石墨烯的制备、结构、性能及应用前景

石墨烯的制备、结构、性能及应用前景
石墨烯的制备、结构、性能及应用前景

华东理工大学化工学院2010(春)

硕士研究生《碳材料》课程考核学号030090873姓名陈学林任课教师乔文明成绩

论文题目:石墨烯的制备、结构、性质及应用前景

石墨烯的制备、结构、性质及应用前景

前言:石墨烯是碳原子紧密堆积成单层二维蜂窝状(honeycomb)晶格结构的一种炭质新材料,这种石墨晶体薄膜的厚度只有0.335 nm,仅为头发的20万分之一,是构建其他维数炭质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学性。完美的石墨烯(graphene)是二维的,只包括六角元胞(等角六边形);如果有五角元胞和七角元胞存在,会构成石墨烯的缺陷;少量的五角元胞存在会使石墨烯翘曲入形状;12个五角元胞会形成富勒烯(fullerene)。石墨烯的理论研究已有60多年的历史,被广泛用来描述不同结构炭质材料的性能。20世纪80年代,科学家们开始认识到石墨烯可以作为(2+1)维量子电动力学的理想理论模型。但一直以来人们普遍认为这种严格的二维晶体结构由于热力学不稳定性而难以独立稳定的存在。然而真正能够独立存在的二维石墨烯晶体在2004年由英国曼彻斯特大学的Novoselov等[1]利用胶带剥离高定向石墨的方法获得,并发现石墨烯载流子的相对论粒子特性,从而引发石墨烯研究热。石墨烯在过去的短短3年内已充分展现出在理论研究和实际应用方面的无穷魅力,迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2]。研究发现,在不需要任何传统化学稳定剂的情况下,石墨烯可以在水中稳定地分解分层,有望应用于可减少静电现象的涂层的研制。

1.石墨烯的性质

1.1力学性质

石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。美国哥伦比亚大学的一支物理学研究小组经过大量的试验,发现石墨烯是现在世界上已知的最为牢固的材料,并对石墨烯的机械特性进行了全面的研究。他们选取10-20微米的石墨烯微粒作为研究对象。试验发现,在石墨烯样品微粒开始碎裂前,它们每100 nm距离上可承受的最大压力居然达到了大约2.9微牛。如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。半导体工业有意利用石墨烯晶体管制造微型处理器,进而生产出比现有计算机更快的计算机。

1.2热学性质

石墨烯是一种稳定材料.在发现石墨烯以前,大多数物理学家认为,热力学

涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来,这归结于石墨烯在纳米级别上的微观扭曲。石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况,即六边形晶格中的碳原子全都没有丢失或发生移位。各个碳原子问的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形。因此,碳原子就不需要重新排列来适应外力,也就保持了结构的稳定。

1.3电学性质

稳定的晶格结构使碳原子具有优秀的导电性,石墨烯中电子是没有质量的,而且是以恒定的速率移动,石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导等于2 e2/h ,6 e2/h ,10e2/h,为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为电子在石墨烯里有效质量为零,这和光子的行为极为相似;不管石墨烯中的电子带有多大的能量,电子的运动速率都约是光子运动速率的三百分之一,为10 m/s。石墨烯的室温量子霍尔效应,无质量狄拉克费米子型载流子,高达200 000 cm /(V·S)的迁移率等新奇物性相继被发现。在室温下有微米级的平均自由程和很长的相干长度。石墨烯是纳米电路的理想材料,也是验证量子效应的理想材料。石墨烯具有明显的二维电子特性。近来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米电子器件的极有前景的材料。在2006-2008年间,石墨烯已被制成弹道输运晶体管,人们不仅成功地制造了平面场效应管而且观测到了量子干涉效应,引起大批科学家的兴趣[3]。

2. 石墨烯的合成

鉴于石墨烯极好的结晶性及电学和非凡的电子学、热力学和力学性能,国际上已有越来越多的学者参与到石墨烯的合成与性能的研究,目前石墨烯的合成方法主要有两种:机械方法和化学方法。机械方法包括微机械分离法、取向附生法- 晶膜生长和加热SiC的方法;化学方法是化学分散法。

