差分进化算法在水电站优化调度中的应用

差分进化算法在水电站优化调度中的应用
差分进化算法在水电站优化调度中的应用

基本差分进化算法

基本差分进化算法 基本模拟退火算法概述 DE 算法是一种基于群体进化的算法,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。由于DE 算法操作简单,寻优能力强,自提出以来引起了国内外学者的高度关注,目前已在电力系统优化调度、配网重构等领域得到了应用。 1、算法原理 DE 算法首先在N 维可行解空间随机生成初始种群P 0001[,,]N =X x x L ,其中000T 1[,,]i i iN x x =x L ,p N 为DE 种群规模。DE 算法的核心思想在于采取变异和交叉操 作生成试验种群,然后对试验种群进行适应度评估,再通过贪婪思想的选择机制,将原种群和试验种群进行一对一比较,择优进入下一代。 基本DE 算法主要包括变异、交叉和选择三个操作。首先,在种群中随机选取三个个体,进行变异操作: 1123()t t t t i r r r F +=+-v x x x 其中1t i +v 表示变异后得到的种群,t 表示种群代数,F 为缩放因子,一般取(0,2],它的大小可以决定种群分布情况,使种群在全局范围内进行搜索;1t r x 、2t r x 、3t r x 为从种群中随机抽取的三个不同的个体。 然后,将变异种群和原种群进行交叉操作: 1,R 1 ,,R () or () () and ()t i j t i j t i j v rand j C j randn i u x rand j C j randn i ++?≤=?=?>≠?? 其中t 1,i j u +表示交叉后得到的种群,()rand j 为[0,1]之间的随机数,j 表示个体的第j 个分量,R C 为交叉概率,()randn i 为[1,,]N L 之间的随机量,用于保证新个体至少有一维分量由变异个体贡献。 最后,DE 算法通过贪婪选择模式,从原种群和试验种群中选择适应度更高的个体进入下一代: 11t 11 ()() ()()t t t i i i i t t t i i i f f f f ++++?<=?≥?u u x x x u x 1()t i f +u 、()t i f x 分别为1t i +u 和t i x 的适应度。当试验个体1t i +u 的适应度优于t i x 时,

差分进化算法及应用研究

湖南大学 硕士学位论文 差分进化算法及应用研究 姓名:吴亮红 申请学位级别:硕士 专业:控制理论与控制工程指导教师:王耀南 20070310

硕士学位论文 摘要 论文首先介绍了智能优化算法的产生对现代优化技术的重要影响,阐述了智能优化算法的研究和发展对现代优化技术和工程实践应用的必要性,归纳总结了智能优化算法的主要特点,简要介绍了智能优化算法的主要研究内容及应用领域。 对差分进化算法的原理进行了详细的介绍,给出了差分进化算法的伪代码。针对混合整数非线性规划问题的特点,在差分进化算法的变异操作中加入取整运算,提出了一种适合于求解各种混合整数非线性规划问题的改进差分进化算法。同时,采用时变交叉概率因子的方法以提高算法的全局搜索能力和收敛速率。用四个典型测试函数进行了实验研究,实验结果表明,改进的差分进化算法用于求解混合整数非线性规划问题时收敛速度快,精度高,鲁棒性强。 采用非固定多段映射罚函数法处理问题的约束条件,提出了一种用改进差分进化算法求解非线性约束优化问题的新方法。结合差分进化算法两种不同变异方式的特点,引入模拟退火策略,使算法在搜索的初始阶段有较强的全局搜索能力,而在后阶段有较强的局部搜索能力,以提高算法的全局收敛性和收敛速率。用几个典型Benchmarks函数进行了测试,实验结果表明,该方法全局搜索能力强,鲁棒性好,精度高,收敛速度快,是一种求解非线性约束优化问题的有效方法。 为保持所求得的多目标优化问题Pareto最优解的多样性,提出了一种精英保留和根据目标函数值进行排序的多目标优化差分进化算法。对排序策略中目标函数的选择方式进行了分析和比较,并提出了一种确定进化过程中求得的精英解是否进入Pareto最优解集的阈值确定方法。用多个经典测试函数进行了实验分析,并与NSGA-Ⅱ算法进行了比较。实验结果表明,本文方法收敛到问题的Pareto前沿效果良好,获得解的散布范围广,能有效保持所求得的Pareto最优解的多样性。 提出了一种新的基于群体适应度方差自适应二次变异的差分进化算法。该算法在运行过程中根据群体适应度方差的大小,增加一种新的变异算子对最优个体和部分其它个体同时进行变异操作,以提高种群多样性,增强差分进化算法跳出局部最优解的能力。对几种典型Benchmarks函数进行了测试,实验结果表明,该方法能有效避免早熟收敛,显著提高算法的全局搜索能力。提出了将该改进算法用来整定不完全微分PID控制器最优或近似最优参数的新方法。为克服频域中常用的积分性能指标如IAE,ISE和ITSE的不足,提出了一种新的时域性能指标对控制器性能进行测试和评价。用三个典型的控制系统对提出的ASMDE-PID控制器进行了测试。实验结果表明,该方法实现容易,收敛性能稳定,计算效率高。与ZN,GA和ASA方法相比,DE在提高系统单位阶跃响应性能方面效率更高,鲁棒性更强。 为了提高差分进化算法的全局搜索能力和收敛速率,提出了一种双群体伪并行差分

