菲涅尔透镜提高太阳能利用率的研究

菲涅尔透镜提高太阳能利用率的研究
菲涅尔透镜提高太阳能利用率的研究

菲涅尔透镜提高太阳能利用率的研究

人类对太阳能的利用已有悠久的历史,我国早在战国时期就有人通过用金属做成的凹面镜聚焦太阳光来点火,以后又发展到了用玻璃放大镜来聚光取火(¨.随着经济和科学技术的发展,能源短缺和环境污染带来的一系列问题呼吁开发可再生能源,最具可持续发展理想特征的太阳能光伏发电将进入人类能源结构并成为基础能源的重要组成部分。但是太阳能光伏发电的成本高达普通煤电成本的6至8倍,如此高的成本很难使其得到普遍推广.因此,提高太阳能的利用效率、降低成本是目前太阳能光伏发电的主要研究方向。其中,降低太阳能电池发电成本的有效途径之一是用聚光太阳能电池来减少给定功率所需的电池面积,并用比较便宜的聚光器来部分代替昂贵的太阳能电池.在这种系统中,太阳能电池的费用只占系统总费用的-d,部分,所以可以采用工艺先进、效率更高而价格较贵的电池来提高整个系统的性能。目前可用于提高太阳能利用率的聚光器主要有反射式和折射式两类,本文主要研究折射式聚光器一菲涅尔透镜.

3菲涅尔透镜

3.1菲涅尔透镜的结构和特点

菲涅尔透镜是由平凸透镜演变而来的,是一面刻有一系列同心棱形槽的轻薄光学塑料片,如图1所示.其每个环带都相当于一个独立的折射面,这些棱形环带都能使入射光线会聚到一个共同的焦点上。因此,消球差是菲涅尔透镜的固有特点。普通的菲涅尔透镜是具有正光焦度的平面型透镜,其中一个面为棱形槽面,另一个面是平面.这种透镜结构简单,加工方便。另一种形式为弯月型,即它的基面为曲面,其优点是为消像差增加了自由度,对提高成像质量有利,但工艺较。菲涅尔透镜的棱形槽一般为每毫米2到8个槽,精密型的可达到每毫米20个槽左右.这样,菲涅尔透镜便完全有可能同以衍射极限为分辨力的一般透镜相比拟。通常,菲涅尔透镜在整个直径范围内的厚度基本相同,所以使用它可以节省材料,减轻重量,还可减少光吸收作用。

与传统的光学玻璃透镜相比,菲涅尔透镜用于太阳能电池聚光的优点是:①体积小,重量

轻,价格便宜,用很少的原料便可得到较大口径的透镜;②加工方便,不易脆裂,“光学记忆力”好;④透光率高,实际上可达到o.85以上(考虑了反射损失和制造缺陷的影响);④适当设计齿的角度,如采用变焦距技术,可使电池上的光强分布合理,这是其它聚光镜难以做到的;⑤透镜本身就是电池外罩的一部分,可以保护电池,聚光束被包括在一个封闭的罩子里,可防止意外烧伤人体和灼伤眼睛,防止可燃物碎片落入聚光器引起火灾;⑥散热效果好,采用菲涅尔透镜的聚光系统的散热器位于电池外罩的阴影里,不会被太阳直射,便于散热.电池温度低,效率也就高.⑦保养清扫方便,电池无需清扫,如采用齿面向电池的透镜,上面的积尘也很容易清除.⑧有一定的强度和韧性,能经得起砂、石的打击.

3.2菲涅尔透镜的成像特性

比较起来,菲涅尔透镜的成像质量普遍不如传统光学透镜.在平行光垂直入射的情况下,在其焦面上能得到一个无像差的会聚点,但轴外点的像差则较大.作为准直透镜,表现在物方焦平面上轴外一点发出的光线经过透镜后不是绝对的平行光,而是有一定空间发散角的光.作为聚光透镜则表现为斜入射平行光经过透镜后得到的不是一个理想无像差会聚点,而是一个有一定大小的弥散斑.倾斜的角度越大,弥散斑就越大.

4用菲涅尔透镜提高太阳能利用率的实验

4.1实验描述

本实验采用长为32cm、宽为25cm的点状菲涅尔透镜来聚光,用型号为ZDS-10H的数字照度计来测量照度,该照度计的光接收区域是一个直径为4cm的圆.由于太阳光的照度超过了该照度计的量程,本实验通过在光接收器上遮纸的办法进行光衰减,并通过在视场角为0。时改变纸张数来模拟一天中太阳光的不同强度.通过改变入射光与透镜的角度来模拟不同时间点的太阳视场角.实验数据见表1和表2.为了分析透镜聚光效率的损失,我们进行了杂散光影响实验,通过对光接收器加纸筒和对透镜加纸盒的办法进行了模拟.图2中的(a)为在没有透镜的情况下对光接收器加纸筒的示意图,(b)为加透镜聚光后加纸盒的示意图,实

验数据见表3和表4由表1数据可知,通过对视场角为零度时增纸张数聚焦前后的读数分析可知菲涅尔透镜

的聚光倍数随着纸张数的增加而减小,即透镜的聚光倍数随着光强的减弱有减小趋势.分析表2数据可知,当纸张数为4时,随着视场角的增大,透镜的聚光倍数在不断地减小,且视场角大到一定角度时透镜几乎不聚光,其原因是入射角越大,镜面反射损失越大,下面将对此作分析.此外,根据菲涅尔透镜的聚光特性,入射倾角越大,弥散斑越大(产生余弦效应),这对聚光效果也有一定的影响.所以在用菲涅尔透镜提高太阳能电池效率时还必须使用太阳光线跟踪装置.

