土壤有效硫的测定

土壤有效硫的测定

石油产品硫含量测定方法探析

石油产品硫含量测定方法探析 【摘要】石油产品中不可避免地含有硫,硫的存在对石油产品有较多的影响,本文将介绍几种广泛应用的石油产品硫含量测定方法,通过不同方法的对比为大家提供硫含量测定的不同选择。 【关键词】石油产品硫含量测定方法 石油产品不可避免含有硫,硫含量是石油和石油产品的重要参数之一。因为原油的加工方式不同等因素,硫的形态各不相同,硫对石油产品的影响显著,通常表现在抗氧性、腐蚀性、润滑性、安定性上。石油产品中的硫可以分为两种:活性硫化物和非活性硫化物。活性硫化物主要分布在轻质油中,是在加工过程中由石油中的含硫化合物产生的,活性硫化物能直接与金属作用而腐蚀设备。非活性硫化物的化学性质比活性硫化物稳定,但受热后会分解成硫化氢,这对大气环境是一种严重污染,还会对机器设备造成严重腐蚀,所以说非活性硫化物是间接腐蚀设备的。此外,硫含量还会影响到石油产品的储存安定性,可以加速油品变质,还可能造成某些金属催化剂中毒。但是硫的存在并不是都产生不利影响,有时硫的存在是有利的,当石油产品的性质需要改善时,就可以加入非活性硫化物来实现。因此,对石油产品中的硫含量进行准确测量是十分重要的,本文将具体介绍几种石油产品硫含量的测定方法,并提出选择方法的一些原则,希望能抛砖引玉,促进石油产品硫含量测定的发展。 1 硫含量测定方法介绍 1.1 燃灯法 燃灯法GB/T 380适用于轻质石油产品的测定,并且产品雷德蒸气压力不高于80kPa,如我们常见的汽油、煤油、柴油等产品。其方法是将石油产品在灯中燃烧生成二氧化硫,由碳酸钠水溶液吸收燃烧生成的二氧化硫,过量的碳酸钠溶液用盐酸标准溶液滴定测定。对于柴油要经过稀释处理。本方法所需仪器设备较简单,因此被经常使用,但是也有测定时间较长的缺点,再加上人为影响因素较多,如果任何一个细节出现问题,后续过程都会出错。 方法特点:①燃烧过程必须完全,冒烟或燃烧不完全会导致挥发损失,挥发损失将使测定结果偏低。②被作为仲裁方法使用。③取样量一般控制在汽油4~5mL,柴油1~2mL。④耗时较长,单次实验时间在2小时左右。 1.2 能量色散X射线荧光光谱法 能量色散X射线荧光光谱法GB/T17040的适用范围是硫含量在0.05%~5%的石油产品的测定。这种方法的原理是把样品置于从X射线源发射出来的射线束中,样品中的硫在射线束中能吸收能量,再发射能量为 2.3 keV的x射线荧光,这些激发能量可以从放射性源或者从X射线管中得到,测定其特征谱线强度,

泥土养分速测仪的使用方法

土壤养分速测仪的使用方法 1、土壤养分速测仪的简介概述: 土壤养分速测仪又称土壤养分分析仪,土壤养分化验仪,土壤养分快速测 试仪。土壤养分速测仪主要用于检测土壤中水分、盐分、ph值、全氮、铵态氮、碱解氮、有效磷、有效钾、钙镁、硼等及肥料中氮、磷、钾含量测试。极大缓 解了全国各地农民朋友测土配方施肥的需求,同时也为肥料生产企业实现专业化、系统化、信息化、数据化提供了可靠的依据,是农业部门测土配方施肥的 首选仪器。土壤养分速测仪广泛应用于各级农业检测中心、农业科研院校、肥 料生产、农资经营、农技服务、种植基地等领域。 二、土壤养分速测仪的使用方法: 我们平常所说的土壤养分测定值均是指常规方法的测试值。该方法是经过 几十年乃至上百年的实验和实践,具有普遍的实用性、可靠性、可比性和可重 复性,是土壤肥料和植物营养界的经典方法。但是常规方法需要一定的资金投入,即使不算上房屋的投入,试剂、玻璃仪器和分析仪器的投入也至少应在3 万元以上。这个条件对乡镇一级的农业技术推广部门和个体种植业主就较为困