用于约束多目标优化问题的双群体差分进化算法

用于约束多目标优化问题的双群体差分进化算法 孟红云1 张小华2 刘三阳1 (1.西安电子科技大学 应用数学系,西安,710071; 2.西安电子科技大学 智能信息处理研究所,西安,710071) 摘 要:首先给出一种改进的差分进化算法,然后提出一种基于双群体搜索机制的求解约束多目标优化问题的差分进化算法.该算法同时使用两个群体,其中一个用于保存搜索过程中找到的可行解,另一个用于记录在搜索过程中得到的部分具有某些优良特性的不可行解,避免了构造罚函数和直接删除不可行解.此外,将本文算法、N SGA-Ⅱ和SPEA 的时间复杂度进行比较表明,NS GA-Ⅱ最优,本文算法与SPE A相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字: 差分进化算法;约束优化问题;多目标优化问题; 中图分类号:TP18 1 引言 达尔文的自然选择机理和个体的学习能力推动进化算法的出现和发展,用进化算法求解优化问题已成为一个研究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结为求解一个带有约束条件的函数优化问题,因此研究基于进化算法求解约束优化问题是非常有必要的.不失一般性,以最小化问题为例,约束优化问题(Constrai ned Opti mizatio n Prob lem ,COP )可定义如下: )(COP ()()()()q j x h p i x g t s x f x f x f x F j i k R x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件,n n R x x x x ∈=),,,(21 称为n 维决策 向量.将满足所有约束条件的解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转化为两个不等式约束: ?????≤--≤-0 )(0)(δδx h x h j j (2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束()x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解. 定义1(全局最优解)() **2*1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标函数)(y F ,表示为)( )(* y F x F . 对于单目标优化问题,)( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不存在y ,使得)(y F Pa re to 优于)(*x F . 目前,进化算法用于无约束优化问题的文献居多,与之比较,对约束优化问题的研究相对

基于TSP的改进差分进化算法

龙源期刊网 https://www.360docs.net/doc/9717774703.html, 基于TSP的改进差分进化算法 作者:朱宇航伏楠 来源:《硅谷》2012年第17期 摘要: 针对TSP问题,提出一种改进的差分进化算法:利用贪心算法产生初始种群,定义特有的编码匹配函数进行变异操作,排序法修复变异个体,并采用顺序交叉,在变异操作之后,加入新的选择机制,防止交叉操作破坏变异出的优良个体,实验结果表明改进后的差分进化算法能够高效地解决TSP问题,体现良好的优化性能。 关键词: 差分进化算法;TSP;进化算法 0 引言 差分进化算法(DE:Differential Evolution)是一种模拟自然进化法则的仿生智能计算方法,在解决复杂的全局优化问题方面,DE的性能更加优秀,过程也更为简单,受控参数少[1],但由于DE 特有的差分操作的限制,DE被成功应用的领域多集中在连续优化领域,在离散优化领域的应用还相对较少[2]。 TSP(旅行商问题)作为典型的离散优化问题,是解决很多实际问题的最终转化形式,同时也是著名的NP难题,在短时间内求出其最优解非常困难,现有解法[3-4]在求解中都各有缺点.因此,研究将DE经过必要的改进后应用于TSP的求解具有重要意义。 1 改进DE算法 1.1 编码及匹配函数 适应度定义为:负的路径长度,使得路径长度越短,适应度值越大。 1.2 贪婪初始化 为提高初始种群的质量,采用贪婪的初始化方法.对于初始种群的每个个体,产生方法如下: step1:初始化待走城市列表List为包含所有城市的列表; step2:随机选择一个城市A作为起点,并将此点作为当前城市T,从List中移除; step3:从List中选择距离城市T最近的城市作为新的当前城市T,并将T从List中移除; step4:判断List是否为空,若是,则结束;若否,则转step3。

