宋阳阳湍流理论及模型的发展与应用

宋阳阳湍流理论及模型的发展与应用
宋阳阳湍流理论及模型的发展与应用

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

第15章 预混燃烧模拟

第十五章预混燃烧模拟FLUENT有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: ●15.1 概述和限制 ●15.2 预混燃烧模型 ●15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1 概述 在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微米量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章)模拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2 限制 在使用预混燃烧模型时有以下限制: ●必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。 ●预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中, 可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解 器用有限速率模型模拟。有关限速率模型见13章。 ●预混燃烧模型不能和污染物(如碳烟和NOx)模型一起使用。但完全预混系统可以 用部分预混模型(见16章)模拟。 ●不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模 型。 15.2 预混燃烧理论 湍流预混燃烧模型基于Zimont等人的工作[275,276,278],涉及求解一个关于反应过

湍流模型

我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CF D中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(D NS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(104)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,

湍流理论发展概述

. 湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

湍流调研报告——高等流体力学

高等流体力学 湍流调研报告 学生姓名:********** 学号:********** 专业班级:********** 2015年 12月1日

前言 自1839年G.汉根在实验室中首次观察到由层流向湍流的转变现象以来,对湍流的研究已有近两百年历史,但由于湍流流动的复杂性,至今仍存在一些基本问题亟待解决。但从检索有关湍流文章过程中发现,绝大多数文章均是介绍有关湍流的数值模拟问题,鲜有文章报道关于湍流理论的基础研究。一方面的原因是由于湍流理论研究其固有的困难性,我想还有另一方面的原因便是当今学术界乃至整个社会风气的浮躁。物欲横流金钱至上的社会风气下,Paper至上的学术氛围下,基础学科的发展及基础理论的研究深受其害。基础研究学者得不到应有的精神上、物质上的尊重,青年科学家为了将来的发展避开基础学科,中年科学家为了避免家庭经济上的负担放弃理论研究,当今只有部分老一辈的科学家坚持着自己的原则和理想,我想这也是他们为什么仍是我国科学技术发展中流砥柱的原因吧。纵然如今之风气已被众多学者所诟病,但已根深蒂固,不可能将之迅速扭转,当下应从政策上给予基础研究支持和鼓励,予现行之风以纠正,方可促我民族之复兴。在前任上海交通大学校长谢绳武先生给杨本洛先生《湍流及理论流体力学的理性重构》[1]一书的序中以及施红辉先生《湍流初级教程》[2]的前言中均提到切实支持原创性基础研究的重要性。 本文首先查阅文献了解了湍流的定义,以及人们目前对湍流的认识;然后通过调研梳理了湍流理论的发展过程;最后,就湍流的数值模拟极其未来的发展方向做了简要介绍。

一、湍流的定义 什么是湍流?查阅相关书籍、论著,关于湍流的论述相当多的部分是从1883年Reynolds的圆管内流动实验引出的,通过实验观察,给出了湍流的描述性定义:湍流是复杂的、无规则的、随机的不定常运动。随后详细说明了湍流的一些主要特征,包括其扩散性、耗散性、大雷诺数、记忆性、间歇性等等,但对湍流严格意义的科学定义没有叙述,我想这也是湍流能成为跨世纪难题的一个反映吧。从各论著的叙述来看,随着湍流理论的发展,湍流的定义是不断修正和补充的,19世纪初,湍流被认为是完全不规则的随机运动,Reynolds称之为“波动”[3],首创统计平均法描述湍流运动;1937年,Taylor 和von Karman则认为湍流是一种不规则运动,于流体流过固壁或相邻不同速度流体层相互流过时产生;Hinze认为湍流除了不规则运动外,其各个量在空间、时间上具有随机性;我国著名科学家周培源先生则主张湍流为一种不规则的涡旋运动;自20世纪70年代开始,很多学者又指出湍流不是完全的随机运动,其存在一种可以被检测和显示的拟序结构。由清华大学出版社出版,林建忠等人编著的《流体力学》[4]一书中提到,目前大多数学者的观点是:湍流场有各种大小和涡量不同的漩涡叠加而成,其中最大涡尺度与流体环境密切相关,最小涡尺度则由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。 值得一提的是,杨本洛先生所著的《湍流及理论流体力学的理性重构》一书中从形式逻辑考虑,对湍流的本质,包括其物理本质、物理机制、形式特征做了论述,并提出一切宏观物质总是粒子的(宏观力学中基本假设之一是连续介质假设),认为流体是大数粒子的集合,湍流研究困难的本质在于基于微分方程所表现的连续宏观表象与宏观流体的粒子本质之间存在的根本矛盾,著作中含有大量的逻辑讨论及哲学层次的思考。二、湍流理论发展简史 1839年,G.汉根在实验中首次观察到流动由层流到湍流的转变,这便揭开了湍流这一科学难题的第一幕。在其后百余年的理论发展中Reynolds、Prandtl、von Karman、Taylor、Kolmogorov、Landau、Heisenberg、Onsager、Chandrasekhar、Hopf、周培源、李政道、林家翘、谈镐生等如雷贯耳的大师们纷纷登上这一广阔的舞台,在湍流的金色大厅里演