2.1 微机械分离法

最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。

Novoselovt等[4]用这种方法制备出了单层石墨烯,并验证了其独立存在。即用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。

2.2 取向附生法- 晶膜生长

取向附生法则是利用生长基质的原子结构“种”出石墨烯,但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。Peter W.Sutter等[5]使用的基质是稀有金属钌,首先让碳原子在1 150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖80%后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。

2.3 加热S-C的方法

Claire Berger等利用此种方法制备出单层和多层[6]石墨烯薄片并研究了其性能,该方法是在单晶6H-SiC的Si-terminated面上通过热解脱除Si来制取石墨烯。将表面经过氧化或H 蚀刻后的样品在高真空下通过电子轰击加热到1 000℃以

除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250- 1450℃,恒温1-20 min,形成石墨烯薄片,其厚度由加热温度决定。

2.4 化学分散法

化学分散法[7]是将氧化石墨与水以1 mg/mL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃回流24 h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。

3.石墨烯的应用

3.1 石墨烯在纳电子器件方面的应用

2005年,Geim研究组与Kim研究组[8]发现,室温下石墨烯具有l0倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电

子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。此外,与目前电子器件中使用的硅及金属材料不同,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。

最近,Geim研究组[9]利用电子束光刻与干刻蚀的方法将同一片石墨烯加工成量子点,引线和栅极,获得了室温下可以操作的石墨烯基单电子场效应管,解决了目前单电子场效应由于纳米尺度材料的不稳定性所带来的操作温度受限问题。荷兰科学家则报道了第一个石墨烯基超导场效应管,发现在电荷密度为零的情况下石墨烯还是可以传输一定的电流[10],可能为低能耗,开关时间快的纳米尺度超导电子器件带来突破。与一维纳米材料相比,石墨烯基电子器件的显著优势是整个电路,包括导电通道、量子点、电极、势垒、分子开关及联结部件等,可在同一片石墨烯上获得,有可能避免一维材料基器件中难以实现的集成问题。目前,IBM,Intel等公司已相继投人巨资开展石墨烯在纳电子器件方面的应用探索。

3.2 未来的计算机芯片材料:石墨烯取代硅

马里兰大学物理学家的研究显示,未来的计算机芯片材料可能是石墨烯(Graphene)而不是硅。电子在石墨烯中的传导速度比硅快100倍,这将为高速计算机芯片和生化传感器带来诸多进步。。马里兰大学纳米技术和先进材料中心的物理学教授Michael S.Fuhrer领导的研究小组称,他们首次测量了石墨烯中电子传导的热振动效应,发现的结果显示石墨烯中电子传导的热振动效应非常细微。在任何材料中,温度和能量会引起电子的振动。电子穿过材料时,它们会试探振动的电子,诱发了电子的反作用力。这种电子的反作用力是材料的固有属性,不能被消除,除非冷却到绝对零度,热振动效应对传导性有重要的影响。

3.3 石墨烯在减少噪声方面的运用

美国IBM宣布,通过重叠2层相当于石墨单原子层的“石墨烯(Graphene)”,试制成功了新型晶体管,同时发现可大幅降低纳米元件特有的1/f[11]噪声。石墨烯作为形成纳米级晶体管和电路的“Post-Si材料”,正在全球进行研究开发。普通的纳米元件随着尺寸的减小,被称作1/f的难以控制的噪音越来越明显,存在信噪比恶化的问题。这种现象就是众所周知的“波格定律(Hogue’s law)”,即使

采用石墨烯、碳纳米管以及硅材料也会产生该现象。因此,如何减小1/f噪声成为实现纳米元件的关键问题之一。

IBM此次利用单层石墨烯试制晶体管,并确认该元件符合波格定律。另一方面,通过重叠二层石墨烯,试制成功了相同的晶体管,不过与预计的相反,发现能够大幅控制噪音。通过在二层石墨烯之间生成的强电子结合,从而控制噪音。虽然要解释此次的现象还需要进一步的研究,但此次的发现证明二层石墨烯有望应用于各种各样的领域。此次的成果已在学会杂志“Nana Letters”上做了报道。

