太阳能_地源热泵与地板辐射空调系统联合运行方式探讨_胡松涛

太阳能_地源热泵与地板辐射空调系统联合运行方式探讨_胡松涛
太阳能_地源热泵与地板辐射空调系统联合运行方式探讨_胡松涛

专业论坛太阳能-地源热泵

与地板辐射空调系统联合

运行方式探讨

青岛理工大学胡松涛m张莉王刚

摘要论述了太阳能及地热能作为地板辐射空调系统冷热源的可行性及必要性,提出了一种利用太阳能和土壤热源热泵通过地板辐射空调供暖供冷的方案,讨论了系统在冬夏和过渡季的运行方式。

关键词地源热泵太阳能辅助热源地板辐射系统联合运行

Combined operating of a sola-r ground source

heat pump and floor radiant system

By Hu Songtao n,Zhang Li and Wang Gang

Abstract Ex plains the f easibility and ne cessity of the solar-gr ound energ y as c old and heat so ur ces f o r heating and co o ling term inal user s with a f lo o r ra diant system.Pr esents a new hea t pump sy stem and discusses its oper ating mo des in summer,w inter and tr ansie nt seaso ns.

Keywords gr ound so ur ce he at pump,so lar e ne rg y,assiste d heat so ur ce,flo or r adia nt sy stem,c ombined oper ating

n Qingd ao Polytechnology University,Qingdao,S handong Provi nce,China

0引言

随着人们环保意识和节能意识的不断增强,在暖通空调领域寻求新能源与可再生能源的利用方式正在成为研究的方向。如何有效利用广泛存在的低位热能,节约有限高位热能的热泵技术越来越引起人们的重视。

目前空气源热泵及水源热泵已广泛应用于实际工程中,而地源热泵仍处于实验研究阶段。几年的运行实验测试显示,地源热泵具有诸多优势,但是其地下换热器部分投资较大,而且安装场地受到实际条件的限制,在我国北方以冬季热负荷为主的地区,若按冬季工况设计地源热泵必将造成地下换热器过于庞大,应适当考虑采用辅助热源。本文正是基于这些特点,论述太阳能与地热能作为热泵的低位热源在这类地区进行供暖与供冷的可行性,进而论述其与地板辐射空调系统联合运行的方式及特点。

1太阳能地源热泵技术的可行性分析

1.1新能源的优势

1.1.1太阳能

太阳每年辐射到地球表面的能量巨大,约为50@1018kJ,相当于目前全世界年能量消费的1.3万倍[1],利用的潜力很大,而且对太阳能的利用不会对地球的热平衡产生影响,也不会造成环境污染。因此太阳能是取之不尽、用之不竭的一种绿色

①m胡松涛,男,1968年7月生,博士,教授,博士研究生导师

266033青岛理工大学暖通教研室

(0532)5071710,5071260

E-mail:h-lab@https://www.360docs.net/doc/9218328991.html,

收稿日期:20040722

修回日期:21

环保能源。

我国地域辽阔,太阳能资源丰富,我国广大北方地区年日照时间一般在2000h以上,甚至高达2800~3300h,属于太阳能利用较有利的地域。

1.1.2地热能

地热能,尤其是土壤热源,是广泛存在的良好低位热源。土壤温度相对稳定,全年波动小。根据测定,地下10m深处的土壤温度相当于该地区全年平均气温,多数情况下比气温高1~2e,并且不受季节的影响[2]。土壤温度以余弦函数的规律随时间变化,并且其温度波振幅随地层深度的增加而出现衰减的趋势,当地层深度足够大时,温度波动振幅就衰减到可以忽略不计的程度,在这个深度以下,地温常年保持不变。而且温度波在深度x处具有时间上的延迟性,其温度达到最大值的时间比地表温度达到最大值的时间落后一个相位U=

x P

aT

,所以当冬季室外空气的温度很低时,地层

内却具有较高的温度,夏季的情况则正好相反。

土壤的这些特性,使得地源热泵的制热性能系数较高,约为2.2~3.2[2],而且蒸发温度及冷凝温度基本保持恒定,从而保证了热泵的稳定运行。同时,土壤作为一个巨大的蓄能体,冬季蓄存冷量供夏季取用,而夏季则蓄存热量供冬季取用。

1.2末端系统适宜采用太阳能地源热泵技术

在本文所述的系统中,用户端采用地板辐射空调系统。其低温辐射供暖、高温辐射供冷的特点与太阳能地源热泵系统所提供的冷热水温度的特点相一致。

a)地板辐射空调系统夏季要求的进水温度较高,大约在15~20e,供冷能力一般小于50W/ m2;而冬季供暖时要求的进水温度较低,一般在30 ~50e,供热能力为50~120W/m2[4]。

b)热泵系统提供的冷热水温度恰好在地板辐射空调系统进水温度所要求的范围内。

c)热泵的制热性能系数E h=有效制热量

净输入能量,在

理想的热泵循环)))逆卡诺热泵循环的情况下, E h=T h

T h-T a

,其中T h为高温热源温度,T a为低温热源温度。由此可知热泵热源温度与供热温度之间的温差越小,其制热性能系数越大。因此冬季较

低的供热温度,以及夏季较高的制冷温度将提高热泵的运行效率,从而取得良好的经济效果。

d)由于地板辐射空调系统较普通的空调系统具有显著的节能效果,因此一方面可大大减小太阳能地源热泵系统的规模,降低初投资;另一方面使地层以下的温度场波动较小,地温能够得到及时恢复。

e)地板辐射空调系统在初夏或初冬季节可以直接利用地热能及太阳能进行供冷供暖,推迟热泵启动时间,降低电能消耗,达到节能的目的。

1.3政府支持采用新能源及可再生能源

为了在建筑领域贯彻节约能源的方针,国家及建设主管部门颁布了一系列法律法规和规章办法,大力提倡在建筑中应用新能源和可再生能源。在《节约能源法》中规定:/国家鼓励开发、利用新能源和可再生能源0。在《民用建筑节能管理规定》中提出把/太阳能、地热等可再生能源应用技术及设备0和/空调制冷节能技术与产品0,列为/国家鼓励发展的建筑节能技术(产品)0。而且为了加快新能源和可再生能源产业化发展,国家经贸委于2001年10月印发了《新能源和可再生能源产业发展/十五0规划》,提出的发展重点中包括太阳能光热利用,指出要/研究和开发太阳能热利用、采暖、空调等与建筑一体化技术0等[5]。

