Flamelet modeling of coal particle ignition

Flamelet modeling of coal particle ignition
Flamelet modeling of coal particle ignition

Flamelet modeling of coal particle ignition

M.Vascellari ?,H.Xu,C.Hasse

ZIK Virtuhcon,Department of Energy Process and Chemical Engineering,University of Technology,Freiberg,Germany

Available online 21August 2012

Abstract

This paper numerically investigates the ignition of a single coal particle during the devolatilization phase in a laminar entrained-?ow reactor,for which experimental data are available from Molina and Shaddix [3].Di?erent numerical approaches are combined to evaluate the non-premixed ?amelet approach for coal particle ignition.First,the particle trajectory and the particle heating are simulated with a Lagrangian–Eulerian approach using a detailed pyrolysis model.In a second step,these results are used as transient boundary conditions for a simulation fully resolving the ?ow,the mixing ?eld and the chemical reactions around the particle.Finally,in combination with the boundary conditions the time-dependent scalar dis-sipation rate pro?les from the resolved particle calculation are used in a ?amelet calculation for the particle up-and downstream directions.Very good agreement is obtained in terms of ignition delay as well as tem-perature and chemical species distributions in the mixture fraction space when the resolved particle calcu-lation and the unsteady ?amelet calculation are compared in the downstream direction.Good agreement is obtained when the numerical results for the ignition time and the time-averaged OH distribution are com-pared with the available experimental data.The results show the capability of the laminar ?amelet approach to correctly predict coal particle ignition during devolatilization using accurate scalar dissipation rate pro?les.

ó2012The Combustion Institute.Published by Elsevier Inc.All rights reserved.

Keywords:Coal;Flamelet;Ignition;CFD;Pyrolysis

1.Introduction

During the rapid heating of coal particles in pulverized coal combustion and entrained-?ow gasi?cation systems,devolatilization and ignition play a fundamental role in characterizing the ?ame behavior such as stability,pollutant forma-tion and ?ame extinction.Therefore,understand-ing these phenomena that take place during devolatilization and ignition is essential for designing coal thermo-conversion processes.A

review of the relevant physical and chemical pro-cesses during particle ignition can be found in [1].Several experimental investigations into coal particle ignition have been published [2–10]consid-ering either air or CO 2-rich environments.How-ever,only few numerical studies have investigated ignition using one-[11,12]or two-dimensional unsteady approaches [13,14].

In this work,coal particle ignition is investi-gated from a numerical point of view taking into account the experiments of Molina and Shaddix [3](Section 2).The main goal of this work is to evaluate the applicability of the ?amelet approach for modeling coal particle ignition during devola-tilization.Three numerical approaches are consid-ered.At ?rst,a Lagrangian–Eulerian approach is

1540-7489/$-see front matter ó2012The Combustion Institute.Published by Elsevier Inc.All rights reserved.https://www.360docs.net/doc/9818661981.html,/10.1016/j.proci.2012.06.152

?Corresponding author.Fax:+493731394555.

E-mail address:Michele.Vascellari@vtc.tu-freiberg.de (M.Vascellari).

Available online at

https://www.360docs.net/doc/9818661981.html,

Proceedings of the Combustion Institute 34(2013)

2445–2452

https://www.360docs.net/doc/9818661981.html,/locate/proci

Proceedings of the

Combustion Institute

used(Section3.1),with the main aim of de?ning the boundary conditions for the subsequent steps. The second approach considers a fully resolved particle simulation(Section3.2)of the?ow and the chemical reactions in the vicinity of the coal particle during devolatilization.For the third approach the gas phase ignition axially upstream and downstream of the particle is calculated using an unsteady laminar?amelet approach(Sec-tion3.3).The scalar dissipation rate is directly cal-culated from the mixture fraction?eld in the resolved particle simulation and used as an input for the?amelet calculation.Finally,the numerical results(Section4)are analyzed in detail and com-pared to experimental data on ignition delay and time-averaged OH distributions.

2.Experiment by Molina and Shaddix[3]

This work investigates whether the laminar non-premixed?amelet approach can be used to describe the ignition of a single coal particle in a laminar hot co?ow,as previously investigated experimentally by Molina and Shaddix[3].The laminar,optically accessible entrained-?ow reac-tor operating at atmospheric pressure provides a laminar co?ow of combustion products from a Hencken burner.According to[3],the following inlet conditions for the co?ow,corresponding to the chemical equilibrium,are considered here:a temperature of1250K,a velocity of2.4m/s and

a composition of CO21.65%,H2O12.27%,N2

65.08%and O221%by volume.The coal particles are injected at the centerline through a0.75mm stainless tube.Considering the lean mixture of the gas burner,the authors assumed that no rad-ical species were present in the hot gas stream and that the ignition of the volatile matter depended only on the thermal conditions around the particle.Experiments were conducted with a very low feeding rate(about0.02g/min)of Pitts-burgh seam high-volatile bituminous coal,with an average diameter of100l m.The proximate and ultimate analysis are given in Table1.The density and the speci?c heat of the coal as received were,respectively,considered1400kg/m3and 1680J/kg K.Due to the low particle loading,it was possible to observe single-particle phenomena without interaction between particles.Molina and Shaddix[3]measured the ignition delay time using time-averaged images of CH*chemiluminescence.

3.Numerical setup and model formulation

The corresponding numerical investigation in this work uses a combination of three di?erent approaches and an additional coal-structure-based pyrolysis model.Figure1provides a sche-matic view of the?ow of information between the di?erent numerical approaches and their cou-pling.First,a Lagrangian–Eulerian simulation investigates the particle heating and its trajectory. This simulation is additionally coupled to the CPD(chemical percolation devolatilization) model,which is described in Section3.1,to model the pyrolysis process.These Lagrangian–Eulerian results are used as transient conditions for the par-ticle Reynolds number Re p,the particle tempera-ture T p=T F,the co?ow temperature T O and the devolatilization rate_m v,respectively,for a fully resolved particle simulation.In this respect,the Lagrangian–Eulerian approach is essential to accurately de?ne the boundary conditions for the subsequent steps.The time-dependent particle temperature,the composition of both the fuel and the oxidizer,the scalar dissipation rate v(Z;t)are postprocessed from the resolved particle simula-tion and subsequently used in the corresponding ?amelet calculation both in the upstream and downstream particle direction.In the following, the di?erent numerical approaches are presented in more detail.

https://www.360docs.net/doc/9818661981.html,grangian–Eulerian approach

Particle ignition and combustion is investi-gated?rst considering a time-dependent Lagrang-ian–Eulerian approach using the CFD software Fluent v.13.0.The SIMPLE algorithm[15]is used for pressure–velocity coupling and second-order-discretization for spatial and temporal discretiza-tion.The behavior of the coal particle is described by the sequence drying,devolatilization and char combustion.Standard models such as the Ranz–Marshall correlation[16,17],are used to model the heat and mass transfer between the

Table1

Proximate and ultimate analysis of Pittsburgh coal as received[3].

Proximate analysis Ultimate analysis Volatile matter35.89C75.23 Fixed carbon56.46H 5.16 Moisture0.47O9.83 Ash 6.95N 1.43 HHV30.94MJ/kg S

2.00

2446M.Vascellari et al./Proceedings of the Combustion Institute34(2013)2445–2452

non-resolved particle and the surrounding gas phase.It is important to note that these correla-tions for momentum,heat and mass exchange were developed for non-reacting particles and it can be expected that reactions can modify the boundary layer around the particle.

