii) (iii). 但因0)0,0(=y F ,致使在原点的无论怎样 小的邻域内都不可能存在唯一的隐函数.

3) (P147倒2-P148第4行)定理中的条件)(iii 和)(iv 是比较强的,

在定理证明过程中,条件(iii)和(iV)只是用来保证存在0P 的某一邻域,使得F 在此邻域内关于变量y 是严格单调的.

因此对于本定理所要证明的结论来说,可以把这两个条件减弱为“F 在0P 的 某一邻域内关于y 严格单调”。现在采用较强的条件)(iii 和)(iv ,只是为了在实际应用中便于检验。

4)条件“F 在0P 的某一邻域内关于y 严格单调”类似于一元函数存在反函数的充分条件为1-1对应的(连续的1-1对应函数必为严格单调函数,)。应注意到隐函数与反函数虽是两个不同的概念,但它们之间有一定的联系。

5)(P148第5-P148第7行)如果把定理的条件)(iii 、)(iv 改为),(y x F x 连续,且

.0),(00≠y x F x 这时结论是存在唯一的连续函数).(y g x =

证明:设∈x ),(00αα+-x x ,给x 一增量x ?使x x ?+∈),(00αα+-x x ,且使得它们所对应的函数值)(x f y =与)(x x f y y ?+=?+均含于),(00ββ+-y y 内。

∵ 0),(=y x F , 0),(=?+?+y y x x F

∴由x F 、y F 的连续性以及二元函数中值定理(P133定理17.8),有

),(),(0y x F y y x x F -?+?+=

,),(),(y y y x x F x y y x x F y x ??+?++??+?+=θθθθ(其中.10<<θ)

因而

.)

,(),(y y x x F y y x x F x y

y x ?+?+?+?+-=??θθθθ 注意到上式右端是连续函数),(y x F x 、),(y x F y 与)(x f 的复合函数,且 0),(≠y x F y ()(0P U x ∈)

所以有 )

,(),(lim

)('0y x F y x F x y

x f y x

x -=??=→? (导函数的存在性) 且)('x f 在),(00αα+-x x 内连续。(连续函数的复合函数仍为连续函数) ▋. 注.

:1)(P148倒7-P1496行)P146已经有结论:若方程0),(=y x F 确实存在连续可微的隐函数,则可对方程0),(=y x F 应用复合函数求导法得到隐函数的导数.

事实上:若把

))(,(x f x F 看作),(y x F 与)(x f y =的复合函数时,则有

.0'),(),(=+y y x F y x F y x 所以,当),(y x F y 0≠时,即可推得(5)式成立。

2)(自看:P148倒2-149第6行)对于隐函数的高阶导数,可用和上面同样的方法来求得,这时只要假定函数F 存在相应阶数的连续的高阶偏导数。例如,要计算'

'y ,只要对恒

等式(6)继续应用复合函数求导法则,便得

[]

.

0),(),(),(),(),("'''=++++y y x F y y y x F y x F y y x F y x F y yy yx xy xx

再把(5)得结果代入上式,整理后得到

()

2'

'"21y F y F F F y yy xy xx y ++-=,23

2

2y yy x xx y xy y x F F F F F F F F --=

当然它也可由公式(5)直接对x 求导而得到.

☆ (可自看P149第7-22行,)最后,我们可以类似地理解由方程

()0,,,,1=y x x x F n x 所确定的n 元隐函数的概念.并叙述下列n 元隐函数的唯一存在与连

续可微性定理:

四、隐函数求导举例(P149) 例1(P149) 设方程

.0s i n 2

1

),(=-

-=y x y y x F (7) 由于F 及其偏导数y x F F ,在平面上任一点都连续(满足第(ⅰ)(ⅲ)条件ⅳ),且

,0)0,0(=F (满足第(ⅱ)个条件,即初始条件)

, .0c o s 2

1

1),(>-

=y y x F y (满足第(ⅳ)个条件)。 故依定理18.1和18.2,方程(7)确定了一个连续可导隐函数)(x f y =; 我们又注意到.1),(-=y x F x 所以按公式(5),其导函数为

()()

()

.cos 22

cos 2

111,,'y y y x F y x F x f y x -=-=

-

= ▋

注.