水库优化调度

水库调度研究现状及发展趋势 摘要:实施梯级水电站群联合优化运行是统筹流域上下游各电站流量、水头间的关系,从而实现科学利用水能资源的重要手段,符合建设资源节约型、环境友好型社会的要求,是实现节能减排目标的重要途径,对贯彻落实科学发展观,促进流域又好又快发展具有重要意义。本文拟介绍水库调度研究现状及发展趋势,对工程实际具有重要的理论意义。 关键词:水库;优化调度;研究形状;发展趋势 随着水电发展的规划推进落实,大型流域梯级水库群将逐步形成,其联合调度运行必将获得巨大的电力补偿效益和水文补偿效益,同时在实际工程中也会不断涌现新的现象和问题。在新形势下综合考虑梯级上下游电站之间复杂的水力、电力联系,开展梯级水库群联合调度新的优化理论与方法应用研究,统筹协调梯级水库群上下游电站各部门的利益及用水需求,结合工程实际探索梯级水库群联合优化调度的多目标优化及决策方法,实现流域水能资源的高效利用、提高流域梯级水库群的联合运行管理水平乃至达到流域梯级整体综合效益的最大化,对缓解能源短缺、落实科学发展观、贯彻国家“节能 减排”战略以及履行减排承诺均具有重要的理论指导意义和工程实用价值[1]。 1 水库调度研究现状 水库调度研究,按其采用的基本理论性质划分,可分为常规调度(或传统方法)和优 化调度[2]。常规调度,一般指采用时历法和统计法进行水库调度;优化调度则是一种以 一定的最优准则为依据,以水库电站为中心建立目标函数,结合系统实际,考虑其应满足的各种约束条件,然后用最优化方法求解由目标函数和约束条件组成的系统方程组, 使目标函数取得极值的水库控制运用方式 [3]。 常规调度 常规调度主要是利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程,制定调度图或调度规则,以指导水库运行。它以实测资料为依据,方法比较简单直观,可以汇入调度和决策人员的经验和判断能力等,所以是目前水库电站规划设计阶段以及中小水库运行调度中通常采用的方法。但常规方法只能从事先拟定的极其有限的方案中选择较好的方案,调度结果一般只是可行解,而不是最优解,且该方法难以处理多目标、多约束和复杂水利系统的调度问题。 优化调度 为了充分利用有限的水资源,国内外从上世纪50年代起兴起了水库优化调度研究。其核心有两点:一是根据某种准则建立优化调度模型,二是寻找求解模型的优化方法。 1946年美国学者Masse最早引入优化概念解决水库调度问题。1955年美国人Little[4]采

差分进化算法介绍

1.差分进化算法背景 差分进化(Differential Evolution,DE)是启发式优化算法的一种,它是基于群体差异的启发式随机搜索算法,该算法是Raincr Stom和Kenneth Price为求解切比雪夫多项式而提出的。差分进化算法具有原理简单、受控参数少、鲁棒性强等特点。近年来,DE在约束优化计算、聚类优化计算、非线性优化控制、神经网络优化、滤波器设计、阵列天线方向图综合及其它方面得到了广泛的应用。 差分算法的研究一直相当活跃,基于优胜劣汰自然选择的思想和简单的差分操作使差分算法在一定程度上具有自组织、自适应、自学习等特征。它的全局寻优能力和易于实施使其在诸多应用中取得成功。 2.差分进化算法简介 差分进化算法采用实数编码方式,其算法原理同遗传算法相似刚,主要包括变异、交叉和选择三个基本进化步骤。DE算法中的选择策略通常为锦标赛选择,而交叉操作方式与遗传算法也大体相同,但在变异操作方面使用了差分策略,即:利用种群中个体间的差分向量对个体进行扰动,实现个体的变异。与进化策略(Es)采用Gauss或Cauchy分布作为扰动向量的概率密度函数不同,DE使用的差分策略可根据种群内个体的分布自动调节差分向量(扰动向量)的大小,自适应好;DE 的变异方式,有效地利用了群体分布特性,提高了算法的搜索能力,避免了遗传算法中变异方式的不足。 3.差分进化算法适用情况 差分进化算法是一种随机的并行直接搜索算法,最初的设想是用于解决切比雪夫多项式问题,后来发现差分进化算法也是解决复杂优化问题的有效技术。它可以对非线性不可微连续空间的函数进行最小化。目前,差分进化算法的应用和研究主要集中于连续、单目标、无约束的确定性优化问题,但是,差分进化算法在多目标、有约束、离散和噪声等复杂环境下的优化也得到了一些进展。 4.基本DE算法 差分进化算法把种群中两个成员之间的加权差向量加到第三个成员上以产生新的参数向量,这一操作称为“变异”。然后,变异向量的参数与另外事先确