由以上分析可知,太阳能及地热能作为热泵的低位热源,不仅有政府的支持,还由于其自身的优点及显著的节能效果,必将成为以后热泵技术发展的重要方向之一。

2太阳能热泵与地源热泵联合运行的必要性太阳能与地热能虽然具有较多的优势,但同时也存在着不足之处。

对于太阳能来说,虽然到达地球表面的太阳能总量很大,但是其在地球表面的能流密度极低。据统计,北回归线附近夏季晴天中午的太阳辐射最强,约为1.1~1.2kW/m2,冬季大约只有一半,阴天只有1/5左右[6]。同时太阳能因受昼夜、季节、纬度和海拔高度等自然条件的限制和阴雨天气等随机因素的影响,存在较大的间歇性及不稳定性。因此,要利用太阳辐射能,不仅需要较大的集热面积,而且还需要有蓄热装置,这就使得设备的初投资增加,限制了其推广应用。

对于地热能来说,由于土壤的性质随着地区的

不同和季节的变化而异,这将会增加地热换热器的设计难度,而且其主要影响参数之一)))导热系数较小,因此工质与土壤之间的换热强度小,需要较大的换热面积,这将受到实际应用场地及施工的限制,而且将增加工程初投资。此外,在冬季热负荷较大的北方地区,热泵从土壤取热远远大于其在夏季的蓄热,长期运行将会使土壤的温度场得不到有效恢复,从而对该类地区冬季供暖造成很大影响。

鉴于以上两种低位热源热泵单独运行时所存在的问题,本文提出太阳能热泵与地源热泵系统联合运行的方案。一方面由于土壤具有蓄能、稳定性及延迟性的特点,可以作为太阳能的蓄热装置,储存热量以供太阳能不充足时使用。另一方面,由于太阳能的辅助供热作用,使得地热换热器可以间歇运行,土壤温度场能够得到及时恢复,蒸发温度及冷凝温度波动不大,从而使热泵运行稳定。因此两种低位热源热泵的联合运行是一种比较合理的方案,可以互相取长补短,发挥各自的优势,弥补单一热源热泵的不足,提高热泵系统的COP 值。3 太阳能地源热泵与地板辐射空调系统的联合运行方式

3.1 系统构成

太阳能地源热泵系统由太阳能集热器、蓄热水箱、地热换热器、热泵机组及其附属设备组成,末端采用地板辐射空调系统。系统的联合运行原理图如图1

所示。

A 热泵机组

B 太阳能集热系统

C 地源热泵系统

D 地板辐射空调系统 a 蓄热水箱 b 太阳能集热器 c/d 系统分/集水器 g/f 地板系统分/集水器 e 1,e 2,,,e n 地热换热器 h 室内地板盘管 p 1,p 2,p 3循环水泵

图1 太阳能地源热泵与地板辐射空调系统联合运行原理图

3.2 系统运行流程

3.2.1 过渡季空调系统运行流程

在初夏季节,建筑物的冷负荷要求较小,而且经过冬季的蓄冷,地温较低,而用户端采用地板辐

射空调系统,其要求的进水温度较常规供冷设备的

进水温度要高,因此如果地热换热器介质与土壤换热后,介质的温度能满足辐射空调的进水要求时,可采用图2所示的直供式,即直接将地热换热器的出水作为地板空调系统的进水。因此可以推迟热泵启动的时间,节省能源。

图2 初夏季节空调系统运行流程图

在初冬季节,系统采用太阳能集热系统直接供暖。循环水泵将蓄热水箱中的热水直接送入地板辐射系统进行制热循环来满足建筑物的热负荷要求,推迟热泵启动时间。流程图见图3。

图3 初冬季节供暖系统运行流程图3.2.2 夏季空调系统运行流程(见图4)

图4 夏季空调系统运行流程图

热泵经过初夏季节的运行,地热换热器不断将热量排入土壤中,使得地温逐渐升高,不能满足建

筑物的冷负荷要求,这时启动热泵,进行制冷循环。在制冷循环中包含三套循环系统:a)载冷剂循环,地热换热器中的载冷剂将热泵冷凝器释放出的热量排入土壤中,并吸收土壤中的冷量回到热泵冷凝器中;b)制冷剂循环,热泵中的制冷剂将蒸发器中的热量转移到冷凝器中;c)水循环,地板辐射空调系统中的水将吸收的室内热量转移到热泵蒸发器中。经过三套循环系统,达到制冷的目的。地源热泵夏季空调运行方式包括连续运行和间歇运行,文

献[7]通过实验证明,当热泵连续运行时其制冷(制热)系数将随着制冷天数的增加而下降,最终在相对较低的数值下趋于稳定;而采用间歇运行时,则可以使制冷(制热)系数在较高的数值下保持稳定。这是因为当连续制冷时,土壤温度场得不到及时恢复,使得地温不断升高,导致热泵制冷(制热)系数不断下降。因此建议,夏季制冷运行时宜采用间歇运行方式,使土壤温度场能得到有效恢复,从而提高热泵的制冷(制热)系数。3.2.3 冬季供暖系统运行流程

冬季建筑物热负荷较大,而此时太阳辐射照度低,集热器的集热量和集热效率降低,使得太阳能热泵所能提供的热量不能满足建筑物的热负荷要求,因此单独采用太阳能热泵进行供暖存在着热量供需不平衡的现象。针对这种情况我们采用地源热泵与其联合运行,利用土壤的蓄热性能、温度的延迟性及稳定性等特点,来保证热量的供需平衡。

如图5所示,

我们采取两种低位热源联合运行

图5 冬季供暖系统运行流程图

的方案。联合运行的方式包括两种低位热源交替供暖和同时供暖的方式。文献[6]通过模拟实验证明,两种热源同时供暖的情况出现的比例较小,一般采用交替供暖的方式,并提出联合运行系统中一天24h 内两种热源的运行比例,即地源热泵与太阳能热泵各自运行的最佳时间分配比例分别为:33%~35%和50%~70%。

冬季当太阳能集热器的温度较高时,可以将集热器的热量转移到地下贮存,这样既可使土壤温度场得到较快的恢复,又可降低进入集热器的流体温度,提高集热效率。储热时热泵的运行流程如图6所示。

由以上系统运行分析可知,太阳能地源热泵与地板辐射空调系统联合运行具有极大的优势,在初冬或初夏时间,可以直接利用太阳能与地热能直

接供暖或空调,延迟热泵启动时间;在夏季系统采

图6 储热过程系统运行流程图

用间歇运行不仅能提高热泵的制冷系数,而且使土

壤温度波动幅度较小,热泵运行工况稳定;冬季由于太阳能热泵与地源热泵之间的互补作用,充分发挥了两种热泵各自的优势,在保证居住环境的舒适度的基础上,实现了节能与环保的目的。4 建议及展望