The devolatilization rate is modeled based on an empirical single kinetic rate law[18]

dY

dt

?A v expeàE v=RT pTáeY0àYTe1T

where T p is the particle temperature and Y and Y0 are the instantaneous and the overall volatile yield on a dry ash-free(daf)basis,respectively.The model parameters A v and E v are the pre-exponen-tial factor and the activation energy,which need to be adjusted for the given coal and the operating conditions.Here,the CPD model[19]is used to determine the rate constants for the Pittsburgh coal.The CPD model requires chemical structure data from13C nuclear magnetic resonance(13C NMR)spectroscopy on the speci?c coal.Since these detailed analysis data are usually not avail-able,Genetti et al.[20]developed a non-linear correlation based on existing13C NMR data for 30coals to determine the required(coal-struc-ture-dependent)input data for the CPD model using the available proximate and ultimate analy-sis.This correlation is applied here.Initially,the coal particle temperature during devolatilization is estimated by means of an initial Lagrangian–Eulerian simulation(see Fig.1).In the next step, the single-rate pre-exponential factor A v and the activation energy E v are determined based on the CPD results(calculated with a separate code) using the particle heating rate from the Lagrang-ian–Eulerian simulation.This procedure is re-peated until convergence is reached,as shown by the feedback loop in Fig.1.Finally,the CPD re-sults are used to determine the total volatile yield at a high temperature,here54.75%daf:this is substantially higher than the38.86%from the proximate analysis obtained under the signi?-cantly di?erent standard heating conditions,as re-ported in Table1.The CPD?tting yields the?nal pre-exponential factor A v=72054.9sà1and the activation energy E v=54.285kJ/mol.The CPD gives results consistent with the FG-DVC model as reported in[21]in terms of devolatilization rate and volatile yield for the Pittsburgh coal.In gen-eral,the composition shown by both the FG-DVC and the CPD approach include higher hydrocarbons.However,in terms of modeling, this would require large chemical mechanisms, especially for the resolved particle simulation. Since the focus here is on the applicability of the ?amelet model and only partially on fully match-ing the experimental result,a composition with up to C2-hydrocarbons is chosen.

The volatile matter is assumed to be composed of CO,CH4,N2and C2H2,as reported in Table2.A kinetic mechanism including C2-hydrocarbons is necessary to satisfy the mass balance of ele-ments from the ultimate analysis.Oxygen in the volatile matter is completely assigned to CO,while the remaining carbon and hydrogen is split up between CH4and C2H2.The heat of pyrolysis resulting from this volatile composition in order to ful?ll the energy balance based on the given coal heating value is2.47MJ/kg,which represents the energy required during depolymerization.It is important to note that the assumed composition is arbitrary to a certain degree and is not prescribed by the CPD model directly.However,the same composition is also used for the resolved particle calculation and the?amelet calculation to ensure maximum consistency.Other approaches[22,23] which are also based on network models of coal devolatilization,could yield slightly di?erent com-positions and heats of pyrolysis.

The DRM mechanism[24]with103reactions among22chemical species is chosen here.This mechanism is used both for the resolved particle approach and the?amelet approach.Other mech-anisms such as GRI-MECH3.0are too computa-tionally expensive for the resolved particle approach.Therefore,the DRM mechanism is considered as a compromise between accuracy and computational cost.

It is important to note that the choice of CPD model and the chemical mechanism does not only in?uence the Lagrangian–Eulerian calculation, but the results are used directly and indirectly in the resolved particle simulation and the?amelet simulation.

3.2.Resolved particle approach

In a second step,ignition is modeled consider-ing a detailed laminar simulation fully resolving the?ow/mixing?eld and the chemical reactions around the coal particle using ANSYS Fluent v.13.0.The SIMPLE algorithm[15]is used for pressure–velocity coupling and second order dis-cretization for spatial and temporal discretization. The chemistry solver is used in combination with the ISAT algorithm[25].

A two-dimensional axisymmetric domain is considered(Fig.2),which extends from100 particle diameters upstream to200diameters Table2

Volatile matter composition

assumed for numerical simula-

tion(%weight).

Volatile matter composition

C2H20.420

CH40.282

CO20.269

N20.028

M.Vascellari et al./Proceedings of the Combustion Institute34(2013)2445–24522447

downstream and75diameters in a cross-stream direction.The computational grid consists of 190,000hexahedral cells and was re?ned several times in the ignition zone until a grid-independent unsteady solution was obtained.A time step is considered of1?10à5s with50iterations for each time step is considered.The oxidizer enters the domain on the left side with a constant com-position as previously described.The inlet velocity and the temperature vary during the simulation in accordance with the results of the Lagrangian–Eulerian simulation.Volatile matter is released from the particle surface with a time-dependent mass?ow rate and temperature postprocessed from the Lagrangian–Eulerian results.

For the subsequent?amelet analysis,an addi-tional balance equation is solved for the mixture fraction as a passive scalar

q @Z

@t

tq v a

@Z

@x a

?

@

@x a

q D Z

@Z

@x a

;e2T

where the di?usion coe?cient D Z is chosen as equal to the thermal di?usivity(Le Z=1)and the boundary conditions are Z=1at the particle surface and Z=0in the co?ow inlet.In addition, the scalar dissipation rate v=2D Z(o Z/o x a)2 required for the?amelet analysis,see Fig.1,is directly computed from the resolved mixture fraction?eld.

https://www.360docs.net/doc/9818661981.html,minar?amelet approach

An unsteady laminar?amelet approach is used to analyze the results of the resolved particle sim-ulation.This general approach considering a highly resolved simulation,e.g.a DNS,to evalu-ate and validate models for?amelet,CMC or other phenomena has been used previously in sev-eral areas,see e.g.[26–28]for gaseous turbulent auto-ignition.

A?amelet calculation of the gas phase ignition process is performed both in the upstream and the downstream particle direction using the corre-sponding scalar dissipation rate from the resolved particle simulation.This procedure allows the ?amelet approach to be evaluated as a potential submodel for application in turbulent coal?ames.

A recent overview of?amelet modeling is given in[29]and only a brief description is presented https://www.360docs.net/doc/9818661981.html,ing either a local coordinate transforma-tion or a two-scale asymptotic analysis,the?am-elet equations for the species mass fractions and the temperature with the mixture fraction Z as the independent variable are derived from the 3D balance equations,see Eq.(3)for the species mass fraction

q

@Y i

@t

àq

v

2Le i

@2Y i

@Z2

?_m i:e3T

Transport e?ects are described using the scalar dissipation rate v(Z).Here,we directly use the solution of the mixing?eld,see Eq.(2),to com-pute the scalar dissipation rate instead of using an analytical solution of a laminar counter-?ow ?ame(e.g.an inverse complementary error func-tion);this will be discussed below.In the follow-ing,both for the?amelet calculation and the resolved particle calculation,Le i=1was used for all species.Calculations using multicomponent di?usion coe?cients and corresponding averaged Le numbers showed a negligible e?ect on the igni-tion time.

4.Results and discussion

Figure3shows the particle temperature and the non-dimensional mass depletion as a function of time from the Lagrangian–Eulerian simulation indicating the drying(I),devolatilization(II)and char burnout(III)phases.The time t=0is de?ned as the moment the coal particle is injected into the reactor.The experimentally observed time period of CH*chemiluminescence[3]is high-lighted in gray.At0.034s,which is substantially later than the experimentally observed ignition delay of0.028s,the particle temperature increases rapidly after gas phase ignition.Since the Lagrangian–Eulerian approach cannot resolve the boundary layer,where the ignition takes

place

2448M.Vascellari et al./Proceedings of the Combustion Institute34(2013)2445–2452

in the case of a single particle,the ignition delay time is not expected to be close to the experimen-tal value.As mentioned above,the results from the Lagrangian–Eulerian simulation mainly pro-vide the boundary conditions for the resolved sim-ulation of the coal particle boundary layer?ow.

As shown in Fig.1,the time-dependent relative gas-particle velocity and the gas temperature from the Lagrangian–Eulerian simulation are used as boundary conditions for the upstream velocity inlet in the resolved particle simulation,which is schematically illustrated in Fig.2.In addition, the time-dependent particle temperature and dev-olatilization mass?ow rate are used as boundary conditions for the particle surface.Since ignition in the gas phase takes place during devolatiliza-tion,only this phase is considered here.In partic-ular,the calculation starts at0.015s,when1%of volatile matter was released,and ends at0.043s, when char combustion begins.