基于改进差分进化算法的烧结矿配料优化

基于改进差分进化算法的烧结矿配料优化 李凯斌, 卢建刚, 吴燕玲, 孙优贤 浙江大学工业控制技术国家重点实验室,杭州(310027) E-mail :kbli@https://www.360docs.net/doc/9717774703.html, 摘 要:本文针对差分进化算法(differential evolution algorithm)存在的早熟问题和停滞现象作了改进并把改进的算法应用于烧结矿配料优化,用matlab 编程,仿真结果表明符合实际生产工艺要求,证明了改进的差分进化算法对烧结矿配料优化的有效性,从而指出了改进的差分进化算法在配料优化中的应用价值。 关键词:差分进化,停滞,烧结矿,配料优化 中图分类号:TF541 1.前言 钢铁企业中炼铁系统能耗占整个钢铁生产能耗的60% ~70% ,生产成本也占54% ~58%,所占比重都较大[1]。而烧结又是生产高炉炼铁精料的关键工序,烧结生产中,可以将不同原料,熔剂进行精确配料,以调整烧结矿化学成分,满足高炉对炉料成分的要求。烧结矿的优化配料是一项极其重要的工作,配料的目的在于:根据不同种类的铁矿石的化学成分,将原料矿进行合理的搭配,使混匀矿的化学成分符合烧结生产的要求。烧结矿配料优化从上个世纪80年代就开始研究,最初运用的是线性规划方法,优化对象也仅限于烧结矿的化学成分[2]。近几十年来,进化算法发展十分迅速,其应用也越来越广泛。其中由Rainer Storn 和Kenneth Price 提出的差分进化算法[3] (differential evolution ,简称DE)作为一种较新的全局优化算法,以其收敛性好,模型简单,容易实现,控制参数比较少得到广泛应用。在日本召开的第一届国际禁化优化计算竞赛(ICEO)中[6],DE 表现突出,已经成为进化算法(EA)的一个重要分支。近几年来,DE 在约束优化计算,模糊控制器优化设计,神经网络优化,滤波器设计等方面得到了广泛应用。本文运用改进的差分进化算法对烧结矿配料进行优化。 2.差分进化算法 DE 作为一种较新的全局搜索算法与遗传算法,进化规划,进化策略不同,它是由父代个体差分矢量构成变异算子,然后按一定交叉概率,父代个体与变异个体进行交叉,生成试验体,最后在父代与试验体之间根据适应度选择个体。 2.1 差分进化原理 (1)选定种群规模N ,加权因子F ∈[0,2]最大进化代数MAX G ,杂交率CR ∈[0,1] (2)生成初始种群0W :{w 0 i (i=1,2,…N)},令进化代数G=0 (3)对G i w 执行(4)~(6)步,生成G+1代 (4)变异:1G i w +?=G i w +F(G j w -G k w )其中1≤j ,k ≤N ,且i ,j ,k 互异 (5)杂交:1G ij w +=1()() G ij G ij w random CR w random CR +?>??≤??? 其中G ij w 为第G 代第i 个个体的第j 个基因,CR 为 杂交率,random ∈[0,1] (6)选择:

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法过两个父代个体的交叉产生两个子个体,而在差分进化算法过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}12(),, ,t t t NP X t x x x =,()12,, ,T t t t t i i i iD x x x x =为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,, ,)t t t t T i i i iD v v v v =,则 123() 1,2, ,D t t t t ij r j r j r j v x F x x j =+-= (1) 其中111112(,,,)t t t t T r r r r D x x x x =,222212(,,,)t t t t T r r r r D x x x x =和333312(,, ,)t t t t T r r r r D x x x x =是群 体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