4.1 由于此系统冷热源采用了新能源及可再生能源,末端装置为节能装置,因此为了充分体现这种新型供暖空调技术的优势,建议此系统应用于节能型建筑中,建筑物节能指标根据国家及地区规范规定选取,由此确定建筑物所需的冷热负荷。

4.2 夏季采用地板供冷,若进水温度

过低或室内相对湿度太大,则容易引起结露问题。因此建议此系统在不另设置除湿装置的情况下,仅用于相对湿度较低的干燥地区。

4.3 联合热泵系统初投资较大,为传统供暖空调方式的3倍左右,但其运行费用较低,比传统方式节约30%左右,

其初投资可在几年之内收回,而且该系统环境效益显著。随着我国能源政策的不断深入推行,新能源与可再生能源技术的不断完善,笔者认为从对环境效益与经济效益总体比较分析,联合热泵系统是一种性能良好、经济可行且无污染的技术,必将成为今后科研发展的重要方向之一。5 结语

本文针对我国目前能源利用的具体情况,以及我国北方地区的气候特点,讨论了太阳能及地热源作为新能源及可再生能源在我国北方广大地区建筑领域中应用的可行性,并从其各自的缺点出发论述了两种低位热源联合运行的必要性,进而给出了当系统末端为地板辐射空调时联合热源系统的供暖及空调运行方式,证明了太阳能及地热能等新能源及可再生能源应用于建筑中具有极大的节能作

(下转第53页)

粗糙度、胶粘剂的种类、热流计与粘贴表面的紧密程度以及无法控制的空气自由对流换热都会引起测量误差。

总的来说,由于热流计传热过程的复杂性以及安装后引起原有表面附近温度场发生畸变,所以热流计的测量精度一般不高,能达到5%已属优良。

c)巡检记录仪本身存在误差。

d)测试现场存在较强的电磁场。

e)测试周期内天气不稳定,达不到/一维稳定传热0的要求,这是引起误差的另一个主要原因。(注:若要测量外围护结构的热扩散率和传热频率响应(即衰减倍数与延迟时间),则要求连续三天以上室外温度呈现出比较理想的周期性。)

f)围护结构未干透、热桥影响也会引起误差。3测试技术

由上一章分析可知,在现场测试的条件下,目前的设备是很难方便、快速、准确地测出围护结构的传热阻(或传热系数)的。但综合热箱法和热流计法重新研发的/新型热箱法0,在一定的条件下,是可以比较快地测出某一外围护结构的传热阻的。

3.1仪器要求

a)综合/一维稳定传热0和使用(便于运输和安装)要求,热箱的开口尺寸应为1.2m@1.2m。

b)热箱同时具备加热和制冷功能(范围为16 ~50e即可,因为温度低于16e时,对制冷设备要求太高,而且温度过低会有凝结水出现,水的气、液两相的变化会给传热带来影响;温度高于50e 时会引起热流计测头变质和变形,造成大的测量误差,而且温度过高也会造成墙面干裂),运行时工作面的温度能保持稳定和均匀。

c)采用高精度的铂电阻温度传感器和较高精度的热流计,能自动控制和记录。

3.2测试要求

a)最好在室外空气平均温度低于20e或高于30e的晴朗天气条件下(风力小于3级,相对湿度60%以下)进行。

b)对于刚刚完工、围护结构含水率特别高的被测房间,应在测试前进行人工烘干。

c)温度传感器要紧紧地贴在被测结构的内、外表面上(中心和四周),且都要做好防辐射处理。

c)被测结构的内、外表面(中心)都应该有热流计,以便监测热流的数值是否相同。热流计的测头最好埋入构件内部,以避免外界影响,若做不到,也必须使测头紧紧地贴在被测表面上。

d)连续测试3~4天,在开始一段时间的数据只能作为参考。

3.3缺点

a)虽然测试周期缩短了,但仍然无法全天候进行测试。

b)对于开口较大的南墙和坡屋顶,仍然得采用热流计法。

c)设备较重,运输和安装仍然不便。

4结语

建筑节能现场测试无论从理论上还是从技术上都亟待有新的突破,传统的方法显然难以满足快速、准确和全天候的要求。本文的分析仍然局限于传统的热工理论,期望能给予同行一点参考。

参考文献

1彭昌海.我国夏热冬冷地区居住建筑热环境研究:[博士学位论文].南京:东南大学,2003

2G B50176)93民用建筑热工设计规范

3钱美丽.建筑材料、外围护结构及建筑物的绝热性能检测方法.见:涂逢祥,主编.建筑节能41.北京:中国建筑工业出版社,2003

4施明恒,薛宗荣,编.热工实验的原理和技术.南京:东南大学出版社,1992

(上接第44页)

用,并能够缓解目前的环境污染问题,因此太阳能地源热泵技术将得到进一步的推广应用,而且其与地板辐射空调系统联合运行时所表现出来的显著的节能效果必将受到研究者的重视。同时,这一技术也还有待于进一步进行理论论证及实验研究。参考文献

1韩志萍,霍文兰.21世纪的新能源及其开发和利用.榆林高等专科学校学报,2003,13(1):3739

2徐邦裕,陆亚俊,马最良.热泵.北京:中国建筑工业出版社,1996.6768

3章熙民,任泽霈,梅飞鸣.传热学.北京:中国建筑工业出版社,1995.6869

4王文.燃气热水器辐射地板及地源热泵辐射地板试验研究及传热模型:[硕士学位论文].重庆:重庆大学, 2001

5王长贵.新能源和可再生能源在建筑中应用的意义和前景.太阳能,2003(2):1619

6余延顺.寒区太阳能土壤源热泵系统运行工况模拟研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2001