难。速测方法因此应运而生。 速测方法是指利用一些简单的方法,包括简单的样品处理、简单的样品浸提、简单的仪器等等而进行的操作。优点是投资小,操作简单,不需要太高的技术支持。 (1)利用速测仪和所提供的分析方法进行操作; (2)利用常规分析方法进行操作。 通过试验对比发现:两种分析方法所得结果中:土壤有效磷具有一定的相关关系,有效钾没有相关关系,铵态氮有时没有相关性,速测仪器基本上不介绍硝态氮的测定方法。因此按照速测仪所介绍的方法只有土壤有效磷的数据能够与常规测试的值联系起来,而与施肥密切相关的氮和钾只能根据仪器说明书介绍的量进行施肥,无法与常规测试值相联系,因此其科学性和准确性值得怀疑。 另外,速测仪没有测定硝态氮也是指导施肥的一大缺陷(因为硝态氮的常规测试过程很麻烦,操作复杂,容易产生误差,所以该方法不容易速测化)。众所周知,铵态氮、硝态氮和亚硝态氮均是农作物容易吸收的三种状态。肥料施入土壤以后,铵态氮在土壤中不稳定,在硝化细菌的作用下,能很快地转化成硝态氮,亚硝态氮在土壤中含量虽很低,但不稳定,也能很快地转化为硝态氮,因此一般情况下土壤中的硝态氮含量高于铵态氮,亚硝态氮含量最低。 所以用于指导施肥的最佳指标是无机氮,其次为硝态氮,最差的指标是铵态氮。速测仪测定有效钾所使用的浸提剂不外乎硫酸钠、硝酸钠、氯化钙等,均没有采用常规分析中所推荐的醋酸铵(因为醋酸铵中的铵离子干扰四苯硼钠比浊法的测定),因此两者测定的数据没有任何相关关系就可以理解了。 如果按照速测仪说明书中所介绍的方法进行施肥,由于(1)没有进行大量的科学试验论证;(2)所推荐的方法本身就存在问题。所以说目前的速测技术是不准确的,甚至说存在宣传误导的嫌疑。如何将常规分析方法简单化,研究出一种测试方法,利用简单仪器就能测定土壤无机氮、有效磷和有效钾的含量,且所得数据与常规分析方法测定的数据具有相关性,从而指导施肥,这是土壤肥料工作者工作的主要内容之一。

土壤速效氮磷钾、有机质测定方法

土壤水解性氮的测定(碱解扩散法) 土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。其测定结果与作物氮素吸收有较好的相关性。测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。 测定原理 在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持1.2mol/L的浓度)。水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。 操作步骤 1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。 3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。同时要做空白试验,滴定所用盐酸量为V0。 结果计算 水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100 式中: N—标准盐酸的摩尔浓度; V—滴定样品时所用去的盐酸的毫升数; V0—空白试验所消耗的标准盐酸的毫升数;

硫的测定方法

硫的测定方法-燃烧中和法 1、方法提要 试样在空(氧)气流中1250-1300℃燃烧分解,将硫转化为二氧化硫被过氧化氢水溶液吸收生成硫酸。以甲基红-次甲基蓝为指示剂,用氢氧化钠标准溶液滴定,借以测定硫。主要反应如下: O H OH H H SO O H SO 224 222→++→+-++ - 2、试剂配制 2.1 混合指示剂 取甲基红0.02克,溶于乙醇50毫升中;取次甲基蓝0.01克,溶于水50毫升中。然后互相混合,贮于棕色滴瓶中。 2.2 过氧化氢 3% 取30%过氧化氢(市售试剂)10毫升,用水稀释至100毫升。现配。 2.3 氢氧化钠标准溶液 0.03(0.003)N 取氢氧化钠6(0.6)克,溶于水中。移入塑瓶中,加水至5000毫升。加氯化钡5克,搅匀,置放澄清。加硫酸钠2.5克,搅匀,放置过夜,取清液使用。 标定 称经110-120℃烘2小时的邻苯二甲酸氢钾(基准试剂)0.1500克于250毫升烧杯中。加冷沸水100毫升,溶解。加0.5%酚酞5滴,用0.03N 氢氧化钠标准溶液滴定至红色终点。 浓度计算: V W T 07850.0= 式中 T -氢氧化钠标准溶液对硫的滴定度(克/毫升) V -氢氧化钠标准溶液耗量(毫升) W -邻苯二甲酸氢钾用量(克) 0.07850-邻苯二甲酸氢钾换算成硫的因素。 2.4 其它 3、分析手续 称取试样0.1000(含量小于1%,0.5000;大于20%,0.0500)克于瓷舟中加纯铜片0.2克。待管式炉升温1250-1300℃,检查密封程度和气流畅通状况。向吸收杯中注入3%过氧化氢80毫升,加混合指示剂数滴。调节气流速度(每秒4-5个气泡),滴加0.03N 氢氧化钠标准溶液至亮绿色,停止通气。 将盛有试样的瓷舟推入燃烧管高温处,立即塞紧通气管胶塞,预热10-20秒钟,小心通气5-8分钟,用0.03N 氢氧化钠标准溶液滴定至亮绿色不变为终点。用相当含量标样同时标定。 计算: 100 %??=G V T S 式中 T -氢氧化钠标准溶液对硫的滴定度(克/毫升) V -氢氧化钠标准溶液耗量(毫升)

