汽车盘式制动器设计

汽车盘式制动器设计
汽车盘式制动器设计

机械工程学院毕业设计

题目:汽车盘式制动器设计

专业:车辆工程

班级:

姓名:

学号:

指导教师:

日期:2016.5.26

目录

摘要 (3)

前言 (3)

1绪论 (4)

1.1 制动系统设计的意义 (4)

1.2 本次制动系统应达到的目标 (4)

2制动系统方案论证分析与选择 (4)

2.1 盘式制动器 (5)

2.2 简单制动系 (5)

2.3 动力制动系 (5)

2.4 伺服制动系 (6)

2.5 液压分路系统的形式的选择 (6)

2.6 液压制动主缸的设计方案 (6)

3盘式制动器概述 (8)

3.1制动盘 (8)

3.2制动摩擦衬块 (9)

3.3 盘式制动器操纵机构 (9)

4制动系统设计计算 (10)

4.1 相关主要参数 (10)

4.2 同步附着系数的分析 (11)

4.3 分析计算法向作用力 (11)

4.4 制动力矩分配系数的选取和计算 (12)

4.5 制动器制动力矩的确定 (12)

4.6 盘式制动器主要参数确定 (13)

4.7 盘式制动器的制动力计算 (15)

4.8 制动器主要零部件的结构设计 (16)

5液压制动驱动机构的设计计算 (17)

5.1 前轮制动轮缸直径d的确定 (17)

5.2 制动主缸直径0d的确定 (17)

5.3 制动踏板力p F和制动踏板工作行程p S (18)

第6章制动性能分析 (19)

6.1 制动性能评价指标 (20)

6.2 制动效能 (20)

6.3 制动效能的恒定性 (20)

6.4 制动时汽车方向的稳定性 (20)

6.5 制动器制动力分配曲线分析 (21)

6 .6制动减速度j和制动距离。 (22)

6.7 摩擦衬块的磨损特性计算 (22)

7总结 (24)

参考文献 (25)

致谢 (25)

Abstract (26)

附录 (26)

汽车盘式制动器设计

摘要

此片设计主要讲述了盘式制动器的整体设计,有对于整体机构的设计分析,还有数据的比对和选取。盘式制动器主要的工作原理和结构原理等等,这样我自己会更好的更熟练的掌握设计这一方面,除此外本文还讲述了盘式制动器中的摩擦衬块特性。

关键词:盘式;设计;分析。

前言

汽车设计中我们都知道应该注意安全可靠,并且车辆在适应路面道路时候,车辆本身不会出问题。并且自身可以有很强的能力应付不同的道路状况。这就要提及汽车的制动系统,一个汽车的制动系统比较优秀,他会给驾驶员一个很舒适的操作感觉,而且完全会提高汽车整体的安全性,保证车内人员的安全。

本文讲述的盘式制动器是近代发展比较迅速的制动器形式,相较于鼓式制动器有着不错的性能。盘式制动器主要依靠制动盘制动钳还有摩擦衬块,在驾驶员施加力的作用下相互产生摩擦,以此来产生制动力阻止汽车高速运动。在盘式制动器的选则中,也会有全盘式和钳盘式这两类。

本次设计共七章内容,在李进导师的指导下,结合有关的书籍和手册而完成;李老师在我的设计中做了全程辅导,严谨细致的审阅了此次设计,提供了诸多珍贵的建议,对敬爱李老师表示真挚的谢意。

1绪论

1.1 制动系统设计的意义

交通工具中汽车是大家普遍使用的。汽车制动系统是汽车整体结构中比较重要的一部分,同时也是保证安全性系统里最重要的一个部位。它有着限制车辆高速行驶得能力,并且在驻车制动中也经常使用。制动性的好坏与安全性的联系是非常明显的。由此在汽车产业飞速的发展中,我们需要对于安全可靠这类要求更加严格。制动系统的可靠,车内人的安全性也自然提高了。

1.2 本次制动系统应达到的目标

1)具有良好的制动效能;

2)制动效能稳定性好

3)制动过程中具有良好的操作稳定性;

4)制动效能的热稳定性好;

2制动系统方案论证分析与选择

机械摩擦式的原理就是固定原件和旋转原件摩擦产生制动力。鼓式和盘式是依靠在轮毂上安装的旋转元件的不同来进行区分。

2.1 盘式制动器

盘式制动器在现在的实际应用规划中主要有带有单独制动钳的钳盘式和全盘式两种。

1)钳盘式

钳盘式制动器有定钳盘式制动器、浮钳盘式制动器等。

a定钳盘式制动器:整体部件都是在制动钳体开槽口中同步运动,除了钳体处于静止。优点:移动的活塞和制动块保证了钳体的刚度,具有多回路制动系的特点。

b浮钳盘式制动器:这种制动器具有以下优点:管路不易受到高温,汽化现象不产生。由于轴向尺寸小,制动器与轮毂距离小;成本低;制动块可以用于驻车制动。

2)全盘式

全盘式与离合器的原理相差无几。主要是工作环境不好导致散热较差。盘式制动器优于鼓式制动器的优点如下:

1)制动效能稳定性好;

2)制动力矩不会随运动方向的改变而改变;

3具有双回路,安全性和可靠性高;

4)尺寸小、质量小、散热好;

5)制动衬块所作用在制动盘上的压力合理分布,在摩擦面上都会是光滑的磨损;

6)更换衬块工作简单容易。

7)衬块和制动盘的距离不会有太大的间隙,缩短协调过程。

8)整体间隙可以实现轻便的自动调整。

因此我们选择浮钳盘式制动器。

2.2简单制动系

人力制动就是人为的施加力产生制动。这里有机械式和液压式两类。

液压式是现代设计的代表。主要的优点是:短时间的滞后作用(0.1-0.3s),工作压力高(可达10MPa-12MPa),不需要较大的轮缸尺寸,一般都是安装在制动器内部,在实际应用中可以直接作用为制动蹄张开机构。设计简单价格低机械效率高。自身的力传动比限制了适用范围。另外,液压制动主要缺点是在整个管路受热的时候,会出现运输不畅通,整体的效率降低,操作不灵巧,不能满足现代汽车操作轻盈的条件,目前只使用在微型汽车上。

2.3动力制动系

动力制动系是主要由汽车本身动力发动装置提供统,人为地进行控制。此处介绍主要三类。

1)气压制动系

气压制动产生较高制动驱动力,他们之间制动驱动系统的整体连接构成简单,黏合和分开都很容易,大多数用在货车总质量为8t以上甚至更高、特殊车型也有使用。但气压制动系必须采用那些比较笨重复杂的原件;管路中压力产生和消散的过程都比较长,提高了滞后时间(0.3s-0.9s),因此增加了驻车距离。为了弥补气压不足的情况必须加有一个加速阀和快放阀。因为整个管路工作压力低(一般为0.5-0.7MPa)。制动器室的直径都应该大些,并且设计在制动器的外部,再通过其他部件驱动制动蹄,减震簧下的质量就会增加,整个装置的噪声很大。

2)气顶液式制动系

气顶液制动是一种气压制动和液压制动的结合体。主要是设计的气压管路比较短,较短的滞后时间。显然,其结构不够简单、质量重、成本高,所以主要用于重型汽车上,中型货车一般采用。

3)全液压动力制动系

全液压动力制动不受气化现象影响,并且提供较高制动力,具有普通制动的优点。结构不够简单,复杂的精密件,严格的密封性,目前应用并不广泛。

2.4 伺服制动系

动力失效的时候伺服制动辅助人力提供制动力。主要有真空;气压;液压三种。

2.5 液压分路系统的形式的选择

具有多回路是为了拥有较高的可靠性,即使有管路失效,也会有其他管路替代,不会干扰汽车整体运行的顺畅。

有如下五种分路(如图2-6所示):

1)II型,前轴制动器与后桥制动器使用不同回路。

2)交叉型(X),两轴不同侧的制动器是属一个回路。

3)一周半对半轴(HI)型,有一侧前轮缸与所有后轮缸同一回路,其他则是一个回路。

4)LL型,两个回路对前轮制动器和后轮制动器起作用。

5)HH型,每一条回路都不会对所有轮缸起作用,只会对其中一半的有作用。

图2-6 液压分路系统形式

II型管路易于布置,使用广泛,但容易使车丧失转向能力,并且还有制动力不足的可能,如果出现载重失衡的状况还会发生侧滑。

X型的结构也很简单。可以很好地改善汽车的稳定性保持制动力的充足,不会低于正常值的一半。比较适合注销偏移距是负值的汽车。

HI、HH、LL型设计都比较复杂。LL型和HH型有较强的能力维持汽车正常运行。LL型和HH型只能存于一半的制动力。HI和LL出现后轮抱死剩余制动力也可以提供制动力。

综合以上各个管路的优缺点,最终选择X型管路。

2.6液压制动主缸的设计方案

选用双回路制动系统,这样提高行驶安全性。并且制动主缸的形式是串联双缸。

储存罐中的油会进入主缸中,然后缸腔中的油压输入轮缸。主缸停止时,前后腔的活塞头部位于各自的旁通孔和补偿孔出。

制动踏板下压时,整体机构产生运动,液压升高。活塞会被后腔中的液压和弹簧力向前推进,前腔压力自然就会上升。当持续给踏板压力时,所有腔中的液压压力都会继续攀升,这样制动就会产生。