7张开黎.垂直埋管土壤源热泵(U-T U BE)的供热供冷研究:[硕士学位论文].青岛:青岛建筑工程学院,2000

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

芬尼克兹地源热泵三联供系统介绍及应用

地源热泵三联供系统介绍及应用 广州市密西雷电子有限公司――刘万才 1、概述 地源热泵三联供机组是一种利用地能(包括地下水、土壤、地表水等)作为冷(热)源,对室内空间提供采暖、空调与生活热水等多种功能的空调热水设备。地源热泵三联供通过输入少量的高品位能源(如电能),系统以水为载体,夏季制冷季时从室内吸收热量通过载体将热量释放到地下土壤中储存起来,同时载体得到冷却,从而实现对室内进行降温、除湿,该系统每消耗1KW的电能,可以得到4-5KW的冷量,同时所得生活热水为完全免费获得。冬季采暖时系统从地下土壤中吸收热量通过载体将热量释放到室内,满足室内供热与采暖的需求。地源热泵三联供所利用的是地球所储藏的太阳能资源作为冷热源,是清洁的可再生能源,取之不尽、用之不竭。热泵系统进行能量的转换利用,节能环保。 3、工程应用 3.1.工程根况: 本工程为上海某会所楼的中央空调,属于舒适性空调。空调使用面积为1200m2.层数为3层,主要区域为办公室,会议室、健身中心等;本大楼需要24小时有热水供应。 3.2.系统配置 经计算本工程总设计冷负荷为264KW,热负荷为160KW,热水用量为5T/天。空调主机选用PHNIX(芬尼克兹)型号为PWSRW250S-HGLQX地源三联供机组(地下环路式)系列4台。该机组单机制冷量为65KW;制热量为50KW;额定产热水量680L/h。 室内空调末端采用卧式暗装风机盘管,合理配置室内机机型,及均匀布置送、回风位置,保证房间气流组织,做到装潢及使用效果的完美。空调供回水系统采用异程式,管材为镀锌钢管,冷凝水管材用PVC管排至地漏,为防止冷结产生,分别采用20mm厚和8mm厚橡塑材料管材保温。空调机组在震动及运行方面具备良好的性能,且机组在冷量控制方面实行全自动控制运行。 热水供应系统,热水系统配置1个不锈钢保温水箱(有效容积为5m3)。机组进水和出水管接水箱,管材采用PPR管外包橡塑保温,水箱中热水经机组加热(水温55℃),由热水供水泵送到各用水点。

地源热泵优缺点及基本原理和参数

地源热泵的12大优势 由于地源热泵系统采取了特殊的换热方式,使它具有普通中央空调和锅炉不可比拟的优点: 一、高效节能 与锅炉(电、燃料)供热系统相比,土--气/水型地源热泵系统的转换效率最高可达4.7 。而锅炉供热只能将90%以上的电能或70~90%的燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/2以上的能量,运行费用为各种采暖设备的30-70%。由于土壤的温度全年稳定在10℃—20℃之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。夏季高温差的散热和冬季低温差的取热,使得土--气型地源热泵系统换热效率很高。因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。 二、绿色环保 土--气/水型地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。 三、分户计费 实现机组独立计费,分户计表,方便业主对整个系统的管理。 四、使用寿命长

家用空调设计寿命8年,燃气锅炉为10年;土--气型地源热泵机组为50年,水循环和风管系统60年以上,地耦管路系统为70年,它比所有各种空调系统和采暖设备的寿命都要长。 五、节省建筑空间控制设备简单 土--气/水型地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。 六、系统可靠性强 每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。机组的运行工况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜除霜之虑。 七、同时供暖制冷 土--气/水型地源热泵系统可做到同时有的房间或区域制冷,有的房间或区域供暖,这对大型商业建筑尤其重要。采用传统中央空调系统只有使用造价极其昂贵的四管空调系统才能做到,而土--气型地源热泵不需增加任何设备便可做到。 八、维护费用低廉 土—气/水型地源热泵系统不带有室外安装的设备,不设冷却塔、屋顶风机,没有室外设备安装维护费用。压缩机工作稳定,不会出现传

第三章 地源热泵系统的设计及计算.

第三章地源热泵系统的设计及计算 一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册)

地源热泵与太阳能热水对比

*******地源热泵和太阳能热水系 统对比 ******* *******地源热泵和太阳能热水系统对比

1.项目概况 本项目为*******易地新建建设项目,位于京杭大运河南侧,扁担河西侧,南观路北侧,时代路东侧,规划用地面积140359平方米,新建建筑面积88926平方米。 2.设计依据 2.1《民用建筑供暖通风与空气调节设计规范》GB50736-2012 2.2《民用建筑热工设计规范》GB50176-93 2.3《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001 2.4《江苏省居住建筑热环境和节能设计标准》DGJ32/J 71-2008 2.5《地源热泵系统工程技术规范》GB50366-2005 2.6《全国民用建筑工程设计技术措施暖通空调动力》 2009年版 2.7《实用供热空调设计手册》第二版 2.8《通风与空调工程施工质量验收规范》GB50243-2002 2.9建筑等其他工种提供的设计图纸及资料 3.设计参数 3.1室外气象参数(本工程参照**气象条件) 室外计算干球温度(℃)室外计算湿球温度 (℃) 室外计算相对湿 度(%) 平均风速 (m/s) 主导风向 冬季夏季夏季冬季冬季夏季冬季夏季 -5 34.6 28.6 75 3 3 C NW SE SSE

3.2室内设计参数序 号房间名称 温度 (℃) 湿度 (%) 新风量 (m3/p?h) 备注夏季冬季夏季冬季 1 教室26 18 50~60 - 17 2 办公26 20 50~60 - 30 3 体育馆26 18 50~60 - 20 4 宿舍26 20 50~60 - 30 5 会议室2 6 18 50~60 20 4.负荷分析 4.1冷热负荷计算 根据负荷计算,本工程的空调设计冷负荷约为:4000 kW,设计热负荷约为:2400 kW。 4.2宿舍生活热水负荷计算 宿舍部分(床位数:2836) 设计用水量:40L/人?日 生活热水出水温度:60℃ 冷水计算温度:5℃ 全天用水量:220X400=113440L/日 热负荷:Q=C×M×△T×ρ=113440×(60-5)×4.187× 0.983=25680MJ 餐饮部分 考虑热负荷:500MJ 总全天热负荷:25680+500=26180MJ

地源热泵系统方案

目录 一、项目概况 (1) 二、设计参考标准及规范 (1) 三、设计参数 (1) 1.室外气象参数 (1) 2.室内设计参数 (1) 四、中央空调设计 (2) 1.室内冷热负荷确定 (1) 2.末端系统确定 (2) 3.热泵机房的设计 (2) 4.地埋管设计 (3) 五、初投资分析 (3) 1.机房部分报价表 (3) 2.地埋部分报价表 (4) 3.地暖部分报价表 (4) 4.空调末端部分报价表 (5) 六、运行费用经济性分析 (6) 七、热泵中央空调 (7) 八、地埋管换热器施工工艺 (10)