It is important to note that since the Lagrang-ian–Eulerian simulation overpredicts the ignition delay,the particle temperature provided to the resolved particle simulation is underpredicted dur-ing the later stages.However,a preliminary anal-ysis performed using the resolved particle approach and the?amelet approach showed that the particle temperature had a small e?ect on the ignition.This can be explained by the fact that ignition takes place at very lean mixtures Z ign

Figure4shows the results of the resolved coal particle simulation considering six time steps from 0.0235to0.0240s.Contours of temperature,OH mass fraction and the isoline of the stoichiometric mixture fraction are plotted.As will be discussed below in detail,ignition starts on the lean side and,as expected,in the downstream region.This is followed by a propagation both towards the stoichiometric mixture and around the particle. Considering the same time steps,Fig.5compares the temperature in the mixture fraction space both for the resolved particle simulation and the lami-nar?amelet simulation in the downstream direc-tion.An initial small increase in the temperature can be observed at0.0235s at Z=0.02,which corresponds to24diameters downstream.This is followed by a propagation towards the stoichiom-etric mixture Z st=0.1295,where the?ame becomes established as a regular di?usion?ame. In general,very good agreement can be observed between the results of the two simulation approaches in terms of ignition time and temper-ature pro?les.Only minor di?erences can be observed https://www.360docs.net/doc/9818661981.html,ing these data,it is interesting to note that the di?u-sion?ame structure,in particular,cannot be resolved with the Lagrangian–Eulerian approach. The?nal?ame stand-o?distance is0.7mm,which is close to the CFD cell size(a smaller CFD cell size is not feasible due to the particle diameter of0.1mm).Thus,the gradients in the?ame region cannot be resolved.This can only be achieved in the resolved particle simulation and the?amelet simulation.Figure5also shows the time-dependent scalar dissipation rate pro?les taken from the resolved particle simulation,which are used as input for the?amelet analysis.The maximum values are found at Z=1,which results from large mixture fraction gradients near the particle surface.These pro?les di?er signi?cantly from standard pro?les,which are usually zero at either boundary.Here,similar to droplet evapora-tion,transport processes take place at the bound-ary which must be described using the scalar dissipation rate in a?amelet simulation.The scalar dissipation decreases quickly towards the oxidizer side.

Ignition takes place on the lean side,which can be explained considering the higher temperature of the oxidizer compared to the fuel temperature, see e.g.[26].Furthermore,this ignition process is strongly dominated by the high scalar dissipation rate,as reported in Fig.5,which drops rapidly towards Z=0.In fact,a high scalar dissipation rate can even prevent auto-ignition,see e.g.the established S-curve for di?usion?ames.

It is interesting to note that a?amelet calcula-tion using a zero scalar dissipation rate yields an ignition time of0.022s and therefore signi?cantly underpredicts the ignition delay.On the other hand,using the inverse complementary error function(erfcà1)pro?le[29](which is the analyti-cal solution for a counter?ow?ame)scaled with the transient stoichiometric value v st(t)taken from the resolved particle simulation strongly overpre-dicts the ignition onset.This is due to the higher v-values on the lean side compared to the pro?le taken from the resolved particle simulation.Thus, using the stoichiometric scalar dissipation rate only is not feasible here since ignition takes place far away from stoichiometry in the?amelet space. Consequently,for the investigated conditions the laminar?amelet approach can accurately predict ignition only if considering accurate scalar dissi-pation pro?les are considered.

In Fig.6,the mass fractions of several species for the same time steps as shown in Figs.4and 5are compared for the resolved particle simula-tion and the?amelet simulation.Again,the results show good agreement and only minor dif-ferences can be observed from0.0236to0.0239s, which is comparable to the results presented in Fig.5.

As expected,using the same?amelet procedure for the upstream direction fails to capture the igni-tion process(not shown here)and yields a signif-icantly higher delay.This is due to the higher scalar dissipation rates upstream,which prevent auto-ignition completely,both in the resolved par-ticle simulation and in the?amelet calculation. The upstream ignition is caused by the?ame

M.Vascellari et al./Proceedings of the Combustion Institute34(2013)2445–24522449

propagation around the particle,which can be seen in Fig.4.This propagation cannot be described with a 1D unsteady ?amelet approach,which can only describe auto-ignition processes in its present formulation.However,once ignition takes place,resolved particle simulation and ?am-elet simulations show good agreement in terms of temperature and chemical species for the burning di?usion ?ame.This overall agreement for the resolved particle simulation and the ?amelet approach is an encouraging result for the future use of the ?amelet approach as a submodel for turbulent coal combustion simulations.

Figure 7compares the ignition delay calculated from the resolved particle simulation with the experimental result.[3]measured ignition by means of CH *chemiluminescence data,correlat-ing the position of the radical peak with time based on the particle https://www.360docs.net/doc/9818661981.html,ing the trajec-tory,the particle position can be directly con-verted to the residence time.Since the DRM mechanism does not include CH,the OH radical was considered instead in the numerical simula-tion to predict the ignition onset in a similar way to that in the experiments.Additional lami-nar ?amelet simulations (not shown here)with more detailed mechanisms such as GRI-MECH 3.0,which included CH as representative for CH *,showed that OH and CH onsets happen almost simultaneously,but for slightly di?erent mixture fraction values.The qualitative compari-son also shows that the numerical results predict earlier ignition at approximately 0.024s compared to the experiments,which elicit 0.028s.

However,

Contour plots of temperature,OH mass fraction and the stoichiometric mixture fraction isoline obtained resolved particle simulation for six time steps from 0.0235to 0.024s.

the overall agreement between the numerical and experimental results can be considered quite good,considering the complexity of both coal combus-tion experiments and simulations.5.Summary and conclusions

The ignition of a single coal particle in a lami-nar hot co?ow was investigated using a combina-tion of three di?erent numerical approaches,and the results were compared to available experimen-tal data.First,the transient behavior of the coal particle was simulated with a Lagrangian–Euleri-an approach,which was coupled with a detailed pyrolysis model.The results were postprocessed to provide appropriate transient boundary condi-tions as an input for a simulation fully resolving the ?ow/mixing ?eld and the chemical reactions in the vicinity of the particle.The results of the resolved particle simulation showed good agree-ment with the experimental data for the ignition delay time,especially considering the inherent uncertainties of coal combustion experiments.Finally,ignition was investigated downstream of the particle considering an unsteady non-premixed laminar ?amelet approach with time-

dependent scalar dissipation pro?les evaluated from the resolved particle calculation.Very good results were obtained in terms of ignition delay,temperature and species pro?les during ignition and for the resulting di?usion ?ame comparing the latter two numerical approaches.As can be expected,the 1D ?amelet could not capture the subsequent ignition in the upstream region,which is caused by a ?ame propagation around the par-ticle.The results con?rm the general applicability of the laminar ?amelet approach to correctly pre-dict coal particle ignition during devolatilization,which is an encouraging result for using ?amelets as a submodel for turbulent coal combustion sim-ulations.In addition,the current results show clearly the importance of using the correct scalar dissipation rate pro?https://www.360docs.net/doc/9818661981.html,ing standard pro?les such as inverse complementary error function,originally derived for a counter?ow con?guration,yields signi?cantly di?erent and less accurate results.

Acknowledgments

The authors gratefully acknowledge the ?nan-cial support from the Federal Ministry of Educa-tion and Research in the framework of Virtuhcon (Project No.03Z2FN11).

The authors also thank Chris Shaddix for pro-viding the experimental data and Oliver Stein for helpful discussions.References

[1]R.H.Essenhigh,M.K.Misra,D.W.Shaw,Com-bust.Flame 77(1989)3–30.

[2]W.McLean,D.Hardesty,J.Pohl,https://www.360docs.net/doc/9818661981.html,bust.Inst.18(1981)1239–1248.

[3]A.Molina,C.R.Shaddix,https://www.360docs.net/doc/9818661981.html,bust.Inst.31(2007)1905–1912.

[4]C.R.Shaddix,A.Molina,https://www.360docs.net/doc/9818661981.html,bust.Inst.32(2009)

2091–2098.