土壤中养分的测定

一、土壤速效钾的测定--火焰光度法 1.方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式是,用中性的1molL-1NH4Ac溶液浸提土壤时,NH4+与土壤胶体表面的K+进行交换,连同水溶性K+一起进入溶液。浸出液中的K可直接用火焰光度法测定。火焰光度法的原理详见土壤全钾测定一节。 2.试剂的配制 (1)1molL-1NHAc(pH7.0)77.08gCH3COONH4(化学纯),溶于900ml水,用稀Hac或NH4OH调节至pH7.0,然后稀释至1升。调节pH值的具体方法如下:取出50ml 1molL-1 NH4Ac溶液,以1∶1NH4OH或1∶4 HAc调至pH7.0(用pH计测试)。根据50ml NH4Ac所用NH4OH或HAc的ml数,算出所配溶液的大概需要量,将全部溶液调至pH7.0。 (2)K标准溶液[2] 0.1907gKCl(分析纯,110℃烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1。 用时准确吸取100mgkg-1标准溶液0,1,2.5,5,10,20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0,2,5,10,10,40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3.操作步骤 称取风干土样(1mm)5.00g于150ml三角瓶中,加入50ml 1molL-1NH4Ac溶液,用塞塞紧,在往返式振荡机上振荡30min,用干的定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4.结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得的待测液钾浓度(mgL-1) V――浸提剂体积(ml) m――称样量(g) 如果浸出液中钾的浓度超过测定围,应用1molL-1NH4Ac稀释后测定,其测定结果应乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果的评价标准是: (mgkg-1K)< 30 30~60 100~160 > 160 供K水平极低中高极高 (2)含NH4Ac的K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。

土壤各种氮的测定

土壤铵态氮的测定 2 mol·L-1KCl浸提—蒸馏法 1方法原理用2mol·L-1KCl浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。取一份浸出液在半微量定氮蒸馏器中加MgO(MgO是弱碱,有防止浸出液中酰铵有机氮水解的可能)蒸馏。蒸出的氨以H3BO3吸收,用标准酸溶液滴定,计算土壤中的NH4+—N含量。 2主要仪器振荡器、半微量定氮蒸馏器、半微量滴定管(5mL)。 3试剂 (1)20g·L -1硼酸—指示剂。20gH3BO3(化学纯)溶于1L水中,每升H3BO3 溶液中加入甲基红—溴甲酚绿混合指示剂5mL并用稀酸或稀 碱调节至微紫红色,此时该溶液的pH为4.8。指示剂用前与硼酸混 合,此试剂宜现配,不宜放。 (2)0.005 mol·L-11/2H2SO4标准液。量取H2SO4(化学纯)2.83mL,加蒸馏水稀释至5000mL,然后用标准碱或硼酸标定之,此为 0.0200 mol·L-1 (1/2H2SO4)标准溶液,再将此标准液准确地稀释4倍, 即得0.005mol·L-11/2H2SO4标准液(注1)。 (3)2 mol·L-1KCl溶液称KCl(化学纯)14901g溶解于1L水中。 (4)120g·L–1MgO悬浊液 MgO12g经500~600℃灼烧2h,冷却,放入100mL水中摇匀。 4操作步骤

取新鲜土样10.0g(注2),放入100mL三角瓶中,加入2mol·L-1KCl 溶液50.0mL。用橡皮塞塞紧,振荡30min,立即过滤于50mL三角瓶中(如果土壤NH4+—N含量低,可将液土比改为2.5:1)。 吸取滤液25.0mL(含NH4+—N25μg以上)放入半微量定氮蒸馏器中,用少量水冲洗,先把盛有20g·L–1硼酸溶液5mL的三角瓶放在冷凝管下,然后再加120g·L–1 MgO悬浊液10mL于蒸馏室蒸馏,待蒸出液达30~40mL 时(约10min)停止蒸馏,用少量水冲洗冷凝管,取下三角瓶,用 0.005mol·L-11/2H2SO4标准液滴至紫红色为终点,同时做空白试验。 5结果计算 土壤中铵态氮NH4+—(N)含量(mg·kg-1) = 式中:c——0.005mol·L-11/2H2SO4标准溶液浓度; V——样品滴定硫酸标准溶液体积(mL); V0——空白滴定硫酸标准溶液体积(mL); 14.0——氮的原子摩尔质量(g·mol-1); ts——分取倍数;