表3 对光接收器加纸筒与不加纸筒的比较

加纸筒前照度(Ev/lx) 加纸筒后照度(Ev/lx) 加纸筒前照度/加纸筒后照度(T)

350 106 3.3

425 133 3.2

394 116 3.4

384 113 3.4

402 122 3.3

根据透镜和照度计光接收区域的尺寸,由式(2)可计算出该菲涅尔透镜的几何聚光比,

69.63)2*/()25*32(/≈==∏O T C S S X

几何聚光比即为透镜的理论聚光比,与表2中视场角为00时的聚光比15.30比较,得知实验

的聚光倍数与它的理论聚焦倍数有比较大的出入,这是由以下几个因素造成的.

(1)反射损失当一束光投射到两种透明介质的光滑分界面上时,有一部分光线会反射回到原来的介质,这部分光线称为反射光线.对透射元件而言,反射光线代表能量损失.实验所使用的菲涅尔透镜未经镀膜处理,因此有较大的反射损失.菲涅尔透镜由PMMA 材料制作,其折射率为1.49,图3为光学玻璃(rt,=1.49)和空气界面的反射率R 随入射角口变化的曲线,其中R 。、R 。分别为垂直于入射面振动的s 分量和平行于入射面振动的P 分量的反射率.从图上可以看出,当光以小角度入射时,反射率缓慢地变化,几乎稳定在一个值上.当光入射超过一定的角度时,反射率随着入射角的增大而急剧上升,直到1.图3反射率随入射角变化的曲线当光从空气中垂直入射时,由菲涅尔公式可推得反射率为:2

11??? ??+-=n n R 代入,n=1.49, 得04.0≈R (2)吸收和散射损失

所谓光的吸收,就是指光波通过介质后,光强度减弱的现象.光通过透镜时必有一部分能量被吸收.光束通过不均匀介质时所产生的偏离原来传播方向、向四周散射的现象就是光的散射.同时考虑吸收和散射后,透射光

强可表示为)4(....................0)(0l l h k e I e

I I α==+- 式中,厶为f=0处的光强,7l 为散射系数,K 为吸收系数,a 为衰减系数,z 为介质厚度.从文献中可以查到PMMA 材料的透光率达92%.

做到这里了

(3)杂散光影响

由于照度计的光接收器内部有漫反射,故光接收器四周的大部分光都能被接收,而透镜对杂散光没有透射能力,即几乎都被反射或散射掉了(入射角大于一定角度,反射损失几乎为1).因此这是实验数据与理论值相差较大的主要原因.根据表3、表4数据可计算这部分损失,取光接收器不加纸筒比加纸筒的均值瓦≈3.32,透镜不加纸盒比加纸盒的均值-2≈1.07.设实际接收到的入射光通量为圣。,杂散光的光通量为圣。,除去杂散光后,光接收器应接收到的光通量为圣,则有:

圣篡=圣杂+雪

加纸盒前照度(Ev/lx ) 加纸盒后的照度(Ev/lx ) 加纸盒前照度/加纸盒后照度(T ) 3820 3530 1.08

3859 3512 1.10

3753 3540 1.06

3920 3675 1.07

3950 3720 1.06

无透镜时,圣墓,=3.32圣,

有透镜时,

雪总。=1.07西。

则有;

西。/西。=3.1(雪簋,/圣总。)

’式中,垂总。/西总,为实际测得的聚光比,为除去杂散光后的理论聚光比.

(6)

圣。/圣,

考虑到以上损失后,计算出的聚光比为53.7。与理论值还有一点差距,可能存在的一些原因是;④透镜表面的不清洁度导致散射损失增大;⑦实验时透镜一小区域面积被遮挡,此处的光线会聚受到了影响;③菲涅尔透镜非工作面的能量损失和加工质量引起的损失;④实验条件有限及其它原因.

5结论

菲涅尔透镜作为折射式聚光器可明显提高

太阳能的利用率,但其聚光倍数会随光强的减弱而变小,而且还会随太阳视场角的增大明显减小,主要是透镜表面存在反射损失.因此,若把透镜应用到聚光太阳能系统,为使光线能垂直入射,跟踪技术一直是该领域的研究重点.目前,陈应天教授研究的自旋一仰角跟踪理论在国际上处于领先水平【61.

螺纹透镜(菲涅尔透镜)

菲涅尔透镜是由法国物理学家奥古斯汀.菲涅尔(Augustin.Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统——灯塔透镜菲涅尔透镜(Fresnel Lens)是一种微细结构的光学元件,从正面看其象一个飞镖盘,由一环一环的同心圆组成。 原理 其工作原理十分简单:假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。 另外一种理解就是,透镜连续表面部分“坍陷”到一个平面上。从剖面看,其表面由一系列锯齿型凹槽组成,中心部分是椭圆型弧线。每个凹槽都与相邻凹槽之间角度不同,但都将光线集中一处,形成中心焦点,也就是透镜的焦点。每个凹槽都可以看做一个独立的小透镜,把光线调整成平行光或聚光。这种透镜还能够消除部分球形像差。

分类 从光学设计上来划分 正菲涅尔透镜: 光线从一侧进入,经过菲涅尔透镜在另一侧出来聚焦成一点或以平行光射出。焦点在光线的另一侧,并且是有限共轭。 这类透镜通常设计为准直镜(如投影用菲涅尔透镜,放大镜)以及聚光镜(如太阳能用聚光聚热用菲涅尔透镜。 负菲涅尔透镜: 和正焦菲涅尔透镜刚好相反,焦点和光线在同一侧,通常在其表面进行涂层,作为第一反射面使用。 螺纹透镜与平凸透镜相比具有厚度薄、重量轻、透光好、易加工等特点 LED螺纹透镜工作原理 1.因LESD为点光源发光角度大,发出的光线散射较严重,利用菲涅尔透镜的聚光作用, 将光线汇聚于有效使用范围内,起到增加光效,提高亮度的效果。 2.菲涅尔透镜相对于用一个LED灯,焦距不同,距离不同,可任意设定出射光角度,根 据需求设计。 3.菲涅尔透镜的超薄结构,使光的透射率比传统凸透镜高得多,起重量小于凸透镜,多种 场合都较适用。