3.4储氢或做气敏材料

由于氢气是一种自然界包含资源多,没有污染,容易制备等特点,现在已经是作为重要的未来能源的重要替代品,研究石墨烯的储氢能力更加显示出其强大的应用前景。据美国能源部给出的目标是储氢能力质量百分比不低于6.0%,并且是越高越好,吸附能介于-0.20--0.70eV/H2。最近铝掺杂的石墨烯储氢的能力质量百分比达到5.13%,吸附能为-0.26eV/H2,以及可作为一氧化碳传感器和在不同温度下一氧化碳的吸附和解吸附的研究等。

4. 石墨烯的表征

单层石墨烯之所以至今才被人们发现,是因为表征手段的限制。目前表征石墨烯的有效手段主要有:原子力显微镜、光学显微镜、Raman光谱。原子力显微镜的应用使得观测到单层石墨烯成为可能。单层石墨烯由于其厚度只0.335nm,在扫描电子显微镜(SEM)中很难被观测到,只有在原子力显微镜(AFM)中才能清晰的观测到。原子力显微镜是表征石墨烯材料的最直接有效的手段。

然而基于微机械剥离方法制得的石墨烯,产量很低,并且在微量的剥离物中掺杂着很多多层石墨片,直接用原子力显微镜观测,效率很低。Geim等[12]发现单层石墨烯附着在表面覆盖着一定厚度(300nm)的Si02层Si晶片上,在光学显微镜下便可以观测到。这是由于单层石墨层和衬底对光线产生一定的干涉,有一定的对比度,因而在光学显微镜下可以分辨出单层石墨烯。利用光学显微镜观测石墨烯,为石墨烯的表征提供了一个快速简便的手段,使得石墨烯得到进一步精确表征成为可能。Raman光谱表征石墨烯的应用,使得石墨烯层数可以得到精确的表征。Raman谱的形状、宽度和位置与其层数相关,提供了一个高效率、无破坏的测量石墨烯层数的表征手段。石墨烯和石墨本体一样在1580cm, (G峰)和2700cm

(2D峰)2个位置有比较明显的吸收峰,相比石墨本体,石墨烯在1580cm处的吸收峰强度较低,而在2700cm 处的吸收峰强度较高,并且不同层数的石墨烯在2700cm 处的吸收峰位置略有移动。

5. 展望

随着人们对石墨烯研究的不断深入以及制备方法的改进,石墨烯在复合材料[13]、纳米器件和储氢材料等领域得到了广泛的关注。与此同时,人们需要大量结构完整的高质量石墨烯材料。这就要求提高现有制备工艺的水平。微机械法显然不能满足未来工业化的要求。氧化石墨还原法[14]虽然能够以相对较低的成本制备出大量的石墨烯,使得其在复合材料和防静电涂料等领域有很大的应用前景,然而石墨烯的电子结构以及晶体的完整性均受到强氧化剂严重的破坏,将使其电子性质受到影响,一定程度上限制了其在精密的微电子领域的应用。化学生长法可以制备出大面积连续且性能优异的石墨烯薄膜半导体材料,而且现有的半导体加工技术也可以对石墨烯薄膜材料进行剪裁修饰,使得化学生长法制备出的石墨烯材料在微电子领域有着巨大的应用潜力。然而化学沉积法制备石墨烯的途径还在进一步探索、完善中,现阶段工艺的不成熟以及较高的成本都限制了其大规模应用。如何大量、低成本制备出高质量的石墨烯材料应该是未来研究的一个重点。

5.参考文献

[1] NOVOSELOOKS,GEIM A K,MOROZOVSV,et a1.Electric field effect in atomically thin carbon films [J].Science,2004(306):666-669.

[2]成会明,任文才.石墨烯[M].沈阳:中国科学院金属研究所,2008.33-38.

[3]马圣乾, 裴立振,康英杰.石墨烯研究进展[J].现代物理知识,2009 (4):44-47.

[4]NOV0SEL0V,K S NOV0SELOV,D JIANG,et a1.Two-dimensional atomic crystals[J].Proc Natl Acad Sci U S A,2005,102(30):10451-10453.