土壤中养分的测定

一、土壤速效钾得测定--火焰光度法 1、方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式就是,用中性得1molL-1NH4Ac溶液浸提土壤时,NH4+与土壤胶体表面得K+进行交换,连同水溶性K+一起进入溶液。浸出液中得K可直接用火焰光度法测定。火焰光度法得原理详见土壤全钾测定一节。 2、试剂得配制 (1)1molL-1NHAc(pH7、0)77、08gCH3COONH4(化学纯),溶于900ml水,用稀Hac或NH4OH调节至pH7、0,然后稀释至1升。调节pH值得具体方法如下:取出50ml 1molL-1 NH4Ac溶液,以1∶1NH4OH或1∶4 HAc调至pH7、0(用pH计测试)。根据50ml NH4Ac所用NH4OH或HAc得ml数,算出所配溶液得大概需要量,将全部溶液调至pH7、0。 (2)K标准溶液[2] 0、1907gKCl(分析纯,110℃烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1。 用时准确吸取100mgkg-1标准溶液0,1,2、5,5,10,20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0,2,5,10,10,40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3、操作步骤 称取风干土样(1mm)5、00g于150ml三角瓶中,加入50ml 1molL-1NH4Ac溶液,用塞塞紧,在往返式振荡机上振荡30min,用干得定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4、结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得得待测液钾浓度(mgL-1) V――浸提剂体积(ml) m――称样量(g) 如果浸出液中钾得浓度超过测定范围,应用1molL-1NH4Ac稀释后测定,其测定结果应乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果得评价标准就是: (mgkg-1K)< 30 30~60 100~160 > 160 供K水平极低中高极高 (2)含NH4Ac得K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。 表

土壤全氮含量测定讲课教案

土壤全氮含量测定 土壤全氮含量测定 一、方法原理 土壤样品用浓H2S04—催化剂加热消煮,使各种形态的氮都转化为NH4+—N,然后加碱蒸馏 ,用硼酸吸收NH3,用标准酸滴定,计算样品含N量。 主要反应: 含N化合物+H2S04———(NH4)2S04+CO2+SO2+ H20 (NH4)2S04+2NaOH——2NH3+ Na2S04+2H20 NH3+H3B03———————NH4·H2B03 2NH4·H2B03+H2S04一(NH4)2S04+2H3B03 二、试剂 1,混合催化剂:1g硒(Se)粉,10gCuS04.5H20,100gK2S04磨细混匀。 2.浓H2S04。 3.40%NaOH:400gNaOH,加水至1000ml。 4.硼酸吸收液(2%):60g硼酸(H3B03)溶于2500ml水,加60ml混合指示剂,用0.1mol NaOH调节pH为4.5~5.0(紫红色),然后加水至3000ml。 5.混合指示剂:0.099g溴甲酚绿和0.066g甲基红,溶于100ml乙醇。 6.0.01~0.02MOL.L-1标准酸(1/2H2SO4):3ml浓H2S04加入10000ml水中,混匀。 标定:准确称取硼砂(Na2B204)1.9068g,溶解定容为100ml,此为硼砂溶液。取此液10ml,放人三角瓶中,加甲基红指示剂2滴,用所配标准酸滴定由黄色至红色止,计算酸浓度。 三、仪器。 开氏瓶、电炉、定N蒸馏器、滴定管(半微量)。 四、操作步骤 1.称土样(100目)0.5~1g,放入开氏瓶底。加入混合催化剂2g,加几滴水湿润,再加入 浓H2S045ml,摇匀。 2,在通风柜内加热消煮,至淡兰色(无黑色)后再消煮0.5~1小时。取下冷却后,加水约 50ml。 3.取20ml硼酸吸收液(2%H3B03)放人250ml三角瓶中,三角瓶置于定N蒸馏器冷凝管 下,管口浸入吸收液中。 4.开氏瓶(内有消煮液)接在定N蒸馏器上,由小漏斗加人20~25ml 40%浓度的NaOH 溶液,夹紧不使漏气。 5.通水冷凝,通蒸气蒸馏15分钟左右。在临近结束前,使冷凝管口离开吸收液,再蒸馏2分钟,并用纳氏试剂或pH试纸检查是否蒸馏完全。如已蒸馏完毕,用少量水冲洗冷凝管下 口,然后取出三角瓶。 6.用0.01 MOL.L-1标准酸溶液滴定,由兰绿色滴暮紫红色为终点。 五、计算 土壤全N(g.Kg-1)=[(V-V0)*C*14*10-3*103]/W

土壤全氮的测定凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

石油产品硫含量的测定(燃灯法)