菲涅尔太阳能

简介 近年来,随着石油煤炭资源的日渐枯竭,造成严重的坏境污染,可再生能源的开发和利用迫在眉睫。太阳能作为一种清洁的可再生能源,对它的开发利用具有很大的研究前景。太阳能作为一种能源利用已经有3000多年的历史,而将它作为一种动力能源只有三百多年的历史,20世纪70年代太阳能的利用取得了突飞猛进的发展。现在比较普及的平板式太阳能集热装置已经得到推广,但是平板式集热器的表面即是太阳辐射吸收面。造成了集热温度在100℃左右。平板式集热器能够利用太阳中的直射和散射辐射,不需要跟踪系统,安装后能够稳定工作,这是其得到普及的重要原因。 为了进一步提高太阳能的利用率,聚光集热器应运而生。聚光器通过其光学特性提高了光线中的能量密度,从而提高太阳能的综合利用效率。聚光集热器种类很多,但是按照其原理可以概括分为三部分:聚光器,吸收器,跟踪系统。聚光器就是将照射在其表面上的光线通过光学特性聚集在面积较小的区域内。不同的聚光器根据其聚光原理的不同,可以分为反射式,折射式,透射式三种。现在应用最多的是反射式聚光器,根据光线反射原理制成的聚光器包括:圆锥发射镜、多折圆锥反射镜、槽形抛物面和旋转抛物面反射镜、球面反射镜、斗式槽形平面反射镜、条形反射镜、菲涅尔透镜。 本文重点研究菲涅尔透镜聚光器的聚光特点,在此基础上研究相应的跟踪机构,优化现有的吸收器。菲涅尔透镜是由法国物理学家奥古斯汀.菲涅尔(Augustin Fresnel)发明的,它的工作原理:透镜本身是由正常的凸透镜演变而来,假想有足够多的小的长方形无限逼近透镜的边缘面,然后去掉多余的一些材料,把图形拉直,便得到菲涅尔透镜。菲涅尔透镜是由 图一菲涅尔透镜的演变过程 一系列阶梯同心圆构成的。它的聚光比一般在10-50,菲涅尔透镜的制作成本低,而且材料韧性好,可以满足恶劣的天气环境要求。 跟踪器 根据聚光器的聚光原理,当光线垂直照射在其表面时,光线在接收器表面形成形状规则的聚合光斑。当光线偏离透镜法线时,在接收器表面会形成偏移的光斑,这些偏移光斑影响太阳能的接收效率。因此,对于聚光镜,要想提高太阳能的利用效率,必须设计好跟踪机构,使聚光器的接收面能够垂直太阳入射光线。现有的跟踪装置按照是否存在反馈,可以分为闭环跟踪和开环跟踪。开环跟踪的特点在于,将写好的程序存在控制机构中,根据当地地理位置以及相关的地理知识测算出太阳的运动轨迹,以此来驱动聚光器经行跟踪。开环控制的结构比较简单,稳定性高,开发成本低。而且不受天气的影响。它的缺点在于,跟踪误差比较

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

太阳能利用发展史

太阳能热水器的BLOG 正文太阳能的发展简史(2008-04-15 14:37:03) 45亿年前,太阳能开始辐射到地球。 公元前9世纪,中国人开始用“阳燧”(凹面镜)聚光取火。 公元7世纪,开始使用凸透境聚集太阳能取火。 公元前3世纪,希腊人和罗马人用“燃烧镜”(凹面镜)做武器聚焦太阳能点火并点燃敌方战船的船帆。 1世纪,意大利史学家普林尼修建了第一个保温隔热的被动式太阳能房。 1-500年,罗马人在欲室中修建了朝向南面的大窗户利用太阳光直射来吸热。 6世纪,东罗马帝国皇帝查丁尼颁布法律保护房屋和公共建筑的太阳能浴室,以使档板不再阻挡太阳光热的射入。 14世纪,居住在北美地区的印第安人的祖先,冬季时居住在悬崖的南侧以直接面对太阳方便取暖。 17世纪,有学识的人接受了太阳和其他恒星是相同的这一观念,1615年出现了一台利用太阳能加热空气使其膨胀做功的抽水机。1643年~1715年法国国王路易十四统治时期是太阳能试验的一个时代。 18世纪,欧洲贵族利用太阳能墙储存成熟的水果,英国与荷兰利用倾斜的面向南的玻璃墙促进了太阳能温室的发展。1767年瑞士科学家贺瑞斯发明了第一台太阳能集热器。1774年,在法国巴黎有人举行了地场用透镜会聚阳光把金属熔化的表演。 19世纪,富有的欧洲人开始修建和使用太阳能温室和保温房,法国科学家用从太阳能集热器获得的热量产生蒸气为蒸汽机提供动力。1837年,英国天文学家赫胥黎在去非洲好望角的探险途中,把一个黑箱子埋入沙土中,箱上用双层玻璃保温,使箱内温度达到116度,于是他就用这种简易的太阳能装置烧饭。1839年,法国科学家Edmund Becquerel 观察到了太阳能的光伏效应。1861年,法国科学家Augustin Mouchot 取得了太阳能设备的专利权。1870年Augustin Mouchot利用太阳能炊具、太阳能水泵灌溉、太阳能蒸发器制酒和水蒸馏(广泛

菲涅尔透镜的原理及应用

菲涅尔透镜的原理及应用 (国防科大理学院光学小组第六组) [摘要] 菲涅尔透镜多是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。菲涅尔透镜可按照光学设计或结构进行分类。菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。 [关键词] 菲涅尔透镜;原理;分类;应用;研究与发展状况 本文主要从菲涅尔透镜的历史,基本原理,分类,作用,应用以及国内外的研究与发展状况等方面完整介绍了菲涅尔透镜的相关知识。 1.简介 菲涅尔透镜 (Fresnel lens),又称螺纹透镜,是由法国物理学家奥古斯汀·菲涅尔(Augustin·Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统——灯塔透镜。菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。