:1)例1中取0,000==y x ,事实上还可以取ππ==00,y x 等,所以00,y x 的选取方法很多,只需找到一组即可。

例2 (P150)讨论笛卡儿(Descartes )叶形线(图18-4)

0333=-+axy y x (8) 所确定的隐函数)(x f y =的一阶与二阶导数.

解: 显然axy y x y x F 3),(3

3

-+= 及y x F F ,在平面上任一点都连续,

由隐函数定理知道,在使得

()()03,2≠-=ax y y x F y 的点()y x ,

附近,方程033

3

=-+axy y x 都能

确定隐函数)(x f y =;所以,它的一阶与二阶导数如下:

对(8)式求关于x 的导数(其中y 是x 的函数)并以3除之,得

0''22=--+axy ay y y x

或 (

)(

)

.0'

2

2

=-+-y ax y ay x (9)

于是 .22

'

ax

y x ay y --= ().02≠-ax y (10)

再对(9)式求导,得:,0)()2(2"

2

'

'

'

=-+-+-y ax y y a yy ay x

即 .222)(2

''2"x yy ay ax y y --=- (11) 把(10)式代入(11)式的右边,得

.)()

3(222222

23332

''

ax y axy y x xy xy a x yy ay --+--=--

再利用方程(8)就得到 .)

(23

23"

ax y xy

a y --= (12) 由(10)式易见,曲线在点)4,2(33a a A 处有一水平切线,在点)2,4(33a a B 处有 一垂直切线. ▋

注.

:1)本例中“曲线在点)4,2(33a a A 处有一水平切线”可由下列方程组求解而得: ???=-=-+0

32

33x ay axy y x 同样本例中“曲线在点)2,4(33a a B 处有一垂直切线.”可由下列方程组求解而得:

???=-=-+0032

33ax y axy y x

2)本例求一阶导数时也可如下进行: 因为

()(

)ay

x y x F x -=23,,()()

ax y

y x F y

-=2

3,

所以.),(),()('22ax

y x ay y x F y x F x f y x --=-=

3)由于在点B 和原点处的任何邻域内,每一个x 所对应的y 值不惟一,所以方程(8)不能在那两点的邻域内确定惟一的隐函数. 例3 (P150)讨论方程

0),,(323=-++=z y x xyz z y x F (13)

在原点附近所确定得二元隐函数及其偏导数.

解: 由于z y x z F F F F F F ,,,,01)0,0,0(,0)0,0,0(≠-==处处连续,根据隐函数定理18.3,在原点)0,0,0(附近能惟一确定连续可微得隐函数),(y x f z =, 且可求得它得偏导数如下:

,3122

3xyz x yz F F x z z x -+=-=?? .3132

23xyz

y xz F F y z

z y -+=-=?? ▋ 例4 (反函数的存在性与其导数)(P151)设)(x f y =在0x 得某邻域内有连续的导函

数)('

x f ,且00)(y x f =;

考虑方程 .0)(),(=-=x f y y x F (14)

由于 0),(00=y x F , 1=y F , ),(),(0'

00x f y x F x -=

所以只要0)(0'

≠x f ,就能满足隐函数定理的所有条件,这时方程(14)能确定出在0

y 的某邻域)(0y U 内的连续可微隐函数)(y g x =,并称它为函数)(x f y =的反函数.反函数的导数是

.)