石油产品硫含量的测定(燃灯法) 1.目的 (1)掌握油品硫含量测定的原理和测定意义; (2)掌握燃灯法测定油品硫含量的方法、测定条件; (3)熟悉燃灯法测定仪器的结构,掌握仪器的操作方法 2.方法概要 石油产品在测定器的灯中燃烧,其中的硫化物生成SO2,用过量的碳酸钠水溶液吸收生成的SO2,反应后将剩余的碳酸钠用盐酸标准溶液进行滴定,根据盐酸标准溶液消耗的量计算试样中的硫含量。 3.仪器与试剂 (1)仪器 硫含量燃灯法测定器:硫含量燃灯法测定器:符合GB/T380的技术要求,见图6-1,其中吸滤瓶:500 mL或1 000 mL;滴定管:25 mL;吸量管:2mL、5 mL和10mL;洗瓶;水流泵或真空泵;玻璃珠:直径5~6 mm;长8~10mm的短玻璃棒;棉纱灯芯。 (2)试剂 碳酸钠:分析纯,配成0.3%碳酸钠水溶液; 盐酸:分析纯,配成0.05 mol/L盐酸标准溶液; 指示剂:0.2%溴甲酚绿乙醇溶液和0.2%甲基红乙醇溶液。 95%乙醇(分析纯);标准正庚烷;汽油:沸点范围80~120℃,硫含量不超过0.005%;石油醚:化学纯,60~90℃。 图6-1 石油产品硫含量(燃灯法) 测定器 4.准备工作 (1)测定器的准备将吸收器、液滴收集器及烟道仔细用蒸馏水洗净。灯及灯芯用石油醚洗涤并干燥。 (2)无烟试样的处理取一定量(硫含量在0.05%以下的低沸点试样,如航空汽油注入量为4~5 mL的试样注入清洁、干燥的灯中(可不必预先称量),将灯用穿着灯芯的灯芯管塞上。将灯芯管的上边缘齐平。点燃,调整火焰,使其高度为5~6 mm。随后把灯火熄灭,用灯罩将灯盖上,在分析天平上称量(称准至0.000 4 g)。用标准正庚烷或95%乙醇或汽油(不必称量)做空白试验。

土壤养分速测仪的测定方法

土壤养分速测仪的测定方法 仪器介绍: 土壤养分速测仪能检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、有机质含量,植株中的全氮、全磷、全钾、有机质,土壤酸碱度及土壤含盐量。具有北京时间显示功能,自动将检测样品的时间记录与保存。储存1000组数据(检测样品时间、地点、各类养分结果)等相关信息存储下来,数据可随时调出查看。 仪器名称:土壤养分速测仪 仪器型号:TPY-6A 功能特点: 1.能检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、有机质含量,植株中的全氮、全磷、全钾、有机质,土壤酸碱度及土壤含盐量。 2.具有北京时间显示功能,自动将检测样品的时间记录与保存。 3.储存1000组数据(检测样品时间、地点、各类养分结果)等相关信息存储下来,数据可随时调出查看。 4.内含73种作物的配肥软件,可按当地情况设定作物品种、作物产量、肥料品种,并自动计算出施肥量,仪器内置微型打印机可现场打印结果。打印内容包括:检测日期、样品编号,检测项目、样品含量、作物品种、肥料品种、施肥数量等相关信息。 5.具部带有充电电池可带到野外现场检测。 6.带背光大屏幕中文液晶显示,全程指导操作。 7.喷塑钢板外壳,坚固、耐用。 8.配置:养分仪一台(内置打印机),PH电极一只,电导一只电极,手提箱一只,试剂一套。

技术参数: 1、养分测量技术参数: (1)稳定性:A值(吸光度)三分钟内飘移小于0.003 (2)重复性:A值(吸光度)小于0.005 (3)线性误差:小于3.0% (4)灵敏度:红光≥4.5×10-5;蓝光≥3.17×10-3 (5)波长范围:红光620±4nm;蓝光440±4nm;绿光520±4nm (6)抗震性:合格 2、PH值(酸碱度)测量技术参数: (1)测试范围:1~14 (2)误差:±0.1 3、盐量测量技术参数: (1)测试范围:0.01%~1.00% (2)相对误差:±5% 4、本仪器所用电源: (1)交流市电:180V~240V、50赫兹 (2)直流电:18V、5W(本仪器自带) 土壤养分速测仪技术参数 1、养分测量技术参数: (1)稳定性:A值(吸光度)三分钟内飘移小于0.003; (2)重复性:A值(吸光度)小于0.005; (3)线性误差:小于3.0%。 (4)波长范围:红光620±4nm;蓝光440±4nm (5)灵敏度:红光≥4.5×10-5;蓝光≥3.17×10-3。 2、PH值(酸碱度)测量技术参数: (1)测试范围:1~14; (2)误差:±0.1; 3、盐量测量技术参数: (1)范围:?0~19.00ms/cm (2)精度:?±2% 4、温湿度、露点测试技术参数: 湿度范围:0~100%RH 温度范围:-50~150℃ 露点范围:-50~150℃ 5、光合有效辐射技术参数 (1)辐射范围:0~2,700μmolm-2s-1(400-700nm) (2)辐射精度:±1μmolm-2s-1 (3)分辨率:1μmolm-2s-1 配置要求:主机1台、温湿度露点传感器1只、光合有效辐传感器1只、土壤盐分传感器1只、PH电极1只、土壤测试试剂1套。 土壤养分速测仪测定方法 样品采集处理 为了能使测定的样品代表田间的养分状况,要求必须多点混合取样,切忌在田边、路边、沟边、粪堆旁或放化肥的地方等地点取样。取样的方法可采用对角