菲涅尔透镜 菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如幻灯机、薄膜放大镜、红外探测器等。 2.菲涅尔透镜的历史 通过将数个独立的截面安装在一个框架上从而制作出更轻更薄的透镜,这一想法常被认为是由布封伯爵提出的。孔多塞(1743-1794)提议用单片薄玻璃来研磨出这样的透镜。而法国物理学家兼工程师菲涅尔亦对这种透镜在灯塔上的应用寄予厚望。根据史密森学会的描述,1823年,第一枚菲涅尔透镜被用在了吉伦特河口的哥杜昂灯塔(Phare de Cordouan)上;透过它发射的光线可以在20英里(32千米)以外看到。苏格兰物理学家大卫·布儒斯特爵士被看作是促使英国在灯塔中使用这种透镜的推动者。 3.菲涅尔透镜的基本原理 菲涅尔透镜的工作原理十分简单:假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。

太阳能用菲涅尔透镜介绍

菲涅尔透镜 在太阳能聚光光伏系统(在太阳能聚光光伏系统(CPV CPV CPV)中的应用 )中的应用一、太阳能产业发展趋势 能源问题,成为我国经济发展的一个重要问题。为了落实科学发展观,建设节约型社会,到“十一·五”计划末,要实现资源利用效率显著提高,单位国内生产总值能源消耗降低20%左右。可再生能源的利用,将成为实现这一目标的关键。 可再生能源是指可以永续利用的能源资源,如水能、风能、太阳能、生物质能和海洋能等非化石能源。业内专家称,我国在发展3大主流可再生能源太阳能、风能、生物质能的过程中,应将太阳能产业放在第一位,它最适合我国国情。从环境条件看,中国西部大部分地区适合发展太阳能;另外中国人口众多,类似于欧洲的购电补偿模式也非常适用。 近年来,光伏发电和光热发电在我国已受到前所未有的重视,太阳能发电正在成为我国可再生能源一支生力军。 太阳能风能 水能生物能 二、聚光型太阳能系统(CPV)应用开始起步 据报道,当人类创造清洁、可再生能源的竞争越来越激烈时,太阳能产业将注意力集中在了新技术“聚光光伏(CPV )太阳能”上,并希望通过这项技术生产具有规模效应的电力。

聚光光伏太阳能将传统的太阳能光电技术与大规模聚热太阳 能发电厂结合了起来,能够极大地强化太阳能生产。CPV技术通 过透镜或镜面将接收到的太阳能放大成百上千倍,然后将放大的 能量聚焦于效率极高的小光电池上。通过放大太阳能,该技术有 效地减少了光电池中半导体材料的用量。 三、聚光型太阳能系统(CPV)优势 基本原理:CPV通过聚光的方式把一定面积上的光通过聚光 系统会聚在一个狭小的区域(焦斑),太阳能电池仅需焦斑面积的大 小即可,从而大幅减少了太阳能电池的用量。同样条件下,倍率越 高,所需太阳能电池面积越小。 1、光伏发电新的成本降低技术路径。 2、系统转换效率高。 高倍率CPV采用GaAs等三五族化合物电池,CPV系统转换 效率达到28%,较硅基太阳能电池和薄膜太阳能电池高出不少。 四、菲涅尔透镜在聚光型太阳能系统(CPV)中的作用 CPV系统模组主要由太阳能电池、高聚光镜面菲涅尔透镜等光学聚光元件、太阳光追踪器组成。应用菲涅尔透镜的作用就是将光线从相对较大的区域面积转换成相当小的面积上,这种透镜也被称做集光器或聚光器。 在太阳聚光领域,菲涅尔透镜是聚光太阳能系统(CPV) 中重要的光学部件之一。太阳菲涅尔透镜聚光镜就是,透镜的 焦点刚好落在太阳能芯片上。当透镜面垂直面向太阳时,光线 将会被聚焦在电池片上,汇聚了更多的能量,因而需要较小的 电池片面积,大大节约了成本。 应用菲涅尔透镜能够将太阳光聚焦到入光面1/10至 1/1000甚至更小的接收面(高性能电池片)上,比传统平板光 伏(FPV)发电效率提高30%以上,满足太阳能聚光发电(CPV) 和聚热系统(TPV)中高能量高温需求。

中国太阳能光伏产业发展现状及未来发展趋势(精)

中国太阳能光伏产业发展现状及未来发展趋势 来源:CSIA 类历史上从未有如2009 年底哥本哈根会议那样的事件,会使“节能减排”、“低碳”等字眼如此深入人心,全球经济的发展方向和导航标也已然转向了低碳经济。太阳能作为一种清洁的可再生能源,是未来低碳社会的理想能源之一,当下正越来越受到世界各国的重视。产业概况太阳能光伏产业链是由硅提纯、硅锭/硅片生产、光伏电池制作、光伏电池组件制作、应用系统五个部分组成。在整个产业链中,从硅提纯到应用系统,技术门槛越来越低,相应地,企业数量分布也越来越多,且整个光伏产业链的利润主要是集中在上游的晶体硅生产环节,上游企业的盈利能力明显优于下游。 全球太阳能光伏产业发展现状全球太阳能光伏产业发展现状CSIA 最新研究报告称,目前太阳能电池主要分为单晶硅电池、多晶硅电池和薄膜电池三种。单晶硅电池技术成熟,光电转换效率高,但其生产成本较高,技术要求高;多晶硅电池成本相对较低,技术成熟,但光电转换效率相对较低;而薄膜电池成本低,发光效率高,但目前其在技术稳定性和规模生产上均存在一定的困难。随着技术的进步,未来薄膜电池会有更好的发展前景。 在各国政府的大力支持下,太阳能光伏产业得到了快速的发展。2006 年至2009 年,太阳能光伏电池产量的年均增长率为60%。由于受到2008 年金融危机的影 响,2009 年前两个季度光伏电池产量的增长速度有所放缓,但随着2009 年下半年市场需求的复苏, 2009 年全年的太阳能电池产量达到了10431MW,比2008 年增长42.5%。 年全球太阳能电池产量点击此处查看全部新闻图片 目前太阳能光伏发电的成本大约是燃煤成本的11—18 倍,因此目前各国光伏产业的发展大多依赖政府的补贴,政府的补贴规模决定着本国的光伏产业的发展规模。目前在政府的补贴力度上,以德国、西班牙、法国、美国、日本等发达国家的支持力度最大。2008 年,西班牙推出了优厚的光伏产业补贴政策,使其国内光伏产业