(1

)(1)('''

x f x f F F y g x

y =--

=-

= (15)

事实上,这就是在第五章里曾经得到过的反函数求导公式. ▋

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

(完整word版)高等数学第一章函数与极限试题

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0 x f x f x x =_______________; 14. =→x x x x 5sin lim 0___________; 15. =-∞→n n n )2 1(lim _________________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________________ 17. 绝对值函数 = =x x f )(?? ???<-=>.0,;0,0;0,x x x x x

大学高等数学第一章函数(习题精讲)

第1章 函 数 §1.1 函数的概念与性质 1. 绝对值与不等式(0>a ,0b >) (1)x x x -≤≤;x y x y x y -≤±≤+ (2 )2 112 a b a b +≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n x x x n n x x x +++≤≤ +++ (3){}max ,22a b a b a b -+=+;{}min ,22 a b a b a b -+=- 2. 函数概念与性质 对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。 注意:定义域D 和对应规则f 是函数相等的两要素。 (1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ?∈< 1212()()()()()()f x f x f x f x f x f x ≤???≥? ?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()() ()()()()f x f x f x y f x f x f x -=???-=-??为偶函数,对称于轴为奇函数,对称于原点 注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。 (4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。 常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

高等数学隐函数的求导法则

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于就是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22 d d ()()d d x x y y F F y y x x F y F x ?? =-+-??? 2 2 ()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 32x x y x y x y y y x y F F F F F F F F -+=- . 例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个 单值可导的隐函数()y f x =,并求22d d , 00 d d y y x x x x ==.

解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0cos x y x y y x -=-=-==-, 22 d 0d y x x = d e ()0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡, 将上式两端分别对x 与y 求导,得

高等数学知识点第一章函数

第一章函数 一、实数集合 关于邻域:设a为某个正数,称开区间(x0-a,x0+a)为点x0的邻域。记作U(x0,a)。称x0为该邻域的中心,a为该邻域的半径。 A、点x0的空心邻域即(x0-a,x0+a){x0}或U(x0,a) B、点x0的左邻域(x0-a,x0] 空心左邻域(x0-a,x0) C、点x0的右邻域[x0,x0+a)空心右邻域(x0,x0+a) 二、函数关系 A、一个函数的两个基本要素圈①定义域记作D(f)或D.②对应规则记作 f B、绝对值函数y=|x| 去绝对值符号的方法,分类讨论 C、符号函数y=sgnx ①x>0时y=1 ②x=0时y=0 ③x<0时y=-1 D、取整函数y=[x]=n n≤x<n+1 n=0,±1,±2….. [x]表示不超过x的最大整数,称为x的整数部分[2.6]=2 [π]=3 [-2.8]=-3 取整函数的图像 E、函数的自然定义域:即定义域 一般需要注意:分式的分母不为零,对负数不能开偶次方根,对数的真数必须为正。 三、函数的基本特性 A、单调性证明函数的单调性:任取x1、x2∈D且x1<x2.,求解f(x1)与f(x2)的大小关 系。由此函数单调性得证。 B、有界性:若存在常数M>0,使得对任意的x∈D,恒有|f(x)|≤M,则称函数f(x)在 D上有界,否则则称无界。(判断函数是否有界一般为求解函数的值域) ①有上界:f(x)≤M ②有下界:f(x)≥M C、奇偶性奇函数:任意x∈D,恒有f(-x)=-f(x) 偶函数:任意x∈D,恒有f(-x)=f(x) 非奇非偶:不是奇函数也不是偶函数 判断函数奇偶性一般先判断定义域是否关于原点对称,如果不对称则一定为非奇非偶函 数;若对称则求f(-x)的表达式,观察是否可以化成f(x)或f(-x)的形式,由此判断 D、周期性f(x)在D上有定义,存在常数T>0,使对任意的x∈D,恒有x+T∈D,且f (x+T)=f(x)成立,则称f(x)为周期函数。满足上式的最小正数T0为f(x)的周期

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

同济大学高等数学_第一章_函数极限 (2)

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容就是微积分,微积分就是以变量为研究对象,以极限方法为基本研究手段的数学学科、本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容就是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1、1 集合 1、1、1 集合 讨论函数离不开集合的概念、一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素、 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素、 如果a 就是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不就是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ、 集合的表示方法通常有两种:一种就是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合、例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种就是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 就是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

答案高等数学第一章函数与极限试题

答案: 一.选择题 1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为 ?+=x C dt t f x F 0 )()(,且).()(x f x F =' 当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即 )()(x f x f =--,也即)()(x f x f -=-,可见 f(x)为奇函数; 反过来,若f(x)为奇函数,则? x dt t f 0 )(为偶函数,从而 ?+=x C dt t f x F 0 )()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=2 2 1x , 排除(D); 故应选(A). 【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系? 2. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0 x f x ,所以 x=0为第二类间断点; 0)(lim 1=+ →x f x ,1)(lim 1 -=- →x f x ,所以x=1为第一类间断点,故 应选(D).