土壤速效氮的测定

土壤铵态氮的测定(KCl浸提—靛酚蓝比色法) 方法原理:用2mol/L KCl 溶液浸提土壤,把吸附在土壤胶体上的NH4+浸提出来。土壤浸出液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。在含氮0.05-0.5mg/L的范围内,吸光度与铵态氮含量称正比,可用比色法测定。 主要仪器:往复震荡机分光光度计 试剂配制:1. 2mol/L KCl 溶液:称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1000ml。 2. 苯酚溶液:称10g苯酚和亚硝基铁氰化钠100mg稀释至1000ml。此试剂不稳定,须贮于棕色瓶中,4℃冰箱保存。 3.次氯酸钠碱性溶液:称取氢氧化钠10g、Na2HPO 4.7H2O 7.06g、Na3PO4.12H2O 31.8g和52.5g/L次氯酸钠(即含5%有效氯的漂白粉溶剂)10ml 溶于水中,稀释至1000ml,贮于棕色瓶中,在4℃冰箱保存。 4. 掩蔽剂:将400g/L的酒石酸钾钠与100g/L的EDTA二钠盐溶液等体积混合。每100ml混合液中加入10mol/L氢氧化钠溶液0.5ml。 5.铵态氮标准液配制:称取干燥的硫酸铵 0.4717g溶于水中,洗入容量瓶后定容至1000ml,制备成含铵态氮 100ug/mL 的贮存溶液;使用前加水稀释40倍,得2.5 ug/mL标准溶液。 操作步骤:称取过20目筛的风干土样5g,加入氯化钾溶液50ml,振荡1小时,取出静置,吸取上清液10ml进行分析(如果不能在24h

内进行分析,用滤纸过滤悬浊液储存在冰箱中备用)。将10ml上清液吸入50ml试管内,加5ml苯酚溶液,5ml次氯酸钠碱性溶液,摇匀。在20℃室温下放置1小时,加掩蔽剂1ml以溶解可能产生的沉淀物,然后用水定容至刻度,在625纳米处比色,读取吸光值。 标准曲线绘制:分别吸取0、2.0、4.0、6.0、8.0、10.0ml铵态氮标准液于50ml试管中,各加10ml氯化钾溶液,加5ml苯酚溶液,5ml 次氯酸钠碱性溶液,摇匀。在20℃室温下放置1小时,加掩蔽剂1ml 然后用水定容至刻度,在625纳米处比色,读取吸光值。 注:显色后在20℃左右放置1小时,再加入掩蔽剂。过早加入会使显色反应很慢,蓝色偏弱;加入过晚,则生成的氢氧化物沉淀可能老化而不易溶解。 土壤硝态氮的测定 试剂配制:1. 2mol/L KCl 溶液:称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1000ml。 2. KNO3标液配制: 100ug/mL KNO3贮存液,称0.7221g KNO3溶于1000ml水中;稀释此溶液10倍即得10ug/mL KNO3标准液。 3.10% H2SO4 操作步骤:1.与铵态氮一块浸提,共用浸提液。 2.吸取土壤浸提液5ml(用KCl溶液补至10ml)或10ml于50ml试管中,加10% H2SO4 1ml,然后定容至刻度,分别在210和275纳米下比色,读取吸光值。 标准曲线绘制:分别吸取KNO3标准液0、1、2、4、6、8、10ml于

硫含量的测定

铁合金碳硫含量的测定高频感应炉燃烧红外吸收法 1 范围 本推荐方法用高频感应炉燃烧红外吸收法测定铁合金中全碳和全硫的含量 本方法适用于铁合金中质量分数为0.003%10.0%的碳和质量分数为0.005%0.5%的硫含量的测定 2 原理 试料在通入氧气流的高频感应炉内燃烧碳硫分别转化为二氧化碳和二氧化硫随氧气流流经红外吸收池由红外检测器测量其对特定波长红外线的吸收其吸收能与流经的二氧化碳和二氧化硫成正比由此测定碳和硫的质量分数 3 试剂及材料 3.1 氧气纯度大于99.95%以上 3.2 动力气氮气或不含油水的压缩空气 3.3 陶瓷坩锅预先在1100高温炉内加热4h冷却后置于干燥器中备用 3.4 钨粒(助熔剂)碳含量小于0. 002%硫含量小于0. 0002%粒度0.8 1.4mm 3.5 锡粒(助熔剂)碳含量小于0. 002%硫含量小于0. 0002%粒度0.8 1.4mm(或使用钨锡混合助熔剂) 3.6 纯铁碳含量小于0. 001%硫含量小于0. 0004% 3.7 净化剂和催化剂无水过氯酸镁烧碱石棉玻璃棉 4 仪器 高频红外碳硫测定仪灵敏度0.00001%其装置如图1 B 氧气瓶两级压力调节器A高频感应炉燃烧红外吸收法测定碳的装置49干燥管5压力调节器 1氧气瓶2两级压力调节器3洗气瓶6高频感应炉7燃烧管8除尘器 49干燥管5压力调节器6高频感应炉 10流量控制器11二氧化硫红外检测器 7燃烧管8除尘器10流量控制器 11一氧化碳转换器12除硫器 13二氧化碳红外检测器