M.Vascellari et al./Proceedings of the Combustion Institute 34(2013)2445–24522451

[5]P.A.Bejarano,Y.A.Levendis,Combust.Flame153

(2008)270–287.

[6]R.Khatami,C.Stivers,K.Joshi,Y.A.Levendis,

A.F.Saro?m,Combust.Flame159(2012)1253–

1271.

[7]Y.A.Levendis,K.Joshi,R.Khatami,A.F.Saro?m,

Combust.Flame158(2011)452–465.

[8]L.Zhang,E.Binner,Y.Qiao,C.-Z.Li,Energy

Fuels24(2009)29–37.

[9]L.Zhang,E.Binner,L.Chen,et al.,Energy Fuels

24(2010)4803–4811.

[10]T.Joutsenoja,J.Saastamoinen,M.Aho,R.Hern-

berg,Energy Fuels13(1999)130–145.

[11]X.Du,K.Annamalai,Combust.Flame97(1994)

339–354.

[12]M.Zhu,H.Zhang,Z.Zhang,D.Zhang,Combust.

Sci.Technol.183(2011)1221–1235.

[13]C.Wendt, C.Eigenbrod,O.Moriue,H.Rath,

https://www.360docs.net/doc/9818661981.html,bust.Inst.29(2002)449–457.

[14]F.Higuera,Combust.Flame156(2008)1023–1034.

[15]S.Patankar,Numer.Heat Transfer A4(1981)

409–425.

[16]M.Ranz,W.R.Marshall,Chem.Eng.Prog.48

(1952)141–146.

[17]M.Ranz,W.R.Marshall,Chem.Eng.Prog.48

(1952)173–180.[18]S.Badzioch,P.Hawksley,Ind.Eng.Chem.Process

Des.Dev.9(1970)521–530.

[19]D.Grant,R.Pugmire,T.Fletcher,A.Kerstein,

Energy Fuels3(1989)175–186.

[20]D.Genetti,T.Fletcher,R.Pugmire,Energy Fuels

13(1999)60–68.

[21]R.Backreedy,R.Habib,J.Jones,M.Pourkasha-

nian,Fuel78(1999)1745–1754.

[22]S.Niksa,A.Kerstein,Energy Fuels5(1991)647–

665.

[23]P.R.Solomon,M.A.Serio,E.M.Suuberg,Prog.

Energy Combust.18(1992)133–220.

[24]A.Kazakov,M.Frenklach,Reduced Reaction Sets

based on gri-mech1.2,1994,available at http:// https://www.360docs.net/doc/9818661981.html,/drm/.

[25]S.Pope,Combust.Theory Model.1(1997)41–63.

[26]E.Mastorakos,T.Baritaud,T.Poinsot,Combust.

Flame109(1997)198–223.

[27]R.Hilbert, D.The′venin,Combust.Flame128

(2002)22–37.

[28]V.Mittal,D.J.Cook,H.Pitsch,Combust.Flame

(2012).

[29]N.Peters,Turbulent Combustion,Cambridge Uni-

versity Press,2000.

2452M.Vascellari et al./Proceedings of the Combustion Institute34(2013)2445–2452

化验-中国煤炭分类国家标准中各类煤

中国煤炭分类国家标准中各类煤 新制定的中国煤炭分类国家标准,首先根据煤的煤化程度,将所有煤分为褐煤、烟煤和无烟煤。对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类。烟煤部分按挥发分大于10~20%、大于20~28%、大于28~37%和大于37%的4个阶段分为低、中、中高及高挥发分烟煤。关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤。大于50~65为中等偏强粘结煤,大于65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度y值大于25mm或奥亚膨胀度b大于150%(对于Vdaf大于28%的烟煤,b大于220%)的煤定为特强粘结煤。这样,在烟煤部分,可分为24个单元,并用相应的数码表示。编号的十位数中,1~4代表煤的煤化程度,编号的个位数中,1~6表示煤的粘结性。在这24个单元中,再按同类煤性质基本相似,不同煤性质有较大差异的分类原则将部分单元合并为12个类别。再煤类的命名上,考虑到新旧分类的延续性和习惯叫法,仍保留气煤、肥美、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 为使同一类煤性质基本一致,新的煤炭分类国家标准增加了4个过度性煤类:贫瘦煤、1/2中粘煤、1/3焦煤和气肥煤。贫瘦煤是指粘结性较差的瘦煤,以区别于典型的瘦煤。1/2粘结煤是由原分类中一部分粘结性较好的弱粘煤和一部分粘结性较差的飞焦煤和肥气煤组成。1/3焦煤是由原分类中一部分粘结性较好的肥气煤和肥焦煤组成。这类煤是焦煤、肥美和气煤中间的过渡煤类,也具有这3类煤的一部分性质,但结焦性较好是公认的。气肥煤再原分类中属肥煤大类,但它的结焦性比典型肥煤要差得多,故新得煤炭分类国家标准将它单独列为一类。这样就克服类原分类方案中同类煤性质差异较大得缺陷。如气煤一号和肥气煤二号再性质上由明显差异,将它们为同一类别很不合理。新得分类国家标准将这些具有过渡性质得煤单独列为一类,从而有利于煤得合理使用。 新的分类国家标准对各类煤的若干特征表述如下: 1、无烟煤(WY) 挥发分低,固定碳高,比重大,纯煤真比重最高可达1.90,燃点高,燃烧时不冒烟。对这类煤,可分为:01号为老年无烟煤;02号为典型无烟煤;03号为年轻无烟煤,无烟煤主要是民用和制造合成氨的造气原料,低灰、低硫和可磨性好的无烟煤不仅可以做高炉喷吹及烧结铁矿石用的燃料,而且还可以制造各种碳素材料,如碳电极、阳极糊和活性碳的原料,某些优质无烟煤制成航空用型煤还可用于飞机发动机和车辆马达的保温。 2、贫煤(PM)

煤的各项指标代码及意义

煤的各项指标代码及意义

————————————————————————————————作者: ————————————————————————————————日期: ?

煤的各项指标代码及意义 1、水分(代码M或W) 煤的水分是指单位质量的煤中水的含量。煤的水分有内在水分和外在水分两种,两者之和为全水分(Mt ); 进行煤的工业分析所测定煤的水分为空气干燥煤样的水分(Mad)。 煤的水分是评价煤炭经济价值的基本指标。煤的内在水分与煤的煤化程度和内部表面积有关,一般来说变质程度越低,煤的内表面积越大,水分含量越高,经济价值越低。煤的水分对其存储、运输、加工和利用均有影响。在存储时,水分能加速煤的风化、碎裂、自燃;在运输中,水分会增加运输量,加大运费,并会增加装车、卸车的困难。在寒冷地区,水分大的煤在长途运输中会冻结,给卸车造成极大困难。煤的水分在燃烧时要消耗一定的热量,在炼焦时要延长结焦时间,而且影响焦煤的寿命。

2、灰分(代码A) 煤的灰分是指煤完全燃烧后残留物的产率。煤的灰分分为内在灰分和外在灰分两种。内在灰分是指煤在成煤过程中混入的矿物杂质;外在灰分是指煤在开采、运输、储存过程中混入的矿物杂质,即矸石,可以通过洗选方法出去。 煤的灰分是衡量煤炭质量的一个重要指标,灰分越高,质量就越差,发热量就越低。 煤的灰分对煤的加工利用有不利影响。外在灰分越高,在洗选时排除的矸石量越大;内在灰分越高,煤就越难选。煤的灰分高,会增加运输量和运费。在燃烧时,灰分越高,热效率越低,而且会增加烟尘排放量和炉渣量,加剧燃煤对大气的污染。炼焦时,精煤灰分越高,焦炭的灰分就越高,炼铁的焦比就增加,高炉利用系数就越低,产铁量减少。