太阳能发展前景及利用

太阳能发展前景及利用 选题背景 目前能源危机已成为影响人类继续发展的一项重要因素,太阳能作为一种新型的清洁能源,被人类给予了厚望,太阳能的能否有效利用关系着人类的未来。 项目条件 太阳光线太阳能 研究目的 太阳能已逐渐走进我们的生活,对于太阳能或许我们还有一点陌生,借此机会我们 来讨论一下“太阳能”。 主要研究方法 上网查阅资料查阅相关书籍请教相关人士 研究的基本思路 在本次研究中,通过各种渠道获得相关知识,并加以分析,从中获取自己需要的,加入自己的认识,再编写论文。 研究的先进性 广泛获取信息,具有科学性,真实性。 研究的基本过程 先选取题材,制定学习过程,再通过各种渠道获取相关信息,最后编写论文。论文分为以下步骤:背景及目的,研究过程,研究心得,中英文摘要,太阳能的认识,太阳能的利用范围,太阳能在国内外的利用程度,太阳能的前景,总结。 研究心得 通过此次研究学习我对太阳能有了进一步认识,对资源节约及开发也有了新的理解。通过本次学习提高了我的综合能力,拓宽了我的知识面。

中文摘要 太阳是一个巨大、久远、无尽的能源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约为3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。下图是地球上的能流图。从图上可以看出,地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。 英文摘要 Thesolarenergyisanenergy,andiscanrenewableenergy.Itsresourcesisabund ant,freetouse,anddidn'tneedtobetransported,totheenvironmentiswithoutthep ollution.Butthesolarenergyalsohastwomainweakness:Oneisflowdensitylow;Two isitsstrengthundertheinfluenceofvariousfactor(season,location,andweather ...etc.)cannotmaintainquantityoften.Thesetwogreatestweaknessesconsumedly limitedsolarenergyeffectivelytomakeuseof. 关键词 太阳能环境资源清洁 太阳能的认识 太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367kw/m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h 的年平均辐射强度为0.20kw/m2,相当于有102,000TW的能量,人类依赖这些能量维

菲涅尔太阳能发展概述

线性菲涅尔太阳能发展论文综述 (张伟明,2013年4月25日) 摘要:本文针对太阳能的利用,根据菲涅尔透镜原理,以及该原理特性设计的太阳能跟踪装置经行了简单的介绍和比较。分析了单轴跟踪、双轴跟踪、极轴跟踪的优缺点。针对基于光电控制的双轴跟踪系统经行了相关的调查研究,对其中的结构,控制机理有了比较系统的了解,其中主要包括软件控制部分和相关的硬件配置。提出现有的研究缺少针对大规模的菲涅尔透镜阵列的控制,具有很高的经济应用价值和发展前景,对于现有的控制结构,如何能让其结合实际的情况,应用到实际的生产中。这些都是有待解决的问题。除此,针对菲涅尔太阳的研究还有针对集热器,布置方式的优化,大规模发电应用存在的问题经行了相关了解。关键词:菲涅尔透镜,跟踪器,太阳能,应用。 Abstract:in this paper, we make comparison of the use of solar energy, and the principle of Finel lens, and the solar tracking device according to the characteristics of the design, we also introduce these features. We make analysis of the advantages and disadvantages in the single axis tracking, Dual-axis tracking and the polar axis tracking. We also make investigation of the Dual-axis tracking system based on photoelectric controlling system, having a good undersanding of the structure, controlling mechanism ,including the hardware configuration and software. The existing studies lack in the Finel lens arraies of large-scale, it is of high economic value and the good prospects. For the existing control ling structure, how to make it in practice is question we need to resolve. We get to know the research on Finel and the solar collector, optimizing the layout, power generation in large-scale. Key words: Finel lens, tracker, solar energy, application. 1.引言 为满足人类社会可持续发展以及人类对能源日益增长的需要,防止和石油天然气等传统化石能源对自然和人居环境造成的严重污染和生态破坏,必须走可持续发展的能源道路,即是利用好可再生能源。我国由于地缘辽阔,可再生能源分布广泛,资源丰富,因而只要做到因地制宜,就地就近地开发可再生能源,将是调整能源结构,保护环境,增强能源安全,实现可持续发展的战略选择。很显然太阳能是可再生能源中分布最广泛,几乎遍布于全球的每一个角落,取用最方便,储量最丰富,可谓是取之不尽用之不竭。一旦它能够被充分的有效的利用,将会极大地缓解人类的能源危机,故而太阳能在未来能源结构中将占有重要的地位。 太阳能聚光器是将太阳光通过透镜或者其它的方式聚集起来,增加能流密度以提高太阳能电池发电效率的一种现有技术。而它将配合太阳跟踪技术以及高效的聚光电池为高倍聚焦发电提供了可能,这样就大大节约了成本,提高了太阳能利用率。太阳能聚光器按其聚光的方式分可以分为透射式聚光器和反射式聚光器,而这两种聚光器又在各自的领域有着不同的应用,目前应用于高倍聚焦太阳能发电的聚光器一般为透射式聚光器,在透射式聚光器中又以菲涅尔聚光器应用最为广泛。 2.菲涅尔透镜 菲涅尔透镜是由法国物理学家Augustin Jean Fresnel在1822年所发明的一种透镜,与传统的球面或非球面透镜相比,菲涅尔透镜采用多个同轴排列或平行排列的棱镜序列组成不连