图1高频感应炉燃烧红外吸收法测定碳硫的装置 5 操作步骤 5.1 分析前的准备 将仪器接通电源预热2h通气30min按仪器说明书检查仪器各部位的测量参数调节并保持在适当的范围内按分析步骤自动程序通过燃烧几个废坩锅来调整稳定仪器 5.2 称样 按表1顺序称取试样精确至0.001g和熔剂置于陶瓷坩锅中 表 1 助熔剂和试样加入顺序和加入量 试样名称 1 助熔剂 2 试样量(g) 3 覆盖助熔剂 硅铁0.5g 锡粒0.10.25 0.6g纯铁+1.5g钨粒 硅钙0.7g 纯铁0.20 0.5g锡粒+1.5g钨粒 硅锰0.3g 锡粒0.20 0.8g纯铁+1.5g钨粒 硅钡0.5g锡粒+0.2g纯铁0.150.20 0.6g纯铁+1.5g钨粒 硅铬0.6g 纯铁0.25 0.5g锡粒+1.5g钨粒 锰铁0.3g 锡粒0.20.5 1.5g钨粒 钛铁0.5g 锡粒0.5 1.5g钨粒 钼铁0.3g 锡粒0.80 1.00 1.5g钨粒 铬铁0.3g 锡粒0.200.50 1.5g钨粒 钒铁0.3g 锡粒0.50 1.5g钨粒 磷铁0.3g 锡粒0.50 1.5g钨粒 钨铁0.3g 锡粒0.80 1.00 1.5g钨粒 金属铬0.5g 锡粒0.50 1.5g钨粒 金属锰0.30.5 g锡粒 1.0 1.5g钨粒 5.3 空白试验 按分析步骤自动程序进行不加试料的助熔剂空白测量检查空白值是否稳定和足够小 5.4 校准仪器 选择合适的标准样品按分析步骤进行测量检查仪器的线性测量值与标准值应在允许误差范围内否则用标准值对仪器进行校正再检查测量值是否符合要求直至标准样品中碳硫的测定结果稳定在误差范围以内为止 5.5测定 按待测试料中碳硫的含量范围分别选择仪器的最佳条件如仪器的燃烧积分时间比较水平的设置条件将装有称取的试料和助熔剂的坩锅置于炉子支座上并上升至燃烧位置上按仪器说明书中自动分析步骤操作开始分析并读取结果

土壤中养分的测定

一、土壤速效钾的测定--火焰光度法 1?方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式是,用中性的1molL-1NH4Ac溶液 浸提土壤时,NH4+与土壤胶体表面的K+进行交换,连同水溶性K+ 一起进入溶液。浸出液中的K 可直接用火焰光度法测定。火焰光度法的原理详见土壤全钾测定一节。 2试剂的配制 (1)1molL-1NHAc (pH7.0)77.08gCH3COONH4 (化学纯),溶于900ml 水,用稀Hac或NH4OH调节至pH7.0,然后稀释至1升。调节pH值的具体方法如下:取出50ml 1molL-1 NH4Ac 溶液,以1 : 1NH4OH 或1 : 4 HAc 调至pH7.0 (用pH 计测试)。根据50ml NH4Ac所用NH4OH或HAc的ml数,算出所配溶液的大概需要量,将全部溶液调至pH7.0。 (2)K标准溶液[2] 0.1907gKCI (分析纯,110 C烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1 。 用时准确吸取100mgkg-1标准溶液0, 1, 2.5, 5, 10, 20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0, 2, 5 , 10 , 10, 40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3?操作步骤 称取风干土样(1mm ) 5.00g于150ml三角瓶中,加入50ml 1molL-1NH4Ac 溶液,用塞塞紧,在往返式振荡机上振荡30min ,用干的定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K 标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4?结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得的待测液钾浓度(mgL-1 ) V――浸提剂体积(ml) m ---- 称样量(g) 如果浸出液中钾的浓度超过测定围,应用1molL-1NH4Ac 稀释后测定,其测定结果应 乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果的评价标准是: (mgkg-1K )< 30 30 ?60 100 ?160 > 160 供K水平极低中高极高 (2)含NH4AC的K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析 核心提示:摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态... 摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。 关键词:土壤;全氮;测定方法 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。 土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。我国土壤的含氮量,从东向西、从北向南逐渐减少。进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。 1 土壤全氮的测定 1.1 开氏法 近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。但开氏法目前仍作为一个统一的标准方法,此法容易掌握,测定结果稳定,准确率较高。 开氏法测氮的原理为:在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,求出土壤全氮含量(不包括硝态氮)。含有硝态和亚硝态氮的全氮测定,在样品消