湍流燃烧模型-PDF

PDF 模型 概率密度函数PDF方法以随机的观点来对待湍流问题,对解决湍流化学反应流的问题具有很强的优势。在湍流燃烧中存在一些非输运量( 如反应速率, 密度, 温度及气相体积分数等) 的湍流封闭问题。尽管这些量没有输运方程, 但它们常常是输运变量的已知函数。平均或者过滤高度非线性的化学反应源项会引起方程的封闭问题。因此,用PDF的方法来解决这些非输运量的湍流封闭问题显然是一个既简单又直接的途径。 PDF方法是一种较为流行的湍流燃烧模型,能够较为精确的模拟任何详细的化学动力学过程, 适用于预混、非预混和部分预混的任何燃烧问题。目前, 确定输运变量脉动概率密度函数的方法有输运方程和简化假定两种, 分别称之为输运方程的PDF和简化的PDF。前者建立输运变量脉动的概率密度输运方程,通过求解该方程来获得输运变量脉动的概率分布。后者假定输运变量脉动的概率密度函数的具体形式, 通过确定其中的一些待定参数来获得输运变量脉动的概率分布。湍流燃烧中, 后者应用最为普遍和广泛。在简化的PDF 中, 输运变量脉动的概率密度函数常常采用双 D 分布、截尾高斯分布和B 函数分布等形式。 PDF在理论上可以精确考虑任意详细的化学反应机理,但是其具体求解时需借助其它的模型和算法,而且计算量相对较大。PDF的方程是由N-S方程推导而来,其中的化学反应源项是封闭的,但压力脉动梯度项以及分子粘性和分子扩散引起的PDF的分子输运项是不封闭的,需要引入模型加以封闭。例如,在速度- 标量-湍流频率PDF中,必须采用小尺度混合模型、随机速度模型和湍流频率模型加以封闭。 模化后的输运方程难以用有限容积、有限差分和有限元等方法来求解,比较可行的一种方法是蒙特卡洛(MonteCarlo)方法,在该方法中输运方程被转化为拉格朗日(Lagrangian)方程,流体由大量遵循Lagrang ian方程的随机粒子的系统来描述, 最后对粒子作统计平均得到流场物理量和各阶统计矩。另有与有限容积法相结合的蒙特卡洛法。 PDF 模型的发展 1969年Lungdren首先推导、计算了速度的联合PDF运输方程,避免了对梯度扩散模型进行模拟,对很简单的流动过程得到了简析解[1]。

湍流简史

湍流简史精选 已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介 湍流理论发展简史: N-S方程的导出: 描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。因1821年由 C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。N-S方程和连续方程共同构成了一个闭合的非线性方程组。该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。 湍流的发现: 1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。 层流向湍流转变的雷诺实验: 1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。并在1885年提出了著名的雷诺平均方法。 湍动能串级过程: 1922年Richardson发现湍动能串级过程。大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。 各项同性湍流理论: 1935年G. I. Taylor在风洞实验的均匀气流中设置一排或者几排规则的格栅,均匀气流垂直流过格栅时产生不规则扰动。这种不规则扰动向下游运动过程中,由于没有外界干扰,逐渐演化为各项同性湍流。发展了各项同性理论。 Karman-Howarth方程的导出: 1938年基于Taylor的各项同性理论导出了著名的K-H方程。但方程中含有的未知数的个数比方程数多,因此无法求解。 Kolmogorov空间尺度标度率: 1941年莫斯科的数学家Kolmogorov更进一步地把G.I.Taylor的均匀各向同性理论发展成局地均匀各向同性统计理论,并在人类历史上第一次导出了湍流微结构的规律:结构函数的-p/3定律。第一次揭示了湍流的空间分布特性。但该理论存在着一些缺陷。