船舶原理

1.什么是船舶的浮性? 船舶在各种装载情况下具有漂浮在水面上保持平衡位置的能力 2.什么是静水力曲线?其使用条件是什么?包括哪些曲线?怎样用静水力曲线查某一吃水时的排水量和浮心位置? 船舶设计单位或船厂将这些参数预先计算出并按一定比例关系绘制在同一张图中;漂心坐标曲线、排水体积曲线;当已知船舶正浮或可视为正浮状态下的吃水时,便可在静水力曲线图中查得该吃水下的船舶的排水量、漂心坐标及浮心坐标等 3.什么是漂心?有何作用?平行沉浮的条件是什么? 船舶水线面积的几何中心称为漂心;根据漂心的位置,可以计算船舶在小角度纵倾时的首尾吃水;船舶在原水线面漂心的铅垂线上少量装卸重量时,船舶会平行沉浮;(1)必须为少量装卸重物(2)装卸重物p的重心必须位于原水线面漂心的铅垂线上 4.什么是TPC?其使用条件如何?有何用途? 每厘米吃水吨数是指船在任意吃水时,船舶水线面平行下沉或上浮1cm时所引起的排水量变化的吨数;已知船舶在吃水d时的tpc数值,便可迅速地求出装卸少量重物p之后的平均吃水变化量,或根据吃水的改变量求船舶装卸重物的重量 5.什么是船舶的稳性? 船舶在使其倾斜的外力消除后能自行回到原来平衡位置的性能。 6.船舶的稳性分几类? 横稳性、纵稳性、初稳性、大倾角稳性、静稳性、动稳性、完整稳性、破损稳性 7.船舶的平衡状态有哪几种?船舶处于稳定平衡状态、随遇平衡状态、不稳定平衡状态的条件是什么? 稳定平衡、不稳定平衡、随遇平衡 当外界干扰消失后,船舶能够自行恢复到初始平衡位置,该初始平衡状态称为稳定平衡当外界干扰消失后,船舶没有自行恢复到初始平衡位置的能力,该初始平衡状态称为不稳定平衡 当外界干扰消失后,船舶依然保持在当前倾斜状态,该初始平衡状态称为随遇平衡8.什么是初稳性?其稳心特点是什么?浮心运动轨迹如何? 指船舶倾斜角度较小时的稳性;稳心原点不动;浮心是以稳心为圆心,以稳心半径为半径做圆弧运动 9.什么是稳心半径?与吃水关系如何? 船舶在小角度倾斜过程中,倾斜前、后的浮力作用线的交点,与倾斜前的浮心位置的线段长,称为横稳性半径!随吃水的增加而逐渐减少 10.什么是初稳性高度GM?有何意义?影响GM的因素有哪些?从出发港到目的港整个航行过程中有多少个GM? 重心至稳心间的距离;吃水和重心高度;许多个 11.什么是大倾角稳性?其稳心有何特点? 船舶作倾角为10°-15以上倾斜或大于甲板边缘入水角时点的稳性 12.什么是静稳性曲线?有哪些特征参数? 描述复原力臂随横倾角变化的曲线称为静稳性曲线;初稳性高度、甲板浸水角、最大静复原力臂或力矩、静稳性曲线下的面积、稳性消失角 13.什么是动稳性、静稳性? 船舶在外力矩突然作用下的稳性。船舶在外力矩逐渐作用下的稳性。 14.什么是自由液面?其对稳性有何影响?减小其影响采取的措施有哪些? 可自由流动的液面称为自由液面;使初稳性高度减少;()减小液舱宽度(2)液舱应

煤炭指标及煤种

焦炭:烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。 精煤:原煤经过洗煤,除去煤炭中矸石,即为精煤。 肥煤是指国家煤炭分类标准中,对煤化变质中等,粘结性极强的烟煤的称谓,炼焦煤的一种,炼焦配煤的重要组成部分,结焦性最强,熔融性好,结焦膨胀度大,耐磨;精煤是指经洗选加工供炼焦用或其他用途的洗选煤炭产品的总称。 煤的挥发分 煤的挥发分,即煤在一定温度下隔绝空气加热,逸出物质(气体或液体)中减掉水分后的含量。剩下的残渣叫做焦渣。因为挥发分不是煤中固有的,而是在特定温度下热解的产物,所以确切的说应称为挥发分产率。 (1)煤的挥发分不仅是炼焦、气化要考虑的一个指标,也是动力用煤的一个重要指标,是动力煤按发热量计价的一个辅助指标。 挥发分是煤分类的重要指标。煤的挥发分反映了煤的变质程度,挥发分由大到小,煤的变质程度由小到大。如泥炭的挥发分高达70%,褐煤一般为40~60%,烟煤一般为10~50%,高变质的无烟煤则小于10%。煤的挥发分和煤岩组成有关,角质类的挥发分最高,镜煤、亮煤次之,丝碳最低。所以世界各国和我国都以煤的挥发分作为煤分类的最重要的指标。 (2)煤的挥发分测试。从广义上来讲,凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于动力用煤,简称动力煤。 1)无烟煤(WY)。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。 2)贫煤(PM)。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中

中国煤炭分类、煤质指标的分级

煤质指标的分级

中国煤炭分类(2008-06-19 10:04:30) 中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤; 对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf 在于28%以下,则应划分为焦煤类。 这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

煤炭的各项指标

煤炭的各项指标 第一个指标:水分。 煤中水分分为内在水分、外在水分、结晶水和分解水。 煤中水分过大是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦化周期。 现在我们常报的水份指标有: 1、全水份(Mt),是煤中所有内在水份和外在水份的总和,也常用Mar表示。通常规定在8%以下。 2、空气干燥基水份(Mad),指煤炭在空气干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的。 第二个指标:灰分 指煤在燃烧的后留下的残渣。 不是煤中矿物质总和,而是这些矿物质在化学和分解后的残余物。 灰分高,说明煤中可燃成份较低。发热量就低。 同时在精煤炼焦中,灰分高低决定焦炭的灰分。 能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad)等。也有用收到基灰分的(Aar)。 第三指标:挥发份(全称为挥发份产率)V 指煤中有机物和部分矿物质加热分解后的产物,不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。 挥发份大小与煤的变质程度有关,煤炭变质量程度越高,挥发份产率就越低。 在燃烧中,用来确定锅炉的型号;在炼焦中,用来确定配煤的比例;同时更是汽化和液化的重要指标。 常使用的有空气干燥基挥发份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。 其中Vdaf是煤炭分类的重要指标之一。 其他指标: 煤炭的固定碳(FC) 固定碳含量是指去除水分、灰分和挥发分之后的残留物,它是确定煤炭用途的重要指标。从100减去煤的水分、灰分和挥发分后的差值即为煤的固定碳含量。根据使用的计算挥发分的基准,可以计算出干基、干燥无灰基等不同基准的固定碳含量。 发热量(Q) 发热量是指单位质量的煤完全燃烧时所产生的热量,主要分为高位发热量和低位发热量。煤的高位发热量减去水的汽化热即是低位发热量。发热量的国标单位为百万焦耳/千克(MJ/KG)常用单位大卡/千克,换算关系为:1MJ/KG=239.14Kcal/kg;1J=0.239cal;1cal=4.18J。如发

煤炭指标-煤炭的各项指标-六大指标

煤炭指标-煤炭的各项指标-六大指标 来源:中国煤炭价格网数据整理 煤炭六项基本指标: 第一个指标:水分。 煤中水分分为内在水分、外在水分、结晶水和分解水。 煤中水分过大是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦化周期。 现在我们常报的水份指标有: 1、全水份(Mt),是煤中所有内在水份和外在水份的总和,也常用Mar表示。通常规定在8%以下。 2、空气干燥基水份(Mad),指煤炭在空气干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的。 第二个指标:灰分 指煤在燃烧的后留下的残渣。 不是煤中矿物质总和,而是这些矿物质在化学和分解后的残余物。 灰分高,说明煤中可燃成份较低。发热量就低。 同时在精煤炼焦中,灰分高低决定焦炭的灰分。 能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad)等。也有用收到基灰分的(Aar)。