一、项目概况 该项目为某某地源热泵中央空调工程,建筑分四层,地下一层、地上三层,建筑面积约为1071.3㎡,其中地下179.2㎡,地上892.1㎡,拟采用地源热泵中央空调系统。 二、设计参考标准及规范 三、设计参数 1.室外气象参数 1.室内冷热负荷确定 根据《民用建筑采暖通风与空气调节技术措施》,其空调负荷概算值为:

1)夏季采用风机盘管的形式 地板采暖的全称,低温地板辐射采暖,低温辐射地板采暖是通过埋设于地板下的加热管——地暖专用管或发热电缆,把地板加热到表面温度18至32℃,均匀地向室内辐射热量地板采暖而达到采暖效果。与传统的采暖方式相比,可以说有以下几个优势:房间温度分布均匀的采用采暖方式,由于是整个地板均匀散热,因此房间里的温差极小。而且室内温度是由下而上逐渐降低,地面温度高于人的呼吸系统温度,给人以脚暖头凉的舒适感觉。有利于营造健康的室内环境采用散热片取暖。高效节能由于采暖的辐射面大,节省空间。 3.热泵机房的设计 机房设备清单:

每个孔内埋设一个U型地耦管,所有的地耦管通过水平集、分管汇集,通过循环水泵进入热泵机组,形成一个闭式系统。地耦管内充注中间介质水作为冷热载体,中间介质在埋于土壤内部的封闭环路中循环流动,夏季通过土壤热交换器向土壤散热,冬季通过土壤热交换器从土壤中吸热,从而实现与土壤进行热交换的目的。该系统充分利用了地下土壤常年温度保持恒定的特点,是目前所有空调系统当中最节能的系统,也是环保、节能、“零”污染、“零”排放的一种空调系统。 地埋系统包括埋地换热器及附件,循环水泵、定压装置、过滤器、回填材料等设备。地埋管采用DN32规格的专用聚乙烯塑料管材。 孔间距不得小于垂直埋管最大负荷换热时在该区域内形成的温阶扩散直径。 地源热泵中央空调系统地下换热器系统孔间距布置可根据布置的空间的大小及换热负荷值取3-6m。本工程项目孔间距取4m。(施工时应现场可以做相应的调整)。 具体数据如下表: 五、初投资分析 1.机房部分报价表

地源热泵系统操作手册

新龙生态林工程项目指挥部(办公楼) 地源热泵空调系统操作手册

工程概况 工程名称:新龙生态林工程项目指挥部(办公楼)地源热泵空调系统工程地点:常州市新北区长江北路 建设单位:常州龙城生态建设有限公司 施工单位:江苏凯源机电设备安装工程有限公司 设备描述 1、本工程系统为地源热泵系统,主机品牌为上海美意,配置热泵机组4台;室内风机盘管品牌为浙江盾安,室内配置风机盘管57台;中厅配置风管式机组2台,配置室内新风机4台。 地源侧配备循环水泵两台,一用一备;空调侧配备循环水泵两台,一用一备。 地源侧与空调侧各配置定压稳压装置一套。 2、美意主机液晶控制面板使用说明:

○1开关 ○2模式 ○3热水 ○4温度加键/风速 ○5确认 ○6温度减键/睡眠 ○7设置 ○8清除 ○9节能 ○10室温 3、室内风机盘管液晶控制面板使用说明: ○1开/关机按键 ○2模式按键,冷/热转换 ○3风量调节键 ○4/○5温度设置键 ○6红外接收窗 ○7/○8冷/热符号 ○9通风符号 ○10自动风速符号 ○11手动风速符号 ○12室温符号 ○14/○15温度显示

4、新风机组液晶控制面板使用说明 ○1开关键 ○2模式键 ○3风速键 ○4/○6上下键 ○5空格 开机步骤 开启地源侧水泵和空调侧水泵 按主机液晶控制面板开关,依次开1#、2#机 开启室内液晶控制面板开关(设置温度及风量) 关机步骤 关闭室内液晶控制面板开关

关闭主机液晶控制面板开关 关闭地源侧水泵和空调侧水泵 五、中厅风管机组操作步骤 中厅部分空调机组控制箱 1、按开机键,运行灯亮,机组启动运转 2、按停机键,停止灯亮,机组停止运转

医院地源热泵空调系统介绍

医院暖通空调系统之 地源热泵空调系统介绍及设计前必要条件 目录........................................... 错误!未定义书签。 一、空调系统介绍 (2) 二、地源空调发展概况 (2) 三、地源空调系统的特点: (3) 四、地源空调系统的社会效益 (4) 五、设计前必要条件参见附件(《地源热泵系统工程技术规范》2009年版本) (5)

一、地源热泵空调系统介绍 (1)地下水源空调系统是从水井中抽取的地下水。这种空调在应用上受到许多限制,需要有丰富和稳定的地下水资源作为先决条件。虽然在理论上抽取的地下水能够回灌到地下水层,但是目前国内地下水回灌技术还不成熟,很容易造成地下水资源的流失。目前由于对使用地下水的规定和立法越来越严格,这种空调系统的应用已逐渐减少。 (2)土壤热交换器地源空调系统。地源热泵是一种利用地下土壤中的地热资源,既可供热又可制冷的高效节能空调系统。这种空调系统是把热交换器埋于地下,通过水在由高强度塑料管组成的封闭环路中循环流动,从而实现与大地土壤进行冷热交换的目的。夏季通过机组将房间内的热量转移到地下,对房间进行降温。同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。通常机组消耗1kW的电量,用户可以得到4kW-5KW左右的热量或冷量。与锅炉供热系统相比,地源空调系统要比电锅炉节省三分之一以上的电能,比燃煤、燃油锅炉节省约二分之一的能量;由于地下土壤的温度全年较为稳定,一般为15~20℃,在夏季远远低于室外空气温度,在冬季远远高于室外空气温度,机组运行工况稳定,无论在制冷还是制热都一直处于高效率运转状态,制冷、制热的性能与传统的空气源热泵相比,要高出30%左右,因此其运行费用为普通中央空调的系统的60~70%。因此,近十几年来,地源热泵空调系统在北美北欧等国家取得了很快的发展,中国的地源热泵市场在最近五年来也非常活跃,可以预计,该项技术将会成为21世纪最有效的高效、环保、节能的供热和供冷空调技术。 二、地源空调发展概况 地源热泵的概念最早出现在1912年瑞士的一份专利文现中。20世纪50年代,欧洲和美国开始了研究地源热泵的第一次高潮。但在当时能源价格低,这种系统并不经济,因而未得到推广。直到上世纪70年代,石油危机和日益恶化的环境把人们的注意力集中到节能、高效益用能和环境保护上时,使地源热泵的研究进入了又一次高潮,最近20年在欧美等工业发达国家取得了迅速的发展,已成为一项成熟的应用技术。 在我国由于能源价格的特殊性以及人们节能、环保的认识程度等原因以及其它一些因素的影响,地源热泵空调技术应用和发展比较缓慢,人们对之尚不十分了解,推广较困难,然而随着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化,地源热泵技术已越来越引起人们的重视。