太阳能电池的研究现状及发展

太阳能电池的研究现状及发展 【摘要】近年来随着人们对环境的重视,对新能源的需要变得越来越大,太阳能成为新型能源将被广泛应用。黄铁矿结构的二硫化铁(FeS2)是一种具有合适的禁带宽度(Eg≈0.95eV)和较高光吸收系数(当λ≤700nm时,α=5×105cm-1)的半导体材料,而且其组成元素在地球上储量丰富、无毒,有很好的环境相容性。因此,FeS2薄膜在光电子以及太阳能电池材料等方面有潜在的应用前景,受到人们的广泛关注。本文从不同制备方法所制备出的二硫化铁薄膜的研究结果,来分析二硫化铁薄膜的研究状况。 【关键词】能源;二硫化铁;制备方法;光电性能 1.引言 太阳能电池自1954年由诺贝尔实验室和RCA公司几位杰出的科学家发明问世以来,由于地球变暖现象的日益严重,世界各国对二氧化碳的排放量均采取严格的管制,再加上石油匮乏,40年后将消耗殆尽,其价格持续攀升,这些因素都促成了对代替能源的重视与需求,也激发了太阳能产业的蓬勃发展。 太阳是一座聚合核反应器,它一刻不停地向四周空间放射出巨大的能量。它的发射功率为3.865×1026J/S(相当于烧掉1.32×1016ton标准煤释放出来的能量)。地球大气表层所接收的能量仅是其中的22亿分之一,但是地球一年接收的太阳的总能量却是现在人类消耗能源的12000倍。另外,根据文献记载太阳的质量为1.989×1030kg,根据爱因斯坦相对论(E=mc2)可以计算出太阳上氢的含量足够维持800亿年。而由地质资料得出的地球年龄远远小于这个数字。因此可以说太阳能是取之不尽、用之不竭的[1-3] 2.太阳能电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。 2.1 太阳能电池发展 目前,太阳能电池产品是以半导体为主要材料的光吸收材料,在器件结构上则使用P型与N型半导体所形成的PN结产生的内电场,从而分离带负电荷的电子与带正电荷的空穴而产生电压。由于晶体硅材料与器件在技术的成熟度方面领先于其他半导体材料,最早期的太阳能电池极为晶体硅制成,直到近几年晶体硅太阳能电池仍有大约90%的市场占有率。除了技术与投资门槛较低以外,不用担心硅原料匮乏等都是造成其市场占有率高的主因。 在晶体硅太阳能电池之后,大约从1980年起开始有非晶硅薄膜太阳能电池

菲涅尔透镜简介

菲涅尔透镜介绍 菲涅尔透镜 (Fresnel lens) ,又名螺纹透镜,一般由高透明材料注塑或压注而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是根据光的干涉及扰射以及相对灵敏度和接收角度要求来设计的。透镜的要求很高。一片优质的透镜必须表面光洁,纹理清晰,其厚度随用途而变,多在1-2mm左右,特性为面积大、厚度薄及侦测距离远。 菲涅尔透镜在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如投影机、薄膜放大镜、红外探测器及照明等。 使用普通的凸透镜,会出现边角变暗、模糊的现象,这是因为光的折射只发生在介质的交界面,凸透镜片较厚,光在玻璃中直线传播的部分会使得光线衰减。如果可以去掉直线传播的部分,只保留发生折射的曲面,便能省下大量材料同时达到相同的聚光效果。菲涅耳透镜就是采用这种原理的。菲涅尔透镜看上去像一片有无数多个同心圆纹路的平板玻璃,却能达到凸透镜的效果,如果投射光源是平行光,汇聚投射后能够保持图像各处亮度的一致。 菲涅尔透镜的应用 菲涅尔透镜应用于多个领域,包括: 投影显示:菲涅尔投影电视,背投菲涅尔屏幕,高射投影仪,准直器; 聚光聚能:太阳能用菲涅尔透镜,摄影用菲涅尔聚光灯,菲涅尔放大镜; 航空航海:灯塔用菲涅尔透镜,菲涅尔飞行模拟; 科技研究:激光检测系统等; 红外探测:无源移动探测器; 照明光学:汽车头灯,交通标志,光学着陆系统。 智能家居:安防系统探测器等 我公司生产的菲涅尔镜,采用主要注塑和热压两种方式。 注塑菲涅尔透镜: 设备是进口的高精密注塑机,主要生产小规格菲涅尔透镜(8吋以下),可以大规模提供需求。热压菲涅尔透镜: 设备是根据工艺需求自主设计制造的专用自动热压机。热压的菲涅尔镜产品精度高,质量好,主要用在成像方面,产品尺寸规格3-10吋,也可以定制超大尺寸的产品。外形由数控激光激光机切割,产品形状任意,可以根据客户需要选择定制。 根据菲涅尔透镜的工作原理,一般热压菲涅尔透镜的成像质量优于注塑产品,但热压的生产成本也高于注塑产品。因此用于图像处理时,要选用热压菲涅尔透镜,用于聚光处理的,可以选用注塑菲涅尔透镜。

太阳能考题概论

一、单选题【本题型共10道题】 1.我国太阳能资源年太阳辐射总量5850-6680MJ/m2,相当于日辐射量4.5~5.1KWh/㎡的地区,属于()类地区。 A.I B.II C.III D.IV 用户答案:[B] 得分:1.00 2.以下选项属于我国第 I类太阳能资源区的有()。 A.宁夏北部.甘肃北部.新疆东部.青海西部和西藏西部 B.宁夏南部.甘肃中部.青海东部.西藏东南部和新疆南部 C.山西南部.新疆北部.陕西北部.甘肃东南部.广东南部.福建南部 D.湖南.湖北.广西.江西.浙江.福建北部.广东北部.陕西南部 用户答案:[A] 得分:1.00 3.光伏发电站并网运行时,向电网馈送的直流电流分量不应超过其交流额定值的()。 A.0.5% B.1% C.1.5% D.2% 用户答案:[B] 得分:0.00