【评注】 应特别注意:+∞=-+ →1 lim 1x x x ,.1 lim 1-∞=-- →x x x 从而 +∞=-→+ 1 1lim x x x e ,.0lim 1 1 =-→- x x x e 3 C 4 A 5 C 6 C 7 A 8 C ∵x →∞时,分母极限为令,不能直接用商的极限法则。先恒等变形,将函数“有理化”: 原式 = 2 1111lim )11() 11)(11(lim 0 =++=++++-+→→x x x x x x x . (有理化法) 9 D 10 C 解 原式 16 1821lim )2()cos 1(tan lim 32 030=?=-=→→x x x x x x x x . ▌ 注 等价无穷小替换仅适用于求乘积或商的极 的每项作等价替换,则 原式0)2(l i m 3 =-=→x x x x .

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数 历年试题模拟试题课后习题(含答案解析)[单选题] 1、 设函数,则f(x)=() A、x(x+1) B、x(x-1) C、(x+1)(x-2) D、(x-1)(x+2) 【正确答案】B 【答案解析】 本题考察函数解析式求解. ,故 [单选题] 2、 已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是(). A、[1,3] B、[-1,5] C、[-1,3] D、[1,5] 【正确答案】A 【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4 即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题] 3、 设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为(). A、[0,2] B、[0,16] C、[-16,16] D、[-2,2] 【正确答案】D 【答案解析】根据f(x)的定义域,可知中应该满足: [单选题] 4、 函数的定义域为(). A、[-1,1] B、[-1,3] C、(-1,1) D、(-1,3) 【正确答案】B 【答案解析】 根据根号函数的性质,应该满足: 即 [单选题]

写出函数的定义域及函数值(). A、 B、 C、 D、 【正确答案】C 【答案解析】 分段函数的定义域为各个分段区间定义域的并集, 故D=(-∞,-1]∪(-1,+∞). [单选题] 6、 设函数,则对所有的x,则f(-x)=(). A、 B、 C、 D、 【正确答案】A 【答案解析】本题考察三角函数公式。 . [单选题] 7、 设则=(). A、 B、

高等数学(函数与极限)完全归纳笔记

目录: 函数与极限 (1) 1、集合的概念 (1) 2、常量与变量 (2) 2、函数 (3) 3、函数的简单性态 (4) 4、反函数 (4) 5、复合函数 (5) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (9) 10、函数极限的运算规则 (11) 一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

高等数学-函数与极限-教案.

第一章 函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系 式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极 限之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a M.

集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ? ? ?, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ? ? ?, n , ? ? ?}. N +={1, 2, ? ? ?, n , ? ? ?}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={? ? ?, -n , ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n , ? ? ?}. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ?B (读作A 包含于B )或B ?A . 如果集合A 与集合B 互为子集, A ?B 且B ?A , 则称集合A 与集合B 相等, 记作A =B . 若A ?B 且A ≠B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R . 不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ?B , 即 A ? B ={x |x ∈A 或x ∈B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即 A ? B ={x |x ∈A 且x ∈B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B ={x |x ∈A 且x ?B }. 如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则: 设A 、B 、C 为任意三个集合, 则 (1)交换律A ?B =B ?A , A ?B =B ?A ; (2)结合律 (A ?B )?C =A ?(B ?C ), (A ?B )?C =A ?(B ?C ); (3)分配律 (A ?B )?C =(A ?C )?(B ?C ), (A ?B )?C =(A ?C )?(B ?C );

相关文档
最新文档