介绍地源热泵地下热能失衡与太阳能补热方法

介绍地源热泵地下热能失衡与太阳能补热方法中国泵业网地源热泵采暖技术其节能环保性受到广大用户的青睐。可是近年部分地源热泵项目出现了地下热量失衡的严重问题,给地源热泵推广蒙上了阴影,本文针对此问题进行探讨,为广大同仁分享一些解决办法。 1地下换热钻井施工 由于各地区地质千差万别,地下物质导热系数相差悬殊,没有统一计算方式,钻勘探井测试地质导热系数,只能计算相对较短时间内地质放热系数,几乎无法预算热泵运行多年后结果,凭借多年的施工经验及参考地源热泵成功案例非常重要。 1.1钻井间距 地埋管式换热系统国家标准及规范中指出地下换热系统中对钻井间距为4~6m,考虑到成本及占地面积,一般工程施工时钻井间距≤4m。 换热井与井之间的地质就是蓄热空间,决定地埋管换热系统取热的年限,假如在3年期间换热井之间温度短路区易发生短路现象,该系统很快进入地下温度失衡状态,造成系统能效比下降甚至无法运行。热泵在冬季长时间处在取热状态,每口井周围温度在逐渐降低,特别是地下流层不丰富甚至没有流层的地况,换热井间距大小直接影响井与井之间温度短路时间。如图1所示。

1.2钻井群形状 地下换热系统设计人员主要考虑便于管网连接及连接机房距离,大部分采暖工程在钻井施工时,把所有换热井口集中到一起,大型采暖项目需钻井数量非常庞大,地下换热井会形成井群。特别是圆形或方形井群如果井间距过小容易造成严重取热不足,井群中心呈扩散状,中心位置温度区温度很低,几年后可能低于0℃。前几年运行的地源热泵项目,部分出现井水温度过低现象,甚至机组无法运行。如图2所示。

2合格的地埋管式换热系统 根据现场情况,尽量加大换热井距离,4口井间做不对称形状,井间距需≥4m。大中型地源热泵项目,地下连接管网庞大,地下主管道间距需≥1m,以减少大量进出水主管道间热量短路现象。管网埋设深度,北京地区冻层0.8m左右,管网应埋设在低于冻层以下1m处,尽量减少主管道对地层的热损。如图3、图4 所示。

清华同方地源热泵中央空调

清华同方地源热泵中央空调 清华同方|同方人工环境有限公司 清华同方中央空调河南办事处https://www.360docs.net/doc/9218328991.html,/

清华同方满液式地源热泵机组|清华同方地源热泵-SGHP机组 产品简介 一机多用,夏季空调制冷、冬季供热采暖,热回收型免费制取生活热水 ±针对地温工况特征,为地埋管地源热泵专用产品 ±充分利用建筑周边土壤热物性和地温能,应用温度宽,适用岩土范围广。 ±卓越的高能效地源热泵,有利于长期高效运行,为可再生能源利用重点推荐产品 核心优势: ◎专门针对地温工况设计研发了清华同方地源热泵机组,能较好地适应低温工况,尤其适用于土壤源热泵项目。 ◎土壤源热泵通过地埋管系统与土壤换热,夏季供冷,冬季供暖,是一种高效节能、环保无污染、性能可靠的真正的绿色环保冷暖空调系统。 ◎土壤不受外界环境影响,温度恒定,机组运行稳定,比传统空调系统COP值高40%~60%,节省运行费用30%~60% 适用环境: ◎适用于建筑物周边水资源相对匮乏、使用其他能源方式不方便、不经济的项目

◎适用于建筑周边土壤环境利于应用、土壤资源不受到破坏的项目◎适用于环保要求高且需尽量节省运行费用的项目 ◎特别适用于冬季寒冷且气候条件较恶劣的地区 安装简单 ◎机组现场安装时,您只需接上电源以及冷冻、冷却水管即可使用◎无须冷却塔,室外设备安装及维护的费用,为您全面免除 操作方便 ◎我们在机组控制设计上,实现完全电脑自动化 ◎操作非常简便每台机组您都可以自由地选择在供冷或供热模式下进行切换 ◎为您全年提供生活热水,实现能量的多元化供给 建筑节能 ◎夏季制冷运行时,我们为您提供cop值高达5.1的热泵系统 ◎冬季供暖运行时,无需任何辅助加热装置,即可为您带来温暖 ◎根据建筑物的实际负荷,我们的机组将自动调节输出能量 环境美好 ◎冬季,我们通过地源热泵向土壤吸收热量,然后在夏季将热量补偿释放回土壤中,实现能源的循环利

全套进口地源热泵-GSHP-中央空调地暖及热水系统方案解析

?简介:地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。 ?关键字:地源热泵,GSHP,中央空调,地暖,热水系统 一、地源热泵简介 1.1地源热泵技术简介 地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。众所周知,地层之下一年四季均保持一个相对稳定的温度。在夏季,地下的温度要比地面空气温度低,在冬季却比地面空气温度高。地源热泵正是利用大地的这个特点,通过埋藏在地下的换热器,与土壤或岩石交换热量。地源热泵全年运行工况稳定,不需要其它辅助热源及冷却设备即可实现冬季供热、夏季供冷。所以,地源热泵是一项高效节能型、环保型并能实现可持续发展的新技术,它既不会污染地下水,又不会影响地面沉降。在冬天,管道内的液体将地下的热量抽出,然后通过系统导入建筑物内,同时蓄存冷量,以备夏用;在夏天,热量从建筑物内抽出,通过系统排入地下,同时蓄存热量,以备冬用。地源热泵一年四季均能可靠的提供高品质的冷暖空气,为我们营造一个非常舒适的室内环境。 随着社会的发展,能源危机、环境问题已经越来越为人们所关注,而地源热泵系统恰恰能够同时解决这两项问题,所以今年来地源热泵空调系统被广泛重视和使用。