不填加踏板力的时候所有机构都会回归原位。

当踏板回归原位的过程时,由于油液迟滞,导致液压差油液会流回原来的腔中。储液室中的油液流回进油腔。活塞回归原位,此时旁通孔已开放,会由制动管路流回主缸如果油液过多会通过前后缸流回储液室。,出现泄露和制动液膨胀或收缩这种现象都

会得到补偿。

在与前腔连接的制动管路失效时,在制动踏板给与压力,只会造成液压存在于后腔,而前腔将不会有任何压力输出。由于有液压差的存在,活塞会立刻顶到主缸体。这样后腔的工作压就能满足要求所需的值。

如果后缸不能够输出足够的液压压力,即使踏下制动踏板,只能够驱使后缸活塞而不能够驱动前缸活塞,这是在后腔连接的制动管路无法工作的条件下。后缸活塞顶触前缸活塞,制动力由前缸的液压产生。

由此可见,双回路液压制动系可以补救失效回路。必须延长踏板行程,会导致汽车需要的制动距离增长,不能够有足够的制动力,高层次的提高可靠性和安全性。

3盘式制动器概述

3.1制动盘

a.制动盘直径D

制动盘直径取大些对于其他部件的设计都会有好处但只能是轮辋直径的70%-79%.

b.制动盘厚度h

在高速情况下制动的制动盘受到温度和自身质量的影响,因此选择具有通风性。为了保持安全性和实用性,采用通风式可以降低制动盘温度。所选制动盘也应有一定厚度这是不可少的在保证刚性和韧性条件下

c.制动盘的安装

制动盘是为了和车轮在运动过程中一起旋转才安装在轮毂上的。并且需要维持有效半径的的长度,有效半径是制动盘中心和摩擦衬块中心的直线距离。这样其他条件都相同的状况下随着半径的长度增加制动力才会越来越大。

3.2制动摩擦衬块

摩擦衬块包括摩擦材料和底板。

设计值内半径与外半径和推荐值比值小于1.5。如果偏大会导致制动力矩变化大。衬块工作面积为汽车质量1.6-3.5kg/cm2之间。

为了避免摩擦衬块的损坏,在使用过程不知道,而造成汽车出现安全问题。在后来

的设计中使用了电子式磨损指示器。

3.3 盘式制动器操纵机构

制动踏板通过一些杆件与制动元件相连。松开制动,回位弹簧使踏板自动回位,左右制动器的踏板可用连接板连接,以便同时制动两驱动轮。当不处在制动状况下,在回位弹簧作用下制动踏板都应该灵敏的回到初始位置。还必须有停车锁定装置。

直线行驶注意先分离制动器再经行制动。

4制动系统设计计算

4.1 制动系统主要参数数值

a.汽车参数如表4.1所示。

表4.1 汽车参数

编号名称符号数值单位备注

1 质量M0320.000 kg

2 重力G 3136.000 N

3 质心高度h g300.000 mm 11.82 inch

4 轴距L 1600.000 mm 63.04 inch

质心到前轴的长

a 848.000 mm 33.41 inch

5

质心到后轴的长

6

b 752.000 mm 29.63 inch

7 前轴负荷W f1473.920 N 47.00 %

8 后轴负荷W r1662.080 N 53.00 %

b.轮胎相关参数如表4.2所示。

表4.2轮胎相关参数

规格180/530R13

标准轮辋内距8

轮胎胎面宽(mm inch) 223 8.8

轮胎外径(mm inch) 533 21.0

轮胎接地面宽(mm inch) 185 7.3

轮胎半径(mm) 244

轮胎周长1626

轮辋内距7.5-8.5

4.2同步附着系数的分析

(1)当0??<时:制动时前轮首先抱死,是安全稳定的制动工况,但无法转向; (2)当0??>时:制动时后轮率先抱死,汽车直线行驶失衡后轴产生侧向力会使汽车侧滑失去方向稳定性;

(3)当0??=时:制动时汽车前后轮一起抱死,处于稳定工况,没有转向能力。 可知,前后轮同时抱死时的汽车制动工况下所能达到的并利用的同步系数?,其制动减速度为

g qg dt

du

0==?,即q =0?,制动强度q 。不同附着系数的路面制动,车轮即将抱死的制动强度q <0?所以可知在0??=的路面上,附着条件可以完全发挥作用。

据查0?=0.7,故取0?=0.7。

4.3 地面作用于前、后轮的法向反作用力

前后车轮同时抱死的条件下,规定在不同附着系数的道路状况下,则

??G F F b ==X 或g dt du ?=/。地面反作用于前、后轮的法向作用力为

)g Z1(h b L

G

F ?+=

(4-1) )(g Z2h a L

G

F ?-=

(4-2) 前后轮同时抱死制动时地面对前、后轮法向反作用力的变化如表3.3所示

表3.3 前后轮同时抱死地面对前、后轮法向反作用力的变化

φ /N Z1F /N Z2F /G Z1F /G Z2F

0 1474 1662 47% 53% 0.1 1533 1603 49% 51% 0.2 1592 1544 51% 49% 0.3 1650 1486 53% 47% 0.4 1709 1427 55% 46% 0.5