土壤养分速测仪测定土壤有机质含量的两种方法

土壤养分速测仪测定土壤有机质含量的两种方法: (一)重铬酸钾稀释热法——丘林法 1.药剂的配制 1)8%重铬酸钾:称取重铬酸钾8g 于100mL 容量瓶中,以蒸馏水定容至刻度,摇匀即可。 2)0.5%碳标准液(储备液):取葡萄糖粉一袋,溶于适量水中,加浓硫酸1.0mL,转入100mL 容量瓶中(药液转移时要冲净残液)以蒸馏水定容至刻度,摇匀即可。 2.操作步骤 用吸管吸取蒸馏水 1.5 mL于第一个100mL三角瓶中做空白;吸取0.5%的碳标准液储备液1.5mL于第二个100mL三角瓶中做标准;称取风干土样0.5g于三角瓶中,也可用鲜土0.5*(1+含水量)g加入第三个100mL三角瓶中后在沸水浴中蒸干,加入蒸馏水 1.5 mL将土样摇散,做待测,往三个三角瓶中依次分别加入:K2Cr2O7溶液 5 mL ,浓硫酸5mL。 摇动半分中后立即放在沸水浴中加热15 分钟,再各加蒸馏水20mL,摇匀,过滤,备用。 3.测定方法 吸取空白液、标准液、待测液各 2.5mL 分别注于三支比色皿中。 ①拨动滤光片左轮使数值置4,置空白液于光路中,按“比色”键,功能号切换至1,按“调整+”键或“调整-”键,使仪器显示100%。 ②将标准液置于光路中,按“比色”键,功能号切换至3,按调整键,使仪器显示值为26.0。 ③再将待测液置于光路中,此时仪器读数即为土壤有机质含量(g/kg)。 [注]室温20℃以上时可不必水浴加热,但在加入蒸馏水前仍要放置15~20 分钟。 (二)浸提法 1.土壤有机质浸提剂的制备:取土壤有机质浸提剂粉剂一袋,放入500mL 容量瓶或塑料瓶中,加入蒸馏水或纯净水定容即可。 2.操作步骤:称取风干土样4g 于浸提瓶中,加入土壤有机质浸提剂20mL,充分摇匀振荡5 分钟后,过滤,滤液即可用于测定土壤有机质。 3.测定方法 ①拨动滤光片左轮使数值置1,置空白液(纯净水)于光路中,按“比色”键,功能号切换至1,按“调整+”键或“调整-”键,使仪器显示100%。 ②将标准液置于光路中,按“比色”键,功能号切换至3,按调整键,使仪器显示值为26.0。 ③再将待测液置于光路中,此时仪器读数即为土壤有机质含量(g/kg)。

石墨烯中碳、氢、氧、氮、硫元素含量的测定(编制说明)

广东省特种设备行业协会团体标准 《石墨烯中碳、氢、氧、氮、硫元素含量的测定》 编制说明 《石墨烯中碳、氢、氧、氮、硫元素含量的测定》标准编制小组 二O二O年三月

广东省特种设备行业协会团体标准 《石墨烯中碳、氢、氧、氮、硫元素含量的测定》 编制说明 一、标准制定的目的和意义 石墨烯自2004年首次在实验室中发现,就被视作21世纪的“神奇材料”,在科学界和产业界掀起了巨大的波澜。它具有非比寻常的导电导热性能、超出钢铁数十倍的强度和极好的透光性等优异性能,可有望在高性能纳米电子器件、场发射材料、气体传感器、能量储存材料等领域获得广泛应用。2010年,研究石墨烯的先驱科学家获得了诺贝尔奖的桂冠,又引发了世界新一轮对石墨烯材料的研发和投资激情。此后,制备石墨烯的新方法层出不穷,关于石墨烯的优异性能也不断见诸报端。目前,广东省大约有数十家家企业和新兴公司正在着力制备和研究石墨烯及下游应用。2010年,关于石墨烯的论文多达3000多篇。我国已有多家公司正在积极研制石墨烯材料,部分公司已进入了中试阶段。 国际标准化组织ISO对石墨烯材料的标准化工作非常关注,ISO/TC 229纳米技术委员会在2012年专门成立了石墨烯标准研究组(Study Group on graphene)。 广东是石墨烯下游应用的重点地区,部分公司的石墨烯产品已进入了中试阶段。在石墨烯的制备、研究和技术交流中,石墨烯成分分析精确测量技术和方法是关注的重点之一,其中石墨烯中碳、氢、氧、氮、硫元素含量的测定更是表征石墨烯材料的核心指标,对了解原料成份,质量监控;用于分析产品配方,可以快速还原基本配方;了解成份含量,以改善石墨烯产品性能至关重要。 目前,可用于检测石墨烯中碳、氢、氧、氮、硫元素含量的方法很多,但各种方法基于的原理和表征值不尽相同,造成了某些情况下测量结果不具有可比性,在某种程度上可能制约和影响产业的发展和上下游企业间的技术交流。因此,制定《石墨烯中碳、氢、氧、氮、硫元素含量的测定》方法标准,为石墨烯材料成分分析、石墨烯材料的质量检验以及技术交流等提供科学、统一、可操作性强

相关文档
最新文档