第三指标:挥发份(全称为挥发份产率)V 指煤中有机物和部分矿物质加热分解后的产物,不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。 挥发份大小与煤的变质程度有关,煤炭变质量程度越高,挥发份产率就越低。 在燃烧中,用来确定锅炉的型号;在炼焦中,用来确定配煤的比例;同时更是汽化和液化的重要指标。 常使用的有空气干燥基挥发份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。 其中Vdaf是煤炭分类的重要指标之一。 第四个指标:固定碳 不同于元素分析的碳,是根据水分、灰分和挥发份计算出来的。 FC+A+V+M=100 相关公式如下:FCad=100-Mad-Aad-Vad FCd=100-Ad-Vd FCdaf=100-Vdaf 第五个指标:全硫St 是煤中的有害元素,包括有机硫、无机硫。1%以下才可用于燃料。部分地区要求在和以下,现在常说的环保煤、绿色能源均指硫份较低的煤。 常用指标有:空气干燥基全硫(St,ad)、干燥基全硫及收到基全硫(St,ar)。

中国煤炭分类简表

中国煤炭分类简表(表五):

符号 分类指标用下列符号表示: Vr——干燥无灰基挥发分,%; Hr——干燥无灰基氢含量,%; GR·I(简记G)————烟煤的粘结指数;Y——烟煤的胶质层最大厚度,毫米(mm);b——烟煤的奥亚膨胀度,%; PM——煤样的透光率,%;

煤炭分级与分类常识 一、煤炭分级 按目前国家标准,以灰分作为划分煤炭级别的标准,灰分小于12 . 5 %的煤炭,称为冶炼用炼焦精煤;灰分在12 . 51 %一1 6 %的煤炭,称为其它用精煤。动力用煤通称动力煤.冶炼用炼焦精煤分级以A =5 . 01 %一5 %为一级精煤,以0 . 5 %的灰分为一个级差,依次上升,共分十五级,为二级精煤:其它用炼焦精煤,以A=12 . 51 %-13 为一级其它精煤,以0 .5 %的灰分为一个级差,依次上升,共分七级,如A=13.01 %一14 % 为二级其它精煤,等等.动力煤分级以如A = 4 . 01 %一5 %为一级动力煤,以 1%的灰分为一个级差,依次上升至A = 40 % ,共分三十六级,如混煤A =20 %一21 % ,为十七级动力煤,等等。二、煤炭分类及代号主要分类标准依据为可燃基挥发分、粘结指数、胶质层厚度,煤炭共分14 个品种: 1、无烟煤(WY) 尤烟煤挥发分产率低,固定碳含量高,密度大(密度最高可达1 . 90g / cm3 ) ,硬度大,燃点高,燃烧时不冒烟。对这类煤又分为:01 号无烟煤为年老无烟煤:02 号无烟煤为典型无烟煤:03 号无烟煤为年轻无烟煤。北京、晋城、阳泉三矿区的无烟煤分别为01 号、02 号、 03 号无烟煤。无烟煤主要是民用和合成氨的造气原料,而且还可以制造各种碳素材料,某些优质无烟煤制成的航空用型煤可用于飞机发动机和车辆马达的保温。目前我国攻克白煤炼焦技术难关,年产120 万t 的无烟煤炼焦项目已在山西高平开工。 2、贫煤(PM ) 贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性.在层状炼焦炉中不结焦.燃烧时火焰短,耐烧,主要是用为发电燃料,也可民用和工业锅炉的配煤。山东淄博矿区有典型的贫煤。

2020年研究生入学考试考纲

武汉理工大学交通学院2020年研究生入学考试大纲 2020年研究生入学考试考纲 《船舶流体力学》考试说明 一、考试目的 掌握船舶流体力学相关知识是研究船舶水动力学问题的基础。本门考试的目的是考察考生掌握船舶流体力学相关知识的水平,以保证被录取者掌握必要的基础知识,为从事相关领域的研究工作打下基础。 考试对象:2020年报考武汉理工大学交通学院船舶与海洋工程船舶性能方向学术型和专业型研究生的考生。 二、考试要点 (1)流体的基本性质和研究方法 连续介质概念;流体的基本属性;作用在流体上的力的特点和表述方法。 (2)流体静力学 作用在流体上的力;流体静压强及特性;压力体的概念,及静止流体对壁面作用力计算。 (3)流体运动学 研究流体运动的两种方法;流体流动的分类;流线、流管等基本概念。 (4)流体动力学 动量定理;伯努利方程及应用。 (5)船舶静力学 船型系数;浮性;稳性分类;移动物体和液舱内自由液面对船舶稳性的影响;初稳性高计算。 (6)船舶快速性 边界层概念;船舶阻力分类;尺度效应,及船模阻力换算为实船阻力;方尾和球鼻艏对阻力的影响;伴流和推力减额的概念;空泡现象对螺旋桨性能的影响;浅水对船舶性能的影响。 三、考试形式与试卷结构 1. 答卷方式:闭卷,笔试。 2. 答题时间:180分钟。 3. 试卷分数:总分为150分。 4. 题型:填空题(20×1分=20分);名词解释(10×3分=30分);简述题(4×10分=40分);计算题(4×15分=60分)。 四、参考书目 1. 熊鳌魁等编著,《流体力学》,科学出版社,2016。 2. 盛振邦、刘应中,《船舶原理》(上、下册)中的船舶静力学、船舶阻力、船舶推进部分,上海交通大学出版社,2003。 1

中国煤炭分类、煤质指标的分级

煤质指标的分级 中国煤炭分类 (2008-06-19 10:04:30)

??中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤; 对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 ????在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf在于28%以下,则应划分为焦煤类。 ????这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 ????在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

煤炭行业各项指标计划含义及其计算办法

煤炭生产统计有关指标计算办法摘编 现将《煤炭工业计划统计常用指标计算办法》(1989年版)有关生产统计指标的相关规定和计算办法摘编,供生产统计人员学习参考。内容重点是原煤产量、掘进进尺、回采工作面利用、掘进工作面利用、采掘机械化程度、回采率等指标。 一、原煤产量 原煤指毛煤经过简单加工,拣除大块矸(大于50毫米)之后的煤炭。一切统计指标,都以原煤为对象。选前煤炭一般称毛煤。 原煤产量必须加工拣选,实行选后计量,即拣出50毫米以上的矸石后,经验收合格后方可计算原煤产量。 (一)原煤产量的计量 1、原煤计量形式 原煤产量必须由矿井验收计量,不得按选后产品的数量倒算原煤产量。原煤计量方法由于提升运输方式不同而有不同手段。 (1)矿井采用矿车运煤、提煤时,矿车计量以实际装载量计算。计算时扣除车底积煤; (2)箕斗和罐提煤的,以容积计算,定期(季)测定罐率和容积比重。全水分超过规定在容积比重中予以扣除 (3)皮带提升的矿井安装电子(核子)称计量,定期测定比重和含矸率。 (4)回采和掘进工作面煤炭计量采用盘方计量,即按照体积和原煤容重计算。 回采产量=工作面采长×推进度×采高×原煤容重×工作面采出率 掘进产量=煤巷(半煤岩)掘进毛断面×进尺×容重×掘进出煤系数 原煤容重是本煤层实际测定的原煤比重(毛煤扣除含矸率后),与计算储量用的纯煤比重(视密度)不同。 2、月末核定产量的方法 由于煤炭生产具有生产数量大且是连续性生产的特点,目前原煤计量手段都不同程度存在计算误差,必须在月末进行产量核定工作,保证原煤产量的准确性。一般采用“选前验收计量,月末核定产量”的方法。 核定的方法:月末对原煤的实际库存量进行一次盘点,与通过本月逐日累计