1768

1368

56%

44%

0.6 1827 1309 58% 42% 0.7 1886 1250 60% 40% 0.8 1944 1192 62% 38% 0.9 2003 1133 64% 36% 1.0

2062

1074

66%

34%

4.4 确定前后制动力矩分配系数β 根据公式:

g 0h b

L -=

β?(4-3)

得到:

0.601.6

0.752

0.30.7g 0=+?=

+=

L

b

h ?β(4-4)

4.5制动器制动力矩的确定

紧急情况制动时,车轮同时抱死拖滑,前桥制动力矩是

e g μ1)(r h b L G

M ??+=

(4-5)

式中 G 为汽车重力; L 为轴距;

a 为汽车质心到前轴的距离;

g h 为汽车质心的高度;

?为附着系数;

e r 为轮胎有效半径。

当?=0?=0.7时,

N/m 313237.07.0)3.07.0752.0(6

.13136

)(e g μ1=???+=+=

r h b L G M ?? 即

313N/m max 1=μM

因为

ββ-1=21μμM M =2

3 (4-6) 所以

209N/m max 2=μM

4.6盘式制动器主要参数确定

1)制动盘直径D

直径尽可能地取大些。在设计中的的轮辋直径会被本身结构限制,所设计的制动盘直径只会占有轮辋直径的70%一79%。此处所选数据为70%,即

mm 231%7034.2513D =??=

2)制动盘厚度的选择

在高速情况下制动的制动盘受到温度和自身质量的影响,因此选择具有通风性。为了保持安全性和实用性,采用通风式可以降低制动盘温度,厚度在20-30mm 。所选制动盘也应有一定厚度这是不可少的在保证刚性和韧性条件下。14h =mm 为实心制动盘的厚度。

3)摩擦衬块内半径R 1和外半径R 2 摩擦衬块包括摩擦材料和底板。

设计值内半径与外半径和推荐值比值小于1.5。如果偏大会导致制动力矩变化大。衬块工作面积为汽车质量1.6-3.5kg/cm2之间。因为制动器直径D 等于231mm ,则摩擦块1152=R mm 取5.1/12=R R ,所以771=R mm 。

图4-1 摩擦衬块

4)摩擦衬块工作面积

盘式制动器所选用的衬块与摩擦盘接触的工作面积A ,依数据知制动衬块所能利用中的单位面积占有的汽车整备质量在2kg/cm 5.36.1-范围选取。 单个前轮摩擦块 2cm 240

.25

.05.0%60320=???=

A

单个后轮摩擦块

2cm 160.25.05.0%40320=???=A

单个前轮制动器 A=482cm 单个后轮制动器

A=322cm

.能够满足β的要求。 5)摩擦衬块摩擦系数f

摩擦片摩擦系数高,在受热条件下有很好的稳定性,在较高压力下不会出现巨变。制动器摩擦系数所能取的稳定值范围一般为0.3~0.5,也有特殊情况取到0.7。选择绿色和环保的材料。所选择摩擦系数f =0.35。 总结得到参数如表4.4所示

表4.4 制动器基本参数

制动盘外径

(mm )

工作半径(mm ) 制动盘厚度(mm ) 摩擦衬块厚度(mm )

摩擦面积 (cm 2) 前轮 231 96 10 9 48 后轮

231

96

10

9

32

4.7 盘式制动器的制动力计算

如果衬块与制动盘全接触,单位压力分布均匀,制动力矩为

R fF M 02=μ(4-7)

式中f 为摩擦因数; R 为作用半径。

衬块径向宽度并不大,则R 等于平均半径m R 或有效半径e R ,符合要求。 平均半径m R

962

77

115221=+=+=

R R R m mm 式中,扇形表面的受到摩擦力的摩擦衬块内,外半径1R 和2R 单侧制动块对制动盘的压紧力0F ;

有效半径e R 是扇形表面的面积中心到制动盘中心的长度,如下式所示(推导见离合器设计)

97mm ])

1(1[34)()(32m 2

2122132e 3=+-=--=R m m R R R R R (4-8) 式中21/R R m =.