梯级水电站水库蓄能利用最大化的长期优化调度

第30卷第1期中国电机工程学报V ol.30 No.1 Jan.5, 2010 20 2010年1月5日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 01-0020-07 中图分类号:TM 73 文献标志码:A 学科分类号:470?40 梯级水电站水库蓄能利用最大化的长期优化调度 郭壮志,吴杰康,孔繁镍,祝宇楠 (广西大学电气工程学院,广西壮族自治区南宁市 530004) Long-term Optimization Scheduling Based on Maximal Storage Energy Exploitation of Cascaded Hydro-plant Reservoirs GUO Zhuang-zhi, WU Jie-kang, KONG Fan-nie, ZHU Yu-nan (School of Electrical Engineering, Guangxi Univeristy, Nanning 530004, Guangxi Zhuang Autonomous Region, China) ABSTRACT: A hybrid water spillage strategy for cascaded hydro-plants was proposed to realize the optimal distribution of water resource. By taking cascaded hydro-plants as a whole, a novel long-term optimization scheduling model named maximal storage energy exploitation model was established based on the rules of minimizing water spillage electric quantity for the last hydro-plant, maximizing electric quantity increments and total power output of cascaded hydro-plants. A detailed mathematical model for water head was constructed, which can describe relations among water volume, water discharge, water spillage, forebay elevation and tailrace elevation. By using recursion thought, a mathematical model for water volume was presented which is composed by water spillage and water discharge. A proportion strategy and equivalent storage capacity constraint condition were applied to describe the characteristics of daily regulating hydro-plant. To testify the effectiveness of the novel model, an example for three hydro-plants was executed. The simulation results prove that the model can realize the optimal distribution of water resource and enhance the synthesis electricity generation benefit of cascaded hydro-plant. KEY WORDS: cascaded hydro-plant; maximal storage energy exploitation; long-term optimization scheduling; beneficial water spillage strategy; equivalent reservoir capacity 摘要:以强迫弃水和有益弃水的混合弃水策略为基础,将梯级水电站看作一个整体,建立蕴涵末级水电站弃水电量最小、水力资源电站间分配时的发电量增益最大和水电站总发电量最大的梯级水电站水库蓄能利用最大化长期优化调度数学模型。构建了描述蓄水量、发电引用流量、弃水流量、水库前池水位和放水路水位之间关系的水电站水头特性详细数学模型。基于递归思想,建立以弃水流量和发电引用流量表示的水库蓄水量表达式。针对日调节水电站在长期优化调度中的特殊性,采用比例放大策略,建立了水库的等效库容约束条件。以一个三级水电站为例进行仿真分析,以混合弃水策略为基础的水库蓄能利用最大化优化调度数学模型可以提高约4%的综合发电量,表明了有益弃水策略在合理分配水力资源和提高电站综合发电效益方面的有效性。 关键词:梯级水电站;蓄能利用最大化;长期优化调度;有益弃水策略;等效库容 0 引言 理论和实践表明,充分利用水能,优先开发水电能源,提高水能利用率,对于合理开发和使用其他非可再生能源如燃煤资源等具有重要作用[1-4]。由于水电站来水随机性及空间分布不均衡性等因素的影响,自然调节并不能够实现水力资源的可持续高效利用,从而影响电能利用的连续性和稳定性,因此人们通过兴建水库的方式和采用现代优化技术[5-14]的手段进行优化调控,来实现水力资源在时间和空间上的合理分配。梯级水电站之间存在电力和水力方面的双重联系,如何建立有效的电能生产优化调度数学模型来协调梯级水电站之间水资源的利用和分配已经成为当前研究的热点[15-23]。目前,围绕着调度期内发电量最大[15-16]、水库蓄能最大[17]、调峰效益最大[18]、耗水量最小[19]及发电收益最大[20-23]等运行目标,建立了大量优化模型,其中 基金项目:国家自然科学基金项目(50767001);国家高技术研究发展计划(863计划)项目(2007AA04Z197);广西自然科学基金项目(桂科自0640028);广西高校百名中青年学科带头人资助计划项目(RC20060808002);广西壮族自治区教育厅科研项目(200808MS150)和广西壮族自治区研究生教育创新计划项目(105930901001, 105930904068)。 Project Supported by National Natural Science Foundation of China (50767001); The National High Technology Research and Development of China(863 Programme) (2007AA04Z197).