[5]PETER W SUTRER,JAN I FLEGE,EU A SURIER.Epitaxial graphene on ruthenium[J].Nature Materials,2008,5(7):406-411.

[6]CLAIRE BERGER,ZHIMIN SONG,LIXB,et a1.Electron confinement and coherence in patterned epitaxial graphene[J].Science,2006,312:1191-l196.[7]W HUMMERS。R 0FLEMAN.Preparation of graphite oxide[J].J Am Chem Soc,

1958,80:1339.

[8]ZHANGYB,TAN YW,STORMER HL,et a1.Experimental observations of the quantum Hall effect and Berry S phase in graphene[J].Nature,2005(438):201-204.[9]GEIMA K,NOVOSELOOKS.The rise of graphene[J].Nature Materials,2007(6):183~191.

[10]HEERSCHE HB,JARILLO HERREROP,OOSTINGAJB,et a1.Bipolar super current in graphene[J].Nature,2007,(446):56-59.

[11]WANG W-G,CHEN G-H,WU D-J,YAN W-L.HDPE/expanded graphite electrically conducting composite[J].Compos Intef ,2004,11(2):131-143.

[12]Novoselov K S,Geim A K,Morozov S V,et a1.Science,2004,306:666.

[13]STAKOVICHS,DIKIN DA.GHB [J].Nature,2006,(42):282-286.

[14]Patchkovskii S,Tse J S,Yurchenko S N,et a1.Proc Natl Acad Sci,2005,102:10439.

石墨烯基础知识简介

1. 石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp 2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1 所示,石墨烯的原胞由晶格矢量a1 和a2 定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3 个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4 个电子为公共,形成弱π键(紫)。石墨烯的碳- 碳键长约为0.142nm,每个晶 格内有三个σ键,所有碳原子的p 轨道均与sp 2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2 所示,石墨烯是富勒烯(0 维)、碳纳米管(1 维)、石墨(3 维) 的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp 2杂化与周围碳原子构成正六边形,每一个六边形单元实 际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图1.1 (a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2 石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图 石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石 墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两 片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期 性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene ):指由两层以苯环结构 (即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene ):指由3-10 层以苯环 结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯的发展概况

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:复合材料专题报告学生所在院(系):航天学院 学生所在学科:工程力学 学生姓名:刘猛雄 学号:15S018001 学生类别:学术型 考核结果阅卷人

1 石墨烯的制备 (3) 1.1 试剂 (3) 1.2 仪器设备 (3) 1.3 样品制备 (4) 2 石墨烯表征 (4) 2.1 石墨烯表征手段 (4) 2.2 石墨烯热学性能及表征 (6) 2.2.1 石墨烯导热机制 (6) 2.2.2石墨烯热导率的理论预测与数值模拟 (6) 2.2.3 石墨烯导热性能的实验测定 (7) 3 石墨烯力学性能研究 (9) 3.1石墨烯的不平整性和稳定性 (10) 3.2 石墨烯的杨氏模量、强度等基本力学性能参数的预测 (11) 3.3石墨烯力学性能的温度相关性和应变率相关性 (12) 3.4 原子尺度缺陷和掺杂等对石墨烯力学性能的影响 (13)