因为1

4

1

)1(2<

+m m ,可算的m R >e R ,m 越变小,则两者之间的差距就越大。 需表明,一旦m 过小,即扇形的径向宽度太大,衬块摩擦面上由于压力作用的不规律导致磨损出现严重无法平衡的现象,因此不能采纳。m 值一般大于0.65. 对于前制动器

156.5N/m μ=M (4-9)

所以

2329N 0.096

0.352156.5

2μ=??==

fR M F O 对于后制动器

104.5N/m μ=M (4-10)

所以

1555N 0.096

0.352104.5

2=??==

fR M F O μ 4.8 制动器主要零部件的结构设计 1)制动盘

制动盘选用HT250。并且是双盘式并且带有通风槽的。 2)制动钳

制动钳用铝合金压铸。 3)制动块

制动块由背板和摩擦衬快组成,两者直接牢固地压嵌或铆接或粘结在一起。 4)摩擦材料

制动摩擦材料应具有稳定的摩擦系数,抗热衰退性要好,不应在温升到某一数值以后摩擦系数突然急剧下降,材料应有好的耐磨性,低的吸水(油、制动液)率,低的压缩率、低的热传导率和低的热膨胀率,高的抗压、抗剪切、抗弯曲性能和耐冲击性能,制动时应不产生噪声、不产生不良气味、应尽量采用污染小对人体无害的摩擦材料。当前,制动器广泛采用模压材料。 5)制动轮缸

制动轮缸采用结构简便的单活塞式制动轮缸,轮缸的缸体由灰铸铁HT250制成。其缸筒为通孔,需搪磨。铝合金制造的活塞,活塞头部外端压有钢制的开槽顶快,以支承插槽中的制动蹄,极端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处得橡胶皮碗密封。本次设计采用的是HT250.

5液压制动驱动机构的设计计算

5.1 前轮制动轮缸直径d 的确定

制动轮缸在制动过程对其中的制动块所有作用的张开力0F 与液压轮缸直径

d 和液压运行系统中的制动管路压力p 的关系为

)/(40p F d π=(5-1)

并且可知制动管路压力范围是10~12a MP 。则a MP 10=p 。

31mm 0.031m 10102329

46

==??=

d (5-2)

轮缸直径d (mm )

19

22

24

25

28

30

32

35

38

39

40

45

50

55

(取自HG2865-1997)则选取前轮制动缸直径为32mm . 则知,后轮制动轮缸直径25mm 0.025m 10101555

46

==??=

d 。则取直径为25mm .

5.2 制动主缸直径0d 的确定 第i 个轮缸的工作容积为:

∑=

n

d Vi 1

i i

2

4

δπ

(5-3)

式中i d 为第i 个轮缸活塞的直径;

n 为轮缸中活塞的数目;

第i 个轮缸活塞在行进过程中处于完全制动时的最大行程i δ,这里2=δmm .

所以单个前轮轮缸的工作体积为3

1

1

2

321608mm 4

2

==

前V

一个后轮轮缸的工作体积为311

2

25

981mm 4

2

==

∑?π

后V

全部轮缸的总工作体积为∑=

m

V V 1

i ,式中,m 为轮缸数量。制动主缸的工作

体积为V V V '+=0,V '为制动软管的变形体积。初始设计,制动主缸的工作体积可为:乘用车V V 1.10=;商用车V V 3.10=。则为V V 1.10=。

因此3

后前5178mm )9811608(22=+=+=)(V V V

3

05696mm 1.1=='+=V V V V (5-4)

主缸活塞行程0S 和活塞直径0d 为

00O 24

S d V π

=

(5-5)

一般0S =0.8~1.2o d 。此处0S =o d 。 所以30O 4

d V π

=

19.35mm 43

0==π

V d (5-6)

o

d (mm )

19

22

28

32

35

38

40

45

(依QC/T311-1999)取得220=d mm 。

5.3 制动踏板力p F 和制动踏板工作行程p S 制动踏板力p F 为:

)1

(14

p 0p 2η

π

i p

d F =

(5-7) 式中0d 为制动主缸活塞直径; p 为制动管路的液压;

p i 为踏板机构的传动比;

η为踏板机构及液压主缸的机械效率,可为η=0.82~0.86.此为p i =4,η=0.85.

制动踏板力应满足以下要求;最大踏板力更具所选用的文献车型不同一般选在500N-700N 之间。制作时,所选踏板力都应可在200N ~350N 。

500N 112N 0.85

14110(0.022)4π)1(146

2p 0p 2

<=???==ηπ

i p d F

符合设计要求。

制动踏板工作行程p S 为

p p 0m1m2()S i S δδ=++(5-8)

上式中的字母符号,1m δ为主缸中运动的推杆与主缸活塞间的间隙,一般取1.5mm ~2mm;2m δ为主缸活塞空行程,主缸活塞无工作状态时的极限位置到全方位堵塞完全主缸上方旁通孔的行径。

制动器踏板工作行程p S ,只能占制动衬块的容许磨损量的踏板行程的40%~60%。

必须禁止空气进入制动管路,计算制动主缸活塞回位弹簧时,踏板必须完全开放,管路中仍会保持0.05~0.14MPa 的残余压力。

最大踏板行程,乘用车应小于100~150mm ,商用车小于180mm 。同时,制动过程中会作用在制动手柄上的最大力,乘用车低于400N ,商用车小于600N 。制动手柄最大行程对乘用车小于160mm ,商用车小于220mm .