4.水平单轴跟踪系统宜安装在以下哪类地区。() A.低纬度地区 B.中纬度地区 C.高纬度地区 D.中.高纬度地区 用户答案:[A] 得分:1.00 5.光伏发电站安装容量小于或等于30MW时,宜采用()。 A.单母线接线 B.单母线分段接线 C.双母线接线 D.双母线分段接线 用户答案:[A] 得分:1.00 6.我国太阳能资源年太阳辐射总量4200~5000MJ/ m2,相当于日辐射量3.2~3.8KWh/m2的地区,属于()类地区。 A.I B.II C.III D.IV 用户答案:[D] 得分:1.00 7.以下哪类电池应用在储能方面的历史较早,技术上也较为成熟,并逐渐进入以密封型免维护产品为主流的阶段。() A.铅酸电池

B.镍铬电池 C.锂电池 D.碱性电池 用户答案:[A] 得分:1.00 8.以下选项属于我国第 II类太阳能资源区的有()。 A.宁夏北部.甘肃北部.新疆东部.青海西部和西藏西部 B.内蒙古南部.宁夏南部.甘肃中部.青海东部.西藏东南部和新疆南部 C.河北东南部.新疆北部.陕西北部.甘肃东南部.广东南部.福建南部 D.广西.江西.浙江.福建北部.广东北部.陕西南部.安徽南部 用户答案:[B] 得分:1.00 9.以下选项属于我国第 III类太阳能资源区的有()。 A.宁夏北部.甘肃北部.新疆东部.青海西部和西藏西部 B.河北西北部.山西北部.内蒙古南部.宁夏南部.甘肃中部 C.河北东南部.山西南部.新疆北部.陕西北部.甘肃东南部.广东南部 D.湖南.湖北.广西.江西.浙江.福建北部.广东北部.陕西南部 用户答案:[C] 得分:1.00 10.自2008年以来,全球光热发电发展开始提速。已建成的太阳能热发电站以槽式电站为主,所占比例接近()。 A.40% B.50%

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

(完整版)基于菲涅尔透镜的配光设计

基于菲涅尔透镜的配光设计 内容:一、概述 二、设计方法 三、设计步骤 报告人:陈志强 学号:201510800103 专业:光信1501

1、菲涅尔透镜概述 菲涅尔透镜(Fresnel lens)又称螺纹透镜,是由法国物理学家奥古斯汀·菲涅尔(Augustin·Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统--灯塔透镜。菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。 2、基本原理 假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。(如图1-1) 另外一种理解就是,透镜连续表面部分“坍陷”到一个平面上。从剖面看,其表面由一系列锯齿型凹槽组成,中心部分是椭圆型弧线。每个凹槽都与相邻凹槽之间角度不同,但都将光线集中一处,形成中心焦点,也就是透镜的焦点。每个凹槽都可以看做一个独立的小透镜,把光线调整成平行光或聚光。这种透镜还能够消除部分球差。 图1-1

3、光学特性 使用普通的凸透镜,会出现边角变暗、模糊的现象,这是因为光的折射只发生在介质的交界面,凸透镜片较厚,光在玻璃中直线传播的部分会使得光线衰减。如果可以去掉直线传播的部分,只保留发生折射的曲面,便能省下大量材料同时达到相同的聚光效果。菲涅耳透镜就是采用这种原理的。菲涅尔透镜看上去像一片有无数多个同心圆纹路(即菲涅耳带)的玻璃,却能达到凸透镜的效果,如果投射光源是平行光,汇聚投射后能够保持图像各处亮度的一致。 二、设计方法 1、光源 本设计光源采用给定的点源,在TP软件中可以找到格点光源来仿真。 2、目标光斑 不同接收面的目标光斑有很大差异,具体如图3-9——图3-12。 3、环结构设计 设定环数为3个。 4、目标面 此设计目标接收面设置了4个,可参见图3-6。 三、设计步骤 1、光源格点光源参数如图3-1 图3-1

中国光伏发电的发展现状及趋势知识讲解

中国光伏发电的发展现状及趋势

中国光伏发电的发展现状及趋势 苏青峰上海联孚新能源科技有限公司 太阳能作为一种可永续利用、可再生的清洁能源,有着巨大的开发应用潜力。太阳每秒钟放射的能量大约是1.6×1023kW,其中到达地球的能量高达8×1013kW,相当于6×109t标准煤。太阳30分钟辐照地球的能量就够全世界1年的能源消耗。人类赖以生存的自然资源几乎全部转换自太阳能,人类利用太阳能的历史更是可以追溯到人类起源时代。太阳能是人类得以生存和发展所需的最基础的能源形式,从现代科技的发展来看,太阳能开发利用技术的进步有可能决定着人类未来的生活方式。 据IEA发布预测:2006年至2030年世界一次能源需求从117.3亿吨油当量增长了170.1多亿吨油当量,平均年增长45%。石油将在50年左右枯竭,天然气将在57~65年内枯竭,煤还可以供应169年。能源消耗远大于能源的供给,能源天平严重失衡,严峻的能源形势已摆在世人面前,人类正面临前所未有的能源危机。 目前,全球二氧化碳的排放量已达到300亿吨。如不加控制,将在2030年达到400亿吨,人类的生存环境面临着前所未有的挑战和危机。在已知的新能源形式中,太阳能肯定能够满足人类发展的能量需求。太阳能光伏发电的应用将能够有效降低环境污染,改善全球能源紧缺状况。当今,国家已把“节能减排、安全环保”作为“十一五”期间能源利用与发展的重点方向和目标,并列入了国家发改委“十六个重大专项”。