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

煤炭各个指标之间的关系

煤炭各个指标之间的关系(神华煤炭化验设备) 之前,我们了解到了:如何用神华煤炭化验设备去测量分析计算煤质各项指标的含量,那么这些煤炭质量指标之间又有什么关系呢煤的发热量、水分、灰分、挥发分、硫分、灰熔融性、G值、Y值之间有什么关系呢 本文参考于:煤质检测分析新技术新方法与化验结果的审查计算实用手册,各项煤质指标间的相互关系,另外还有我神华煤炭化验设备公司专业技术人员提供的资料。 1.煤的工业分析各指标间的关系 煤的工业分析项目,是了解和研究煤性质最基本指标,特别是水分、挥发分等指标,都能表征煤的不同煤化程度,之间均有显著的相关关系。此外,煤中矿物质的数量及其组分对煤的挥发分、发热量和真(视)相对密度等其他指标也都有显著影响。 (2)原煤、精煤间的灰分关系:一般,洗选后的精煤灰分要比原煤的低,但灰分的降低幅度因煤的可选性而异。某些灰分不太高的年轻褐煤,往往用氯化锌重液洗后,其精煤的灰分反而比原煤的高。这是因为洗选过程中吸附造成的。 (3)挥发分、焦渣特征和水分的关系:挥发分高低反映了煤的变质程度。焦渣特征在一定程度上反映了煤的粘结性和结焦性。 1)干燥无灰基挥发分和焦渣特征之间通常有下列关系:Vdaf≤l0%,焦渣特征为l~2号;Vdaf<13%,焦渣特征不超过4号;Vdaf>40%的褐煤,焦渣特征为1~2号;Vdaf=l8%~33%的炼焦用烟煤,焦渣特征为5~8号。 2)精煤干燥无灰基挥发分和原煤干燥无灰基挥发分之间,矿物质含量高的煤,其精煤干燥无灰

基挥发分往往稍小于原煤的。矿物质含量愈多,差值就愈大。但是,粘结性上,总是精煤高于原煤。 2.硫含量和工业分析指标间的关系 一般,硫分高低和其它工业分析指标没有直接关系,但是,有机硫含量高的高硫煤,其发热量值常小于同一牌号的低硫煤。因为有机硫高的煤,其结构单元聚六碳环上的部分C、H被S取代,而C 和H的燃烧热值高。硫分和灰分间没有直接关系,但是,如果高硫煤中是以硫铁矿硫为主,则硫分高,其灰分产率也高;对于低硫煤,如果是有机硫为主,则情况相反。原煤和精煤中的硫含量变化有以下趋势:以无机硫为主的原煤,其精煤的硫含量低于原煤:以有机硫为主的原煤,其精煤的硫含量可能比原煤的还高。 3.胶质层最大厚度Y值与粘结指数G的关系 烟煤的胶质层最大厚度Y值随粘结指数的增高而增高,但值在10~70之间时,Y值仅在4~15mm 之间变化,Y值为零的煤样,值比Y值灵敏得多。对值为95~105的煤,其Y值多在25~50mm之间,从而表明,在区分强粘结性煤时,Y值要比值灵敏得多。两者之间大致有如下关系: (1)Y值大于30mm的煤,其值均大于90;y值大于20mm的煤,其值一般均大于80;Y值小于15mm的煤,值一般小于80;Y值小于7mm的煤,值一般都在35以下。 (2)值大于100的煤,其Y值一般都在25mm以上;值大于65的烟煤,Y值一般在10mm以上。 (3)160多个煤样的计算结果表明,与Y值间的相关系数R值为,这表明两者呈显著的正比关系

我国煤炭化验的各项指标及标准数据

我国煤炭化验的各项指标及标准数据 1、煤炭质量的基本指标 一、水分(M ) 煤的水份分为两种,一是内在水份(Minh ) ,是由植物变成煤时所含的水份;二是外水(Mf ) ,是在开采、运输等过程中附在煤表面和裂隙中的水份.全水份是煤的外在水份和内在水份总和。一般来讲,煤的变质程度越大,内在水份越低。褐煤、长焰煤内在水份普通较高,贫煤、无烟煤内在水份较低。 水份的存在对煤的利用极其不利,它不仅浪费了大量的运输资源,而且当煤作为燃料时,煤中水份会成为蒸汽,在蒸发时消耗热量;另外,精煤的水份对炼焦也产生一定的影响。一般水份每增加2 % ,发热量降低100kcal/kg(大卡/千克);冶炼精煤中水份每增加1 % ,结焦时间延长5 一10min . 二、灰份(A ) 煤在彻底燃烧后所剩下的残渣称为灰份,灰份分外在灰份和内在灰份。外在灰份是来自顶板和夹研中的岩石碎块,它与采煤方法的合理与否有很大关系。外在灰份通过分选大部分能去掉。内在灰份是成煤的原始植物本身所含的无机物,内在灰份越高,煤的可选性越差。灰是有害物质.动力煤中灰份增加,发热量降低、排渣量增加,煤容易结渣;一般灰份每增加2% ?发热量降低10okcal / kg 左右。冶炼精煤中灰份增加,高炉利用系数降低,焦炭强度下降,石灰石用量增加;灰份每增加1 % ,焦炭强度下降2 % ,高炉生产能就下降3 % ,石灰石用量增加4 % . 三、挥发份(V ) 煤在高温和隔绝空气的条件下加热时,所排出的气体和液体状态的产物称为挥发分。挥发分的主要成分为甲烷、氢及其他碳氢化合物等。它是鉴别煤炭类别和质量的重要指标之一。一般来讲,随着煤炭变质程度的增加,煤炭挥发份降低。褐煤、气煤挥发份较高,瘦煤、无烟煤挥发份较低。 四、固定碳质最(FC ) 固定碳含量是指除去水分、灰分和挥发分的残留物,它是确定煤炭用途的重要指标。从100减去煤的水分、灰分和挥发分后的差值即煤的固定碳含量。根据使用的计算挥发分的基准,可以计算出干基、干燥无灰基等不同基准的固定碳含量。 五、发热量(Q ) 发热量是指单位质量的煤完全的燃烧时所产生的热量,主要分为高位发热量和低位发热量。煤的高位发热量减去水的汽化热即是低位发热量。发热量国际单位为百万焦耳/千克(MJ/kg ) ,常用单位大卡斤克,换算关系为:1MJ / kg =239 . 14kcal / kg ? 1J = 0.239gcal ? 1cal= 4 . l8J 。如发热量550kcaL/ g , 5500kcal / kg=550÷239 . 14 = 23MJ/kg .为便于比较,我们在衡量煤炭时消耗时,要把实际使用的不同发热量的煤炭换算成标准煤,标准煤的发热量为29 . 27MJ/kg ( 700okcal / kg )。国内贸易常用发热量标准为收到基低位发热量( Qnet,ar) ,它反映煤炭的应用效果,但外界因素影响较大,如水分等,因此Qnet,ar 不能反映煤的真实品质。国际贸易通用发热量标准为空气干燥基高位发热量( Qnet,ar) ,它能较为准确的反映煤的真实品质,不受水分等外界因素影响。在同等水分、灰分等情况下,空气干燥基高位发热量比收到基低位发热量高1.25MJ/g ( 300kcal / kg)左右.