p 0m1m2()4(2222)104mm 150mm p

S i S δδ=++=++=<

故满足要求

6制动性能分析

制动器和制动驱动机构构成制动装置。

汽车的制动性的含义是汽车在整个行驶过程中停车或在下长坡时汽车不会停止并且还会有一定车速的运动能力。 6.1 制动性能评价指标

汽车的制动性有三方面来评价:

1)制动效能即是汽车行车的制动距离和在整个运行过程中的制动减速度。 2)制动效能的恒定性就是汽车制动器在整个制动过程中所表现的抗热衰退性能。

3)制动时汽车的方向稳定性,制动的过程中汽车的后轴不发生跑偏侧滑和

并且能够维持汽车的转向能力。

6.2 制动效能

制动效能是在整个汽车拥有初速度时并在路况良好条件下,汽车停车时的位置到初始位置的距离之间的路程几制动距离或在整个运行过程中的减速度。制动效能是汽车良好制动性能中最普遍的性能标准。越短的制动距离,制动减速度越大,汽车的制动效能就越好。

6.3 制动效能的恒定性

在短时间内连续制动后,制动器温度升高导致制动效能下降,称之为制动器的热衰退,连续制动后制动效能的稳定程度为制动效能的恒定性。制动时产生的热能会使制动器温度升高,出现不稳定的现象,在设计中需要注意。

6.4 制动时汽车方向的稳定性

车制动时。制动力过大。前轮或后轮抱死就会出现侧滑和跑偏。然后方向就会变掉。这样方向就不稳定了。前轮在后轮之前抱死是比较安全的,这样汽车整体状态不会改变。改变的这个困难就是装ABS防抱死系统。合理的分配前后轮制动力分配。

方向稳定性即制动过程中汽车维持直线行驶,或按预定弯道行驶的能力。跑偏和侧滑是非常危险的状态,还有前轮失去转向能力也会是汽车陷入高危状态。这三项是重要指标来评价汽车。

方向稳定性是从制动跑偏、侧滑以及失去转向能力方面来考验。

制动跑偏的原因有两个:

1)汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。

2)制动时悬架导向杆系与转向系拉杆在运动学上不协调(相互干涉)。

前者是制造的误差,后者是设计本身的问题。侧滑是汽车行驶过程中后轴会有侧向力使汽车偏离直线行驶。在汽车速度过快时候汽车发生侧滑是相当不安全。防止后轴发生侧滑发生的最佳状态应使前后轴必须同时抱死或前轴先抱死后轴始终不会出现抱死。

6.5 制动器制动力分配曲线分析

一般的车辆制动过程应该会有如下三种情况:

1)前轮先抱死拖滑,之后后轮抱死拖滑。

2)后轮先抱死拖滑,之后前轮抱死拖滑。

3)前后轮一起抱死拖滑。

微型载货汽车盘式制动器

第1章绪论 1.1研究的目的和意义 盘式制动器具有散热性好、制动效能稳定、抗水衰退能力强、易于保养和维修等优点,可广泛应用于飞机、铁路、车辆和项目机械。对盘式制动器的早期研究侧重于实验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 高速行驶的轿车,因为频繁使用制动,制动器的摩擦将会产生大量的热,使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所谓的制动效能热衰退现象,制动器直接关乎生命。因此,制动器的设计是汽车的设计过程中非常重要的一环,确定制动器结构类型,设计制动器中传动的主要零部件,对主要零部件进行校核,对优化汽车制动性能和经济性能,培养我们严谨的设计能力及规范的设计程序具有重要意义,使我们在机械加工工艺规程编制、编写技术文件及查阅技术文献等各个方面受到一次综合性的训练,通过零件图、装配图绘制,使我们对AutoCAD绘制软件的使用能力得到进一步的提高。 1.2制动系统国内外现状及发展趋势 汽车制动系是汽车总要组成部分,其作用是将行驶中的汽车减速或停车。汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性良好、制动系工作可靠的汽车,才能从份发挥其动力性能。 汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车还应有自动制动装置。 汽车制动装置用于使行驶中的汽车强制减速或停车,并使汽车在下短坡时保持适当的稳定车速。构常采用双回路或多回路机构,以保证其工作可靠。 驻车制动装置用于汽车可靠而无时间限制的停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不是用液压或气压驱动,以免其产生故障。 应急制动装置用于当行车制动装置意外发生故障而失效时,则可以用机械力源<如强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备的,因为普