太阳能光伏发电技术的开发始于20世纪50年代。随着全球能源形势趋紧,太阳能光伏发电作为一种可持续的能源替代方式,于近年得到迅速发展。随着全球经济和科学技术的飞速发展,世界许多国家将光伏发电作为发展的重点,光伏产业的技术进步已经使太阳能应用成为可能,并首先在太阳能资源丰富的国家,如德国和日本,得到了大面积的推广和应用。在国际市场和国内政策的拉动下,中国的光伏产业逐渐兴起,并迅速成为后起之秀,涌现出无锡尚德、南京中电、江苏林洋、常州天合和天威英利等一大批优秀的光伏企业,带动了上下游企业的发展,中国光伏发电产业链正在形成。 随着传统能源的日益枯竭和石油价格的不断上升,以及人们对自身生存环境要求的不断提升,积极寻找新的替代能源已刻不容缓,作为无污染的清洁能源,太阳电池必将会得到迅速的发展。虽然太阳能光伏发电成本较高,但是从长远看,随着技术的进步,以及其他能源利用形式的逐渐饱和,太阳能可以在2015年之后成为主流能源利用形式,有着不可估量的发展潜力。国际经验表明,政策扶持是光伏产业发展的最主要驱动力,政府的政策导向将决定光伏产业的发展水准和市场需求,太阳能产业的发展对我们国家能源的开发和利用具有极其深远的意义。 光伏产业市场现状 在全球气候变暖、人类生态环境恶化、常规能源资源短缺并造成环境污染的形势下,太阳能光伏发电技术普遍得到各国政府的重

菲涅尔透镜的原理及应用

菲涅尔透镜的原理及应用 (国防科大理学院光学小组第六组) [摘要] 菲涅尔透镜多是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。菲涅尔透镜可按照光学设计或结构进行分类。菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。 [关键词] 菲涅尔透镜;原理;分类;应用;研究与发展状况 本文主要从菲涅尔透镜的历史,基本原理,分类,作用,应用以及国内外的研究与发展状况等方面完整介绍了菲涅尔透镜的相关知识。 1.简介 菲涅尔透镜(Fresnel lens),又称螺纹透镜,是由法国物理学家奥古斯汀·菲涅尔(Augustin·Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统——灯塔透镜。菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。

菲涅尔透镜 菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产 生变化热释红外信号。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如幻灯机、薄膜放大镜、红外探测器等。 2.菲涅尔透镜的历史 通过将数个独立的截面安装在一个框架上从而制作出更轻更薄的透镜,这一想法常被认为是由布封伯爵提出的。孔多塞(1743-1794)提议用单片薄玻璃来研磨出这样的透镜。而法国物理学家兼工程师菲涅尔亦对这种透镜在灯塔上的应用寄予厚望。根据史密森学会的描述,1823年,第一枚菲涅尔透镜被用在了吉伦特河口的哥杜昂灯塔(Phare de Cordouan)上;透过它发射的光线可以在20英里(32千米)以外看到。苏格兰物理学家大卫·布儒斯特爵士被看作是促使英国在灯塔中使用这种透镜的推动者。 3.菲涅尔透镜的基本原理 菲涅尔透镜的工作原理十分简单:假设一个透镜的折射能量仅仅发生 在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。

菲涅尔透镜

型号:8002-1 型号:8002-2 型号:8003-1  焦距:10.5 焦距:10.5 焦距:10.5  角度:100° 角度:100° 角度:100°  距离:5m 距离:5m 距离:5m  尺寸:Ф23 尺寸:Ф23 尺寸:Ф23  型号:8003-2 型号:8003-1C 型号:9002  焦距:10.5 焦距:10.5 焦距:12  角度:100° 角度:100° 角度:116°  距离:5m 距离:8m 距离:7m  尺寸:Ф23 尺寸:Ф22.7 尺寸:24*16.7  型号:8310 型号:8240 型号:8202-6  焦距:10.5 焦距:10 焦距:20  角度:100° 角度:120° 角度:120°  距离:10m 距离:12m 距离:7m  尺寸:Ф23 厚度:0.5 尺寸:Ф23.5 尺寸:31×26×23.7H  型号:7709-1 型号:7709-2 型号:7709-4  焦距:7.6 焦距:5 焦距:12  角度:90° 角度:89° 角度:90°  距离:5m 距离:5m 距离:6m  尺寸:Ф21 外径:Ф17 内径:Ф15 尺寸:外径17 内径15  型号:7709-6 型号:7709-7 型号:2814  焦距:5 焦距:9.5 焦距:10.5  角度:90° 角度:90° 角度:140°  距离:5m 距离:8m 距离:6m  尺寸:Ф16.6 内径: Ф15 尺寸:18 尺寸:Ф28 厚度:0.6

型号:8801-1 型号:8801-2 型号:8801-3  焦距:26 焦距:26 焦距:26  角度:100° 角度:100° 角度:100°  距离:5m 距离:5m 距离:5m  尺寸:Ф55 尺寸:Ф55 尺寸:Ф55  型号:8102-1 型号:8102-2 型号:8102-4  焦距:15 焦距:15 焦距:15  角度:120° 角度:120° 角度:120  距离:7m 距离:7m 距离:7m  尺寸:64*52 外径:Ф49 内径:Ф37 外径:Ф43内径:Ф36  型号:001 型号:2091 型号:8731-1  外径:Ф55 外径:Ф55 外径:Ф45.2  内径:Ф44 内径:Ф44 内径:Ф41.7  距离:10m 距离:10m 距离:10m  角度:120° 角度:120° 角度:120°  型号:8605-1 型号:8605-2 型号:8605-3  焦距:15 焦距:15 尺寸:Ф33.5外边Ф45.7高度:11.8mm 角度:100° 角度:120° 焦距:15mm  距离:5m 距离:5m 厚度:0.7mm  尺寸:Ф44mm Ф34.5mm 规格:Ф44.5 角度:120°  型号:8603-3 型号:8603-4 型号:8604  焦距:17.5 焦距:17.5 焦距:18  角度:120° 角度:120° 角度:120  距离:7m 距离:7m 距离:6m  规格:Ф45.9 规格:Ф45.9 外径:Ф51 内径:Ф35.5

相关文档
最新文档