着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化, 地源热泵技术已越来越引起人们的重 视。据统计,仅在北京2004年施工并投入运行的地源热泵系统的空调工程占全年空调工程总量的2/3以上。可以预见,随着经济的发展,人们节能、环保意识的日益提高,地源热泵作为一种节能、环保的绿色空调设备适应能源可持续发展战略要求,在中国必将有广阔的应用 和发展前景。 1.3地源热泵工作原理 地源热泵系统工作原理如图所示,夏季制冷时,大地作为排热场所,把室内热量以及压缩机耗能加热生活热水,多余的热能通过埋地盘管排入大地中,再通过土壤的导热和土壤中水分的迁移把热量扩散出去。冬季供热时,大地作为热泵机组的低温热源,通过埋地盘管获取土壤中热量为室内供热及供应热水。两个换热器都即可作冷凝器又可作蒸发器,只因季节不同而功能不同。在地源热泵系统中,由于冬季从大地中取出的热量可在夏季得到补偿,因而可使大地 的热量基本维持平衡。 1.4政府对地源热泵系统的政策 地源热泵作为一项节能、环保的技术,国家给予了大力的支持。目前,政府出台了一份文件,对北京地区使用地源热泵机组的用户,给予50元/M2的补助,另外在去年9月沈阳市也被国家建设部正式确定为全国地源热泵技术推广试点城市。除此以外,国内还有许多城市也有 相关的鼓励、优惠政策。 二、选择NOBO地源热泵的原因 (一)NOBO地源热泵机组与其他机组比较的优势

亿力未来城地源热泵中央空调设计方案书

. 公司简介 淮安亚邦中央空调设备有限公司坐落在一个环境优美、人文荟萃的总理故乡——江苏淮安,是一个集研发、生产、销售为一体的,受当地政府扶持的新 办高新技术企业。公司是和意大利及清华大学高新技术合作的中外合资企业。 公司拥有高级工程师、工程师及一支经验丰富的技术人员队伍。 公司与北京清华大学联手开发绿色、环保、高效节能的地源热泵中央空调。 公司引进意大利的先进技术和生产工艺,拥有多套先进的数控机床和自动化生 产设备。主要产品有:地源热泵机组、螺杆式冷水机组、活塞式冷水机组、离 心式冷水机组、超薄型吊顶式空调机组、柜式空调器、风机盘管、诱导风机、 静压箱、消声器和防火阀、排烟阀、消防箱等。博采众家之长,全心打造亚欧 中央空调的品牌形象,公司通过了9001:2000质量管理体系认证证书,并取得了国家D12压力容器生产许可证,和中央空调生产许可证,以及3C和14001:2004环境管理体系认证证书。 淮安亚邦中央空调设备有限公司制造一流的产品,创造一流的服务,以诚 实、守信、勤奋、创新的企业精神,始终奉行产品质量上乘、服务周到详尽、 价格合理、诚信的经营理念,为用户提供满意的产品。 公司拥有完善的销售服务网络,靠服务打造品牌,以“真诚、快捷”的服 务理念健全完善的服务体系。公司根据用户特殊要求由电脑快捷提供空调设备 技术参数,使用户享受最理想的空调通风设备机组,以及设备安装前技术咨询 有效服务。亚邦公司在各地区都设有销售公司及服务部,真心为顾客提供优质 的服务。亚邦公司坚持以科技创新为本、质量第一、顾客至上的路线。

. 第一章地源热泵()简介 一、热泵工作原理 作为自然界的现象,正如水由高处流向低处那样,热量也总是从高温流向 低温,用著名的热力学第二定律准确表述是:“热量不可能自发由低温传递到 高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样, 采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置, 它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利 用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这也是热泵的 节能特点。 热泵与制冷的原理和系统设备组成及功能是一样的,对蒸气压缩式热泵(制冷)系统主要由压缩机、蒸发器、冷凝器和节流阀组成: 压缩机()起着压缩和输送循环工质从低温低压处到高温高压处的作用,是热 泵(制冷)系统的心脏; 蒸发器()是输出冷量的设备,它的作用是使经节流阀流入的制冷剂液体蒸发, 以吸收被冷却物体的热量,达到制冷的目的;

地源热泵系统操作手册

地源热泵系统操作手册 Prepared on 24 November 2020

新龙生态林工程项目指挥 部(办公楼) 地源热泵空调系统操作手册 一、工程概况 工程名称:新龙生态林工程项目指挥部(办公楼)地源热泵空调系统 工程地点:常州市新北区长江北路 建设单位:常州龙城生态建设有限公司 施工单位:江苏凯源机电设备安装工程有限公司 二、设备描述 1、本工程系统为地源热泵系统,主机品牌为上海美意,配置热泵机组4台;室内风机盘管品牌为浙江盾安,室内配置风机盘管57台;中厅配置风管式机组2台,配置室内新风机4台。 地源侧配备循环水泵两台,一用一备;空调侧配备循环水泵两台,一用一备。 地源侧与空调侧各配置定压稳压装置一套。 2、美意主机液晶控制面板使用说明: ○1开关 ○2模式 ○3热水

○4温度加键/风速 ○5确认 ○6温度减键/睡眠 ○7设置 ○8清除 ○9节能 ○10室温 3、室内风机盘管液晶控制面板使用说明:○1开/关机按键 ○2模式按键,冷/热转换 ○3风量调节键 ○4/○5温度设置键 ○6红外接收窗 ○7/○8冷/热符号 ○9通风符号 ○10自动风速符号 ○11手动风速符号 ○12室温符号 ○14/○15温度显示 4、新风机组液晶控制面板使用说明 ○1开关键 ○2模式键

○3风速键 ○4/○6上下键 ○5空格 三、开机步骤 1、开启地源侧水泵和空调侧水泵 2、按主机液晶控制面板开关,依次开1#、2#机 3、开启室内液晶控制面板开关(设置温度及风量) 四、关机步骤 1、关闭室内液晶控制面板开关 2、关闭主机液晶控制面板开关 3、关闭地源侧水泵和空调侧水泵 五、中厅风管机组操作步骤 中厅部分空调机组控制箱 1、按开机键,运行灯亮,机组启动运转 2、按停机键,停止灯亮,机组停止运转