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

制动器设计说明书

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

制动器设计-计算说明书

三、课程设计过程 (一)设计制动器的要求: 1、具有良好的制动效能—其评价指标有:制动距离、制动减速度、制动力和制动时间。 2、操纵轻便—即操纵制动系统所需的力不应过大。对于人力液压制动系最大踏板力不大于(500N)(轿车)和700N (货车),踏板行程货车不大于150mm ,轿车不大于120mm 。 3、制动稳定性好—即制动时,前后车轮制动力分配合理,左右车轮上的制动力矩基本相等,汽车不跑偏、不甩尾;磨损后间隙应能调整! 4、制动平顺性好—制动力矩能迅速而平稳的增加,也能迅速而彻底的解除。 5、散热性好—即连续制动好,摩擦片的抗“热衰退”能力要高(指摩擦片抵抗因高温分解变质引起的摩擦系数降低);水湿后恢复能力快。 6、对挂车的制动系,还要求挂车的制动作用略早于主车;挂车自行脱钩时能自动进行应急制动。 (二)制动器设计的计算过程: 设计条件:车重2t,重量分配60%、40%,轮胎型175/75R14,时速70k m/h ,最大刹车距离11m 。 1. 汽车所需制动力矩的计算 根据已知条件,汽车所需制动力矩: M=G/g·j·r k (N ·m) 206 .321j )(v S ?= (m/s 2) 式中:rk — 轮胎最大半径 (m); S — 实际制动距离 (m); v 0 — 制动初速度 (km /h )。 2 17018211 3.6j ??=?= ???? (m/s 2) m=G/g=2000kg 查表可知,r k 取0.300m 。 M=G/g·j ·rk =2000·18·0.300=10800(N·m) 前轮子上的制动器所需提供的制动力矩: M ’=M/2?60%=3240(N·m) 为确保安全起见,取安全系数为1.20,则M ’’=1.20M’=3888(N·m) 2. 制动器主要参数的确定 (1)制动盘的直径D 制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘直径D 受轮辋直径的限制。通常,制动盘的直径D选择为轮辋直径的70%~79%,而总质量大于2t 的汽车应取其上限。 轮辋名义直径14in=355.6mm 根据布置尺寸需要,制动盘的直径D 取276m m。 验证,276/355.6=77.6%,符合要求。 制动盘材料选用珠光体灰铸铁,其结构形状为礼帽型。制动盘在工作时不仅承受着制动块

汽车盘式制动器故障成因及维修工艺分析

课程设计(论文)任务书

成绩评定表

目录 一、盘式制动器的工作原理和构造 1.1 定钳盘式制动器-----------------------------------------------1 1.2 浮钳盘式制动器-----------------------------------------------1 1.3 全盘式制动器-------------------------------------------------2 二、关于盘式刹车优缺点 2.1盘式刹车优点-------------------------------------------------2 2.2盘式刹车缺点-------------------------------------------------3 2.3刹车故障的判断-----------------------------------------------3 三、盘式制动器的常见故障及排除 3.1油管故障-----------------------------------------------------4 3.2制动盘故障-制动力不足疲软----------------------------------5 3.3制动钳故障-制动后跑偏----------------------------------------6 3.4制动分泵故障-制动发卡----------------------------------------7 3.5分泵故障-加力泵喷出制动液------------------------------------8 四、分析 分析各个故障----------------------------------------------------9 五、参考文献

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

汽车盘式制动器的维护与保养

汽车盘式制动器的维护与保养 汽车制动系统目前广泛使用的是摩擦式制动器,就其摩擦的结构形式可分成鼓式、盘式和带式三种。盘式制动器已广泛应用于各级轿车、轻型车、载货汽车、豪华客车及重型载货汽车等方面。因此,做好汽车盘式制动器的维护与保养至关重要。 一、盘式制动器维保养时的注意事项 拆卸车辆时要小心,避免损害制动器管路;拆卸车轮时,一定不要损伤制动盘、外部管路、放气螺钉以及挡泥板;安装非标准或偏位车轮时,需确保其与制动钳不接触;维修盘式制动器时,不要用气压软管或干刷子来清洁盘式制动器总成,要使用专业的真空吸尘器,避免呼吸制动器灰尘;仔细调整车轮轴承,消除轮端余隙;活塞回位从主缸储液罐中吸出的制动液应重新补足;行车前,应多次踩动制动踏板,使制动间隙达到规定要求;为防止制动块摩擦衬片的快速磨损,车辆行驶中不要对制动踏板施加压力(制动工况除外);液压系统排气时,可用木锤轻敲制动钳,以帮助清除制动液的气泡;用压缩空气吹取制动钳活塞时要小心,最好用厚布做缓冲垫,气体压力由小到大,逐渐增大。若活塞吹不出,可关断气源,用木锤轻敲制动钳,再试着通入压缩空气;卸转动盘而拆下制动钳时,在两侧制动块之间放置厚挡板,以防止制动钳的活塞被挤出轮缸;制动钳为两半壳时,不要解体。油脂、机油、制动液或任何其它异物不得触及制动摩擦块、制动卡钳、制动盘表面以及轮毂外表面;小心的对待制动盘和卡钳,避免损坏制动盘、刮伤或擦伤制动摩擦块。 二、盘式制动器的维护与保养的要点 1. 制动器摩擦衬片的维保 前轮或所有四轮上装有盘式制动器的汽车,需定期地检查制动器摩擦衬片(每行车12~15km)。靠举升机或安全架将车升起,在举升机或安全架上要确保居中与安全。车轮与轮毂轴承总成的关系在重新组装之后要确保恰当的车轮平衡,从前制动盘安装面卸下车轮与轮胎总成,小心别损伤制动卡钳、盘式制动盘罩(若有)以及前轮转向节,重新将夹持制动盘的两个车轮螺母装在轮毂轴承总成上。不用拆卸卡钳就能检查摩擦衬片,通过查看制动钳的每一端来检查外卡钳两端,这些区域是制动摩擦块磨损发生率最高的区域,还要检查内侧制动衬片上的摩擦衬片,确信没有过早磨损,若出现光泽(发亮或光滑)、烧损或被污物或制动液污染,则更换制动摩擦块,透过检查孔察看内制动摩擦块和摩擦衬片,有些进口车没有检查孔。 在装有浮动卡钳的车上,要检查内外摩擦衬片的磨损是否均匀。若内侧的磨损比外侧的多,则需大修卡钳。反之,则总成的滑动元件可能黏附、弯曲、或损坏。在任何情况下,制动器的不均匀磨损是制动器衬片或卡钳需要维修时的信号。当然,如果制动器在发出高震荡制动尖叫声时,要立即想到这表明系统需要维修。