33水电站中长期调度优化的粒子群算法MATLAB源码

水电站中长期调度优化的粒子群算法MATLAB源码 水电站中长期优化调度主要是在满足电力系统出力要求以及下游综合用水要求等的前提下,合理地安排水库各个月份的发电流量,使得调度期内的总发电量最大。即在给定预报入库流量过程线、下游综合用水流量过程线、调度期起始水位和终止水位等条件下,通过总水量的合理运用使调度期内水电站的总发电量最大。 %% 参数设置 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/9717774703.html,/greensim A=8.5;%出力系数,常数 Tt=730*ones(12,1);%第t个时段的小时数 %注意:一年按363天*24小时算,均分为12个月 HtLB=55*ones(12,1);%第t时段水位约束的下界,单位:米 HtUB=[65;65;65;61;61;61;61;65;65;65;65;65];%第t时段水位约束的上界,单位:米 VtLB=zeros(12,1); VtUB=zeros(12,1); for i=1:12 VtLB(i)=Ht2Vt(HtLB(i)); VtUB(i)=Ht2Vt(HtUB(i)); end %注意:蓄水量Vt和水位Ht之间有一一对应的关系,单位:立方米 NtLB=260000*ones(12,1);%出力约束的下界,单位:千瓦 NtUB=1400000*ones(12,1);%出力约束的上届,单位:千瓦 %注意:Nt=A*Qt*Ht QtLB=308*ones(12,1);%泄流量下界,单位:立方米/秒 QtUB=29200*ones(12,1);%泄流量上界,单位:立方米/秒 qt=[373;859;1568;2100;3210;5049;1596;1160;925;781;572;1010];%入库流量,单位:立方米/秒 %注意:以上三个量,时间单位相乘时,小时乘以3600转化成秒 %% 调用粒子群算法 K=60; N=80; w=0.5; c1=0.3; c2=0.2; [BESTX,BESTY,ALLX,ALLY]=PSO(K,N,w,c1,c2,VtLB,VtUB,QtLB,QtUB,NtLB,NtUB,qt,A,Tt) ; %% X=BESTX{K}; [Vt,Qt,St]=DeCode(X);

差分进化算法综述概况

差分进化算法(DE)[1]是Storn 和Price 在1995 年提出的一种基于种群差异的进化算法,DE是一种随机的并行搜索算法。差分进化计算和其他进化计算算法一样,都是基于群体智能理论的优化算法,利用群体内个体之间的合作与竞争产生的群体智能模式来指导优化搜索的进行。与其他进化计算不同的是,差分进化计算保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了进化操作的复杂性。差分进化计算特有的进化操作使得其具有较强的全局收敛能力和鲁棒性,非常适合求解一些复杂环境中的优化问题。 最初试图使用向量差进行向量种群的混洗,以此来解决切比雪夫多项式适应性问题。DE 通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质上是一种基于实数编码的具有保优思想的进化算法。该算法实现技术简单,在对各种测试问题的实验中表现优异,已经成为近年来进化算法研究中的热点之一。 差分进化算法基本原理 基本的差分进化算法是基于候选方案种群的算法,在整个搜索空间内进行方案的搜索,通过使用简单的数学公式对种群中的现有方案进行组合实现的。如果新的方案有所改进,则被接受,否则被丢弃,重复这一过程直到找到满意的方案。 设 f 是最小化适应度函数,适应度函数以实数向量的形式取一个候选方案作为参数,给出一个实数数值作为候选方案的输出适应值。其目的是在搜索空间的所有方案p 中找到m 使得f(m) ≤f(p)。最大化是找到一个m 使得f(m) ≥f(p)。 设X=(x1, x2,…, xn)∈?n是种群中一个个体,基本的差分进化算法如下所述: ?在搜索空间中随机地初始化所有的个体。 ?重复如下操作直到满足终止条件(最大迭代数或者找到满足适应值的个体) o 对于种群中的每个个体: ●随机地从种群中选择三个彼此不同的个体a,b 和c。 ●选择一个随机索引R ∈{1, ..., n},n 是被优化问题的维数。 ●通过对每个i ∈{1, ..., n}进行如下的迭代计算可能的新个体Y = [y1, ..., yn] 生成一 个随机数ri~U(0,1); ●如果(i=R)或者(ri3。差分进化算法作为一种新出现的优化算法在实际应用中表现出了优异的性能,被广泛应用到不同的领域,已经成为近年来优化算法的研究的热点之一。研究差分进化算法,探索提高差分进化算法性能的新方法,并将其应用到具体工程问题的解决中,具有重要的学术意义和应用价值。 差分进化计算的群体智能搜索策略分析 1 个体行为及个体之间信息交互方法分析 差分进化的个体表示方式与其他进化计算相同,是模拟生物进化中的关键因素,即生物的染色体和基因,构造每个解的形式,构成了算法的基础。一切的寻优操作都是在个体的基础上进行的,最优个体是搜寻到的最优的解。 差分进化的个体行为主要体现在差分变异算子和交叉算子上。

进化算法发展及其应用

进化计算方法发展及其应用 摘要: 进化计算作为一种新的智能优化技术,已广泛用于工程科学中的各个领域,与传统优化方法相比,进化计算在全局优化、复杂性问题的求解及易用性方面都显示出其优越性。进化计算发展到今天,出现了许多方法,如遗传算法、进化规划、粒子群算法、蚁群算法等等。 关键词:进化计算,优化算法,发展应用