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史 I 中国科学家早期湍流研究的回顾 黄永念 北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871 摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。 关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。 引言 湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。实际上有很多中国科学家在上一世纪中做了非常出色的工作。本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。 中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。另一方面是在国外开展的研究工作,这部分工作国内也不很熟悉。因此,本文将把他们的不懈努力介绍给大家。 胡非在1995年发表的专著《湍流,间隙性与大气边界层》中曾专门介绍了中国学者的湍流研究工作[3],但他的介绍还不够全面,特别是缺少对早期工作的报道。本文可以弥补其中的不足。 1 三十年代的研究工作 在我国最早发表湍流论文的是当时在清华大学的王竹溪先生。他在周培源先生的指导下

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

湍流模型

湍流模型概述 湍流是一种复杂的非稳态三维流动,通常把瑞流定义为具有随机性、扩散性、高雷诺数、三维祸量脉动性、耗散性及连续性特征的复杂流动。虽然瑞流具有多种特性,但瑞流不是流体本身具有的某些特征而是流体流动的特征,仍是一种连续流动,仍然同层流一样满足流动的基本方程。从数学的观点看,瑞流是N-S方程的 通解,求解端流与求解层流无本质区别,目前己具有足以求解瑞流问题的有关方程式。端流还可以看作是由多种大尺度祸流和小尺度祸流组成的特殊流动。大尺度的祸流主要由流动的边界条件和流动区域的几何形状所决定,是引起流场中低频 脉动的主要原因;小尺度的祸流主要是點性力所决定,是引起流场中高频脉动的主要原因。瑞流的物理量的脉动特点就是由于流体内各种不同尺度祸流的随机运动造成。 用数值方法直接计算瑞流单元运动规律时,计算网格尺寸要小于瑞流单元 尺度,并在瑞流单元尺度内计算N-S方程的通解。但是在实际工程中具有重要意 义的不是端流的精细结构,而是瑞流对于时间的平均(时均)效应。因此,雷诺首先提出了将N-S方程对某一时间比例尺取平均,得到时均N-S方程。虽然瑞流的N-S 方程经过时均化处理后方程式的形式可以保持不变,但是出现了脉动应力项(雷诺应力),因此需要提出相应的端流模型(一个或一组数学方程)使时均方程得到封闭。这种方法按雷诺应力方程模型化方法的不同可分为两类:一类是直接就雷诺应力 建立模型化方程的雷诺应力方程模型;另一类是在雷诺应力与局部时均速度梯度 成比例的Boussinesq假设下引入的瑞流黏度系数模型。另一种瑞流数值计算方法是亚网格尺度模拟,即大祸模拟(LES),由N-S方程出发直接模拟大尺度祸流,小尺度祸流的影响可以通过近似模型来考虑。但是由于大祸模拟计算量仍很大,也只能 模拟一些简单的情况。 工程上通常需要深入了解的是温度场、时均速度场、瑞流脉动时均特性等, 并不需要了解瑞流产生和发展的详细过程。因此,利用雷诺提出的时均值的概念 来研究瑞流运动的方法是一种有效的简化,从N-S方程导出瑞流平均运动方程和 雷诺方程,还导出了连续性方程和能量方程等基本方程。雷诺平均法将瑞流物理 量代入不可压缩瞬态连续性方程、动量方程得到端流平均运动的连续性方程和动量方程。但是在雷诺时均方程组中除了瞬态连续性方程和动量方程外还有一项是

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

第章预混燃烧模拟

第十五章预混燃烧模拟 FLUENT 有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: 15.1概述和限制 15.2 预混燃烧模型 15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1概述在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微M 量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混 合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章濮拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2限制 在使用预混燃烧模型时有以下限制:必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中,可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解器用有限速率模型模拟。有关限速率模型见13章。预混燃烧模型不能和污染物(如碳烟和 NOx )模型一起使用。但完全预混系统可以用部分预混模型(见16 章)模拟。 不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模型。 15.2预混燃烧理论 湍流预混燃烧模型基于Zimont 等人的工作[275,276,278],涉及求解一个关于反应过程变量的输运方程。这一方程的封闭基于湍流火焰速度的定义。 15.2.1 火焰前锋的传播 在许多工业预混系统中,燃烧发生在一个非常薄的火焰层中。当火焰前锋移动时,未燃的反应物燃烧,变为燃烧产物。因此预混燃烧模型用火焰层将反应的流场分为已燃物区和未燃物区。反应的传播等同于火焰前锋的传播。 火焰前锋传播的模拟通过求借一个关于标量c的输送方程,c为(Favre平均)反应进 程变量。

相关文档
最新文档