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

汽车盘式制动器设计

汽车盘式制动器设计 第一章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用的最多最普遍也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统。它是制约汽车运动的装置。而制动器又是制动系统中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的发展和车流密度的日益增大人们对安全性、可靠性要求越来越高为保证人身和车辆安全、必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料运用专业基础理论和专业知识进行部件的设计计算和结构设计使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上应尽量采用对人体无害的材料[1]。 1.2 制动器的发展历程 制动器分车轮制动器和中央制动器两种,后者制动传动轴或变速器输出轴。由于中央制动器在应急制动时容易造成传动轴超载,所以现在大多数重型车辆在后轮制动器上附加手动机械式驱动机构使之兼起驻车制动和应急制动时用[2]。 从耗散能量的方式分制动器有摩擦式液力式电磁式和涡流式。 迄今为止人们已经把全息照相、激光多普勒分析、有限元分析以及试验模态技术等引入到制动器的振动和噪声研究中并取得了大量的成果。全息照相技术向人们展示了制动过程中振动的真实形态;有限元及模态分析的统一使得建立与实际相符合的振动的数学模型成为了可能这些都对制动系统的设计和分析提供了便利。 在对系统进行分析、综合和预测时需要给出系统的动态特性。此时实际系统可能尚未完成或者处十经济性、安全性等因素的考虑无法通过试验进行验证往往需要借助于系统仿真来实现这一要求。所谓系统仿真是指利用计算机来运行仿真

盘式制动器毕业设计说明书

盘式制动器毕业设计说明书 目录 摘要................................................................ I Abstract ............................................................. II 1 绪论. (1) 1.1 制动器的作用 (1) 1.2 制动器的种类 (1) 1.3 制动器的组成 (1) 1.4 对制动器的要求 (3) 1.5 制动器的新发展 (4) 2 制动器的结构形式及选择 (4) 2.1 制动器的种类 (4) 2.2 盘式制动器的结构型式及选择 (6) 3 汽车整车基本参数计算 (8) 4 制动系的主要参数及其选择 (9) 4.1 制动力与制动力分配系数 (9) 4.2 同步附着系数 (9) 4.3 制动强度和附着系数利用率 (10) 4.4 制动器最大制动力矩 (10) 4.5 制动器因数 (11) 5 盘式制动器的设计 (11) 5.1 盘式制动器的结构参数与摩擦系数的确定 (11) 5.2 制动衬块的设计计算 (12) 5.3 摩擦衬块磨损特性的计算 (13) 5.4 制动器主要零件的结构设计 (14) 6 制动驱动机构的结构型式选择与设计计算 (15) 6.1 制动驱动机构的结构型式选择 (15) 6.2制动管路的选择 (15) 6.3 液压制动驱动机构的设计计算 (16) 7 盘式制动器的优化设计 (18)

7.2 解决优化设计问题的一般步骤及几何解释 (18) 7.3 常用优化方法 (19) 7.4 制动系参数的优化 (19) 8 结论 (21) 致谢 (22) 参考文献 (23) 附录 (24)

盘式制动器-课程设计

盘式制动器-课程设计

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 (9)、轮胎参数:165/70R13; 轮胎有效半径为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径 (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则满足制动性能要求的制动减速度由:计

相关文档
最新文档