一、何谓进化计算 进化计算作为一种新的智能优化技术,已广泛用于工程科学中的各个领域,与传统优化方法相比,进化计算在全局优化、复杂性问题的求解及易用性方面都显示出其优越性。进化计算发展到今天,出现了许多方法,如遗传算法、进化规划、粒子群算法、蚁群算法等等。在对进化计算的研究中,算法设计一直是研究工作的重点,这方面的研究,始终围绕两个主题,一是对进化计算应用领域的拓展,二是提高进化计算的工作效率。前者重点放在设计和发现进化计算的搜索策略上,使其能解决过去不能解决或不能有效解决的问题,后者则着重改进已有的算法,使其效率进一步提高。 二、进化计算的典型算法 几种典型的进化计算方法 目前,进化计算的主要方法有遗传算法(Genetic algorithms,简称GA)、遗传编程(Genetic programming,简称GP)、进化策略(Evolution strategies,简称ES)和进化编程(Evolutionary programming,简称EP),DNA计算,粒子群算法(Particle swarms optimization,简称PSO),蚁群算法(Antcolony optimization,简称ACO),膜计算(Membrane computing)等,虽然上面有些方法与传统进化计算的定义不完全相同,但都是模拟生物的某项特征或某种行为而设计,都是建立在群体智能基础上的进化方法。下面对几种典型的进化方法进行简单介绍。 1)遗传算法(GAS) 该算法是由Michigan大学Holland J.H.教授,借鉴达尔文的生物进化论和孟德尔的遗传定律的基本思想,并对其进行提取、简化 与抽象,在1975提出了第一个进化计算算法—遗传算法。遗传算法 通过选择、交叉和变异来实现个体的更新和重组,强调交叉操作对 产生新型基因的作用胜过变异操作。 2)进化策略(ES)

差分进化算法-入门

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法中通过两个父代个体的交叉产生两个子个体,而在差分进化算法中通过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}1 2 (),,,t t t NP X t x x x =L ,() 1 2 ,,,T t t t t i i i iD x x x x =L 为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,,,)t t t t T i i i iD v v v v =L ,则 123() 1,2,,D t t t t ij r j r j r j v x F x x j =+-=L (1) 其中111112(,,,)t t t t T r r r r D x x x x =L ,222212(,,,)t t t t T r r r r D x x x x =L 和333312(,,,)t t t t T r r r r D x x x x =L 是群体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