地源热泵空调系统设计

摘要 该别墅系一栋集文化娱乐,办公,客房等一体的多功能综合别墅。该别墅选择地源热泵为空调冷热源, 空调系统的室内部分采用风机盘管加独立新风系统,末端设备为风机盘管, 新风处理到室内等焓线,过渡季节只供新风,部分房间采用地板辐射供暖。本论文从地源热泵工作原理出发,详细地进行了地源热泵空调系统设计和特点分析,并与普通空调系统进行了经济上和技术上的比较。地源热泵地下换热器采用U 型竖埋管地下换热器;主卧式采用了低温水地板辐射供暖系统。 关键词:别墅;地源热泵;竖直埋管;地板辐射供暖 1.1 课题背景 地热是一种可再生的自然能源。尽管目前它的应用还不能像传统能源(煤、石油、天然气、水力能和核能)那样广泛,但由于地壳里蕴藏着丰富的地热能,特别是在传统能源越来越缺乏的今天,地热能利用在许多国家已得到了相当的重视。地源热泵中央空调系统是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地源,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地源也成为清洁的可再生能源一种形式。 地源热泵中央空调系统是利用水与地源(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地源中的热量“取”出来,供给室内采暖,此时地源为“热泵”;夏季把室内热量“取”出来,释放到地下水、土壤或地表水中,此时地源为“冷源”。地源热泵中央空调系统通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70—90%的燃料内能转化为热量供用户使用,因此地源热泵中央空调系统要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵中央空调系统的热源温度全年较为稳定,一般为9—16℃,其制冷、制热系数可达3.5—6.3,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50—60%。 地源热泵中央空调系统的污染物排放,与空气源热泵相比,相当于减少40%以上,与常规电供暖相比,相当于减少70%以上,如果结合其他节能措施减排会更明显。虽然也采用制冷剂,但比常规空调装置减少25%的充灌量。该装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热

地源热泵冰蓄冷中央空调浅析

地源热泵冰蓄冷中央空调浅析 目前生产和使用的空气源热泵户型中央空调存在有一些急待解决的问题,研究开发地源热泵户型蓄冰中央空调,对节能、降低用户运行费用和电网调峰有着十分重要的意义和发展前景。为了加快地源热泵户型蓄冰中央空调的发展和应用,建议电力部门尽快建立完善鼓励低谷用电的优惠政策,如尽可能拉大峰谷电价比,给予蓄冰空调设备的开发和使用补贴等。同时也建议有关厂家加强地源热泵户型蓄冰中央空调的开发研究,降低造价,提高综合效益,为户型蓄冰中央空调开辟更广阔的市场。 1、户型中央空调的发展 户型中央空调即住宅集中空调,自20世纪90年代进入中国市场以来,正得到很快的发展。就其原因,首先是我国一直把城乡居民住房当作头等大事来抓。 近年来人均住房面积有了很大提高,并且住房也有向大户型、多居室的别墅、多层和小高层发展的趋势;第二,人民生活水平提高,富裕起来的城乡居民住房室内装饰都达“小康”水平,房间空调已满足不了他们的要求,更多的人把消费投向了户型中央空调;第三,生产工艺的成熟和激烈的市场竞争,使得户型中央空调的造价逐渐为工薪阶层接受;第四,城市建筑景观和环境的限制,也使城市的一些小型商业用户转而使用小型集中空调。以上几点可以看出,关注和议论户型中央空调并非超前,户型中央空调将是21世纪的新消费热点。 2、户型中央空调目前存在的问题及解决办法 2.1户型中央空调目前存在的问题 经对目前户型中央空调的调查和了解,我们发现存在着如下问题: 1)国内生产的户型中央空调大多是以空气为热源的热泵机组,虽然在使用和安装上有其方便之处,但在夏季炎热的地区,机组冷凝温度较高,COP值较低,机组耗电量大;在冬季温度较低,湿度较大的地区,机组又需融霜,造成室温波动较大,机组耗电量同样增大。

埋管式地源热泵系统介绍

一、地源热泵系统简介 0 引言 “热泵”这一术语是借鉴“水泵”一词而来。在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。我们也可以称热泵为既可以制冷又可以供热的机组。热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。 地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。 00 空气源热泵

空气源热泵以室外空气作为热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒1 冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,应用受到很大局限。 01地下水源热泵 地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电

太阳能系统与地源热泵系统联合供热

太阳能系统与地源热泵系统联合供热 太阳能系统与地源热泵系统联合供热的原则是;以地源热泵系统为主,太阳能系统为辅助热源,但在运行控制上要优先采用太阳能,并加以充分利用。在供热运行模式下,北区试验区域采用的散热器采暖系统与办公区域采用的地面辐射采暖系统串联运行,以提高太阳能的利用率。 (一)太阳集热系统 北区采用140m2平板型太阳集热器,采用太阳能与建筑一体化技术,使太阳集热器与建筑完美结合。本示范工程将太阳集热器设置在建筑的南立面上,与玻璃幕墙融为一体,这样既丰富了建筑的立面效果,又起到了利用太阳能的作用。北区冬季热负荷大于夏季冷负荷,可以采用太阳能辅助供热,解决地下的热量不平衡问题,提高地源热泵系统的运行效率。 在北区,太阳能除冬季与地源热泵系统联合供热外,其它季节,在不供热时,采用季节性蓄热技术将热量储存在蓄热水池中,供冬季采暖使用。 (二)联合供热方案比较 太阳能系统与地源热泵系统联合供热的方式有两种:并联和串联方式。并联方式示意图如图1所示: 图1 太阳能系统与地源热泵系统并联供热方式 串联方式示意图如图2所示: 并联运行模式与串联运行模式相比,存在以下弊端: (1)当太阳能系统与地源热泵系统同时运行时,系统的循环水量为两者之和,太阳能系统能否直接供热,直接影响系统的循环水量,进而影响热泵机组的可靠性。 (2)在并联运行模式下,当T g温度低于50℃时,太阳能不能被直接利用,只能去加热土壤,提高热泵机组蒸发器侧的温度。而在串联模式下,当T g温度低于50℃,而 高于40℃时,可以与地源热泵机组串联运行,充分提高地源热泵机组的COP值。 基于串联运行模式的优点,本示范工程采用串联运行模式。其运行策略为:在供暖初始时,由于采用了季节性蓄热的技术,同时,在室外温度较高的情况下,采暖负荷较小,此时,经过太阳能加热后的供水温度T g较高,若温度高于50℃,则利用太阳能直接采暖;若供水温

地源热泵简介地源热泵概述

地源热泵简介地源热泵概述 地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。 地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。 地源热泵由来 "地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。编辑本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。编辑本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。其中地源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 主要特点

(1)地源热泵技术属可再生能源利用技术。由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。 (2)地源热泵属经济有效的节能技术。其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。 (3)地源热泵环境效益显著。其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。 (4)地源热泵一机多用,应用范围广。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。水力平衡分配器(5)地源热泵空调系统维护费用低。地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。

相关文档
最新文档