考试大纲-重庆交通大学知识交流

硕士生入学复试考试《船舶原理与结构》 考试大纲 1考试性质 《船舶原理》和《船舶结构设计》均是船舶与海洋工程专业学生重要的专业基础课。它的评价标准是优秀本科毕业生能达到的水平,以保证被录取者具有较好的船舶原理和结构设计理论基础。 2考试形式与试卷结构 (1)答卷方式:闭卷,笔试 (2)答题时间:180分钟 (3)题型:计算题50%;简答题35%;名词解释15% (4)参考数目: 《船舶原理》,盛振邦、刘应中,上海交通大学出版社,2003 《船舶结构设计》,谢永和、吴剑国、李俊来,上海交通大学出版社,2011年 3考试要点 3.1 《船舶原理》 (1)浮性 浮性的一般概念;浮态种类;浮性曲线的计算与应用;邦戎曲线的计算与应用;储备浮力与载重线标志。 (2)船舶初稳性 稳性的一般概念与分类;初稳性公式的建立与应用;重物移动、

增减对稳性的影响;自由液面对稳性的影响;浮态及初稳性的计算;倾斜试验方法。 (3)船舶大倾角稳性 大倾角稳性、静稳性与动稳性的概念;静、动稳性曲线的计算及其特性;稳性的衡准;极限重心高度曲线;IMO建议的稳性衡准原则;提高稳性的措施。 (4)抗沉性 抗沉性的概念;安全限界线、渗透率、可浸长度、分舱因数的概念;可浸长度计算方法;船舶分舱制;提高抗沉性的方法。 (5)船舶阻力的基本概念与特点 船舶阻力的分类;阻力相似定律;阻力(摩擦阻力、粘压阻力、兴波阻力)产生的机理和特性。 (6)船舶阻力的确定方法 船模阻力试验方法;阻力换算方法;阻力近似计算的概念及方法;艾尔法、海军系数法等。 (7)船型对阻力的影响 船型变化及船型参数,主尺度及船型系数的影响,横剖面面积曲线形状的影响,满载水线形状的影响,首尾端形状的影响。 (8)浅水阻力特性 浅水对阻力影响的特点;浅窄航道对船舶阻力的影响。 (9)船舶推进器一般概念 推进器的种类、传送效率及推进效率;螺旋桨的几何特性。

煤炭质量指标

煤炭质量常用指标的含义 一、水分符号:M,单位:%, 是一项重要的煤质指标,煤的水分对其加工利用、贸易、运输和储存都有很大的影响。一般说来,水分高要影响煤的质量。在煤的利用中首先遇到的是煤的破碎问题,水分高的煤就难以破碎;在锅炉燃烧中,水分高就影响燃烧稳定性和热传导;在炼焦时,水分高会降低焦产率;而且由于水分大量蒸发带走热量而延长焦化周期;在煤炭贸易中,水分也是一个定质和定量的主要指标,故在签订销煤合同时,用户一般都会提出煤中水分的限值。 煤的水分简单地说分为:全水分、内在水分 内水:由植物变成煤时所含的水分。 外水:在开采或运输等过程中附在煤表面和裂隙中的水分。 在煤的变质程度越大,内在水分越低.水分的存在对煤极其不利,在煤作为燃料时,煤中的水分会成蒸汽,在蒸发时消耗热量。 煤炭运销中常用的水分指标有:全水(符号:Mt),全水分包括外在水分和内在水分;一般分析煤样水分(也称空干基水分,符号:Mad ),它是指分析用煤样(《0.2mm)在实验室大气中达到平衡后所保留的水分,也可以认为是内在水分。有时用户也会要求使用收到基水分(符号:Mar),一般可认为Mar=Mt。 二、灰分符号:A,单位:%, 煤在彻底燃烧后所剩下的残渣。外在灰分通过分选大部分能去掉,内在灰分是成煤的原始植物本身所含的无机物,内在灰分越高,煤的可选性越差.灰分是有害物质。 动力煤中灰分增加,发热量降低,排渣量增加,煤容易结渣。 在煤炭运销中常用的灰分指标有:空干基(又称分析基)灰分(符号:Aad)、干基灰分(符号:Ad)和收到基灰分(符号:Aar)。 三、挥发分(全称为:挥发分产率,Volatile matter ) 煤的挥发分符号:V,单位:%,是煤中的有机物质和一部分矿物加热分解的产物;它不是煤中固有物质;而是在特定温度下的煤热分解产物,所以确切地说挥发分叫挥发分产率。煤的挥发分与煤的变质程度有很大的关系,随煤化程度的增加,挥发分降低;

计算机辅助船舶制造(考试大纲)

课程名称:计算机辅助船舶制造课程代码:01234(理论) 第一部分课程性质与目标 一、课程性质与特点 《计算机辅助船体建造》是船舶与海洋工程专业的一门专业必修课程,通过本课程各章节不同教学环节的学习,帮助学生建立良好的空间概念,培养其逻辑推理和判断能力、抽象思维能力、综合分析问题和解决问题的能力,以及计算机工程应用能力。 我国社会主义现代化建设所需要的高质量专门人才服务的。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的计算机运用能力和综合运用所学知识去分析和解决问题的能力。 二、课程目标与基本要求 通过本课程学习,使学生对船舶计算机集成制造系统有较全面的了解,掌握计算机辅助船体建造的数学模型建模的思路和方法,培养计算机的应用能力,为今后进行相关领域的研究和开发工作打下良好的基础。 本课程基本要求: 1.正确理解下列基本概念: 计算机辅助制造,计算机辅助船体建造,造船计算机集成制造系统,船体型线光顺性准则,船体型线的三向光顺。 2.正确理解下列基本方法和公式: 三次样条函数,三次参数样条,三次B样条,回弹法光顺船体型线,船体构件展开计算的数学基础,测地线法展开船体外板的数值表示,数控切割的数值计算,型材数控冷弯的数值计算。 3.运用基本概念和方法解决下列问题: 分段装配胎架的型值计算,分段重量重心及起吊参数计算。 三、与本专业其他课程的关系 本课程是船舶与海洋工程专业的一门专业课,该课程应在修完本专业的基础课和专业基础课后进行学习。 先修课程:船舶原理、船体强度与结构设计、船舶建造工艺学 第二部分考核内容与考核目标 第1章计算机辅助船体建造概论 一、学习目的与要求 本章概述计算机辅助船体建造的主要体系及技术发展。通过对本章的学习,掌握计算机辅助制造的基本概念,了解计算机辅助船体建造的特点、造船计算机集成制造系统的基本含义和主要造船集成系统及其发展概况。 二、考核知识点与考核目标 (一)计算机辅助制造的基本概念(重点)(P1~P5) 识记:计算机在工业生产中的应用,计算机在产品设计中的应用,计算机在企业管理中的应用,计算机应用一体化。 理解:CIM和CIMS概念,计算机辅助制造的概念和组成 (二)造船CAM技术的特点(重点)P6~P8 识记:船舶产品和船舶生产过程的特点,造船CAM技术的特点 理解:船舶产品和船舶生产过程的特点与造船CAM技术之间的联系 应用:造船CAM技术应用范围 (三)计算机集成船舶制造系统概述(次重点)(P8~P11)

煤炭指标及煤种教学文案

煤炭指标及煤种

焦炭:烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。 精煤:原煤经过洗煤,除去煤炭中矸石,即为精煤。 肥煤是指国家煤炭分类标准中,对煤化变质中等,粘结性极强的烟煤的称谓,炼焦煤的一种,炼焦配煤的重要组成部分,结焦性最强,熔融性好,结焦膨胀度大,耐磨;精煤是指经洗选加工供炼焦用或其他用途的洗选煤炭产品的总称。 煤的挥发分 煤的挥发分,即煤在一定温度下隔绝空气加热,逸出物质(气体或液体)中减掉水分后的含量。剩下的残渣叫做焦渣。因为挥发分不是煤中固有的,而是在特定温度下热解的产物,所以确切的说应称为挥发分产率。 (1)煤的挥发分不仅是炼焦、气化要考虑的一个指标,也是动力用煤的一个重要指标,是动力煤按发热量计价的一个辅助指标。 挥发分是煤分类的重要指标。煤的挥发分反映了煤的变质程度,挥发分由大到小,煤的变质程度由小到大。如泥炭的挥发分高达70%,褐煤一般为40~60%,烟煤一般为10~50%,高变质的无烟煤则小于10%。煤的挥发分和煤岩组成有关,角质类的挥发分最高,镜煤、亮煤次之,丝碳最低。所以世界各国和我国都以煤的挥发分作为煤分类的最重要的指标。 (2)煤的挥发分测试。从广义上来讲,凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于动力用煤,简称动力煤。 1)无烟煤(WY)。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。 2)贫煤(PM)。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中不结焦。燃烧时火焰短,耐烧。 3)贫瘦煤(PS)。贫瘦煤是高变质、低挥发分、弱粘结性的一种烟煤。结焦较典型瘦煤差,单独炼焦时,生成的焦粉较多。

相关文档
最新文档