水电系统长期优化调度的对策分析

水电系统长期优化调度的对策分析 发表时间:2017-12-31T11:04:53.630Z 来源:《电力设备》2017年第24期作者:何军 [导读] 摘要:水电站水库的优化调度在水电站的系统以及电网系统管理中,是不可或缺的重要组成部分,同时,水电优化调度又是一个约束力强、非线性、阶段多的复杂优化问题,因此进行优化调度很有必要。 (四川通源电力科技有限公司四川成都 610000) 摘要:水电站水库的优化调度在水电站的系统以及电网系统管理中,是不可或缺的重要组成部分,同时,水电优化调度又是一个约束力强、非线性、阶段多的复杂优化问题,因此进行优化调度很有必要。水利工程以及设备的作用发挥调度的效果将被其直接影响到,也能积极地帮助电网的安全可靠运行。为了使水电系统能够实现良好的效益,节约水电资源,保证水力调度能一直保持着优良的运行状态,本文对目前的水电系统调度的优化方法作了阐述,并且就水电站水库优化调度所需要的对策进行分析和研究。希望能够在一定程度上引起大家对水电系统优化调度的思考,节约水电资源的同时能够促进经济效益的发展。 关键词:水电系统;联合优化;优化调度;对策方法 0引言 在水电站水库进行优化调度的好处有以下几点:有利于使水电站以及电力系统的管理水平得到提升,就能够使经济利益得到显著提高并不依赖于外力作用的加入,水库优化调度是非常有成效又高效率的,就所有挖掘水电站的潜力的方式来看。其实水库优化调度这一过程并不复杂,正常情况下它都是在大家比较熟悉的系统工程调度中来进行,从而将整个过程得到完成,它的优点是能够节约水资源,让其能够被有效完全地得到利用,这是通过加强各个部门之间的合作来实现的,充分挖掘其潜能,发挥其价值及作用,以此来完成良好的经济效益这一目标,同时也可以为整个电网的安全提供可靠的依赖作用。因此加强水电站水库的优化调度这一行动,是造福人类的一大进步,刻不容缓。 就我国当前的水平而言,水电站经济运行中存在着以下问题:在大部分已经完成的水电站内,许多其经济运转还没有进行,这其中有许多原因,比如关于节能方面,其注重水电站运转的经济节能这一方面并没有体现出来,同时有些水电站根本就不具备节能的思想,例如其过低的技术水准使得水电站的经济运转得到了严重的影响。除此之外,有关这一方面的法律法规也不够完善,不仅仅如此,其责任体系也没有得到明确的落实,只是个不清晰的模型,因为法律法规并没有被人们铭记,而且没有对责任的主体加以明确,如果节能这一目的没有能够得到实现的话,关于谁是责任主体的问题也无法得到解决,即使这种情况下不会产生一丝不好的后果,水电站的运行却有可能会因此造成不好的影响,其会越来越不追求的节能积极性,主动性。 1、影响水电站水库优化调度的因素 机组的振动、输电线路受到冲击会对水电站水库的优化调度产生一定的影响,同时其也会被站内存在的区别所影响,这些区别一般是由电气设备、水泵性能上所引起的,除此之外,过高的水压会给安全性带来潜在的隐患、水力振动与关阀水锤的状况在正常停机情况下等种种因素的影响[1]。 2、水电站水库优化调度的特征 2.1正常情况下的优化调度方法 正常的水电站水库优化调度方法,指的就是在国际上都被普遍接纳并采用的方法,一般都是根据水文资料,根据历史上的数据统计而来,对于能够选择出具有典型的能够作为代表的来水,使其作为代表年,随进一步对水能的调节进行充分的计算,由包络线绘制的水库调度图能够得到应用,并且发挥其最大的作用从而来指导水电站的运行。此优化调度方法普遍被认为比较省时省力,既能够直接而又明确地处理影响水库运行的相关因素,然而这种调度方法也存在着缺陷,其还没有达到一定的灵活度,盲目性也比较大,很难达到预计的效果。 2.2计算水电站水库优化调度的方法 为了达到让水库的运行达到优化的效果,运用动态规划理论这一求解方法相对来说是比较靠谱的所谓动态规划理论地概念便是改变计算的方法,具体的是将传统的一步多维用多步一维来进行代替,此外还要对调节的不同周期根据多种依据来进行划分,最终要达到保证状态得到最优的转移的目的。不仅如此,水库的水位也十分重要,这其中既有水库的来水情况又有时段径流的条件等,将新编的水库调度图加以运用,并且使用已经被优化过了的运行方式,以此来使水电站的发电出力,这些能够使得水电站水库在运行时不会出现特殊的状况,可以进一步的安全并且可靠,进而带动经济效益的提高。 2.3新编的优化调度图 新编的水库优化调度图的概念既不简单杂又不是十分复杂,运用以数学规划论为基础的动态规划,除此之外还可以利用随机规划法,最后将计算达到最优结果的方法。做到以上几点,新编的水库优化调度图便能够完成了。这种调度图的优点在于,既能够使三维坐标的调度线得到实现,提高水电站水库的调度决策的灵活性,同时在生活中也能够得到更能被普遍接受的使用。对于这种类型的新编的优化调度图不仅有以上已经提到的优点,其更大的好处是能够有效解决正常优化调度法中存在的缺陷及问题,能够大大地提高经济效益。 3、节能发电调度下的水电短期优化调度存在的好处 3.1水电站优化调度的作用 其最具意义的一个方式便是在进行水电站优化调度的时候,能够有效解决资源短缺、能源紧张的重要问题,由于近年来我国的发展,对于经济体制进行了改革以及市场机制竞争的愈渐激烈,使得水电站不得不通过将厂网进行分离、竞价上网的方式来推进将电力市场进行运用,希望这样能够达到节约成本、提升效率的最终目的。 进行水电站经济运转工作,在这一状态下不仅能够使水电站运转的管理能力得到提升,将水电站发电效益提高、对电网安全运转的保障意义非常大之外,也是能将水资源得到充分运用的有效措施。 3.2水电站经济运转的内容 基本由厂内经济运转、短期经济运转及长期经济运转组成。 (1)厂内经济运转是指根据时间及时进行调度,在所有机组当中落实清楚相关小时分配到的负荷,且将所有机组的负荷协调一致根据负荷的实际转变来执行,并且实施操控。充分发挥水能资源的作用,在与电力系统供电所需要的情况相符合并且使当前发电设施及水工建筑物不转变的条件下,能够将电站以及整个系统的经济效益得到提升的目标,依照系统分析理论以及最优化技术编制方案进行运转。

相关文档
最新文档