石墨烯的材料与力学性能分析石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点,石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状晶格结构的碳质新材料。2004年Geim等用微机械剥离的方法成功地将石墨层片剥离, 观察到单层石墨层片, 这种单独存在的二维有序碳被科学家们称为石墨烯。2004 年英国科学家首次制备出了由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体—石墨烯,其厚度只有0.3354 nm,是目前世界上发现最薄的材料。石墨烯具有特殊的单原子层结构和新奇的物理性质:强度达130GPa、热导率约5000 J/(m2K2s)、禁带宽度乎为零、载流子迁移率达到23105 cm2/(V2s)、高透明度(约97.7%)、比表面积理论计算值为2630 m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列性质。在过去几年中,石墨烯已经成为了材料科学领域的一个研究热点。为了更好地利用石墨烯的这些特性,研究者采用了多种方法制备石墨烯。随着低成本可化学修饰石墨烯的出现,人们可以更好地利用其特性制备出不同功能的石墨烯复合材料。 1 石墨烯的制备 石墨烯的制备从最早的机械剥离法开始逐渐发展出多种制备方法,如:晶体外延生长法、化学气相沉积法、液相直接剥离法以及高温脱氧和化学还原法等。我国科研工作者较早开展了石墨烯制备的研究工作。化学气相沉积法是一种制备大面积石墨烯的常用方法。目前大多使用烃类气体(如CH4、C2H2、C2H4等)作为前驱体提供碳源,也可以利用固体碳聚体提供碳源,如Sun等利用化学气相沉积法将聚合物薄膜沉积在金属催化剂基体上,制备出高质量层数可控的石墨烯。与化学气相沉积法相比,等离子体增强化学气相沉积法可在更低的沉积温度和更短的反应时间内制备出单层石墨烯。此外晶体外延生长法通过加热单晶6H-SiC 脱除Si,从而得到在SiC表面外延生长的石墨烯。但是SiC晶体表面在高温过程中会发生重构而使得表面结构较为复杂,因此很难获得大面积、厚度均一的石墨烯。而溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点也越来越受研究人员的关注。相比于其他方法,通过有机合成法可以制备无缺陷且具有确定结构的石墨烯纳米带。 1.1 试剂 细鳞片石墨(青岛申墅石墨制品厂,含碳量90%-99.9%,过200 目筛),高锰酸钾(KMnO4,纯度≥99.5%),浓硫酸(H2SO4, 纯度95.0%-98.0%),过氧化氢(H2O2, 纯度≥30%), 浓盐酸(HCl, 纯度36.0%-38.0%)均购自成都市科龙化工试剂厂;氢氧化钠(NaOH, 纯度≥96%)购自天津市致远化学试剂有限公司;水合肼(N2H42H2O, 纯度≥80%)购自成都联合化工试剂研究所. 实验用水为超纯水(>10 MΩ2cm). 1.2 仪器设备 恒温水浴锅(DF-101型,河南予华仪器有限公司), 电子天平(JT2003型,余姚市金诺天平仪器有限公司),真空泵(SHZ-D(Ⅲ)型,巩义市瑞德仪器设备有限公司),超声波清洗器(KQ5200DE型, 昆山市超声仪器有限公司),离心机(CF16RX型, 日本日立公司),数字式pH计(PHS-2C型,上海日岛科学仪器有限公司),超纯水系统(UPT-II-10T型,成都超纯科技有限公司)。

石墨烯真正应用前景在哪

石墨烯真正应用前景在哪? Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。

什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;导热系數高達5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8 俜m,比铜或银更低,为世上电阻率最小的材料。” 最薄、最坚硬、最导热、最导电,这所有的光环都在告诉人们,石墨烯是一种多么神奇的材料啊!但是笔者要提醒的是,国际上对Graphene的定义是1-2层的nanosheet才能称之为是Graphene,并且只有没有任何缺陷的石墨烯才具备这些完美特性,而实际生产的石墨烯多为多层且存在缺陷。 石墨烯主要有如下几种生产方法: ·机械剥离法。当年Geim研究组就是利用3M的胶带手工制备出了石墨烯的,但是这种方法产率极低而且得到的石墨

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯 5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。 石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。 全球石墨烯行业市场规模呈稳步增长态势。预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。 本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。 本期内参来源:国信证券

1性能强大的新材料之王 石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。 ▲典型的石墨烯结构图

▲ 单层石墨烯是其他碳材料的基本元素 石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。 ▲石墨烯分类 石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯纳米材料及其应用

石墨烯纳米材料及其应用

石 墨 烯 纳 米 材 料 及 其 应 用 二〇一七年十二月

目录 摘要 (4) 1引言 (4) 2石墨烯纳米材料介绍 (4) 3石墨烯纳米材料吸附污染物 (6) 3.1金属离子吸附 (6) 3.2有机化合物的吸附 (7) 4石墨烯在膜及脱盐技术上的应用 (9) 4.1石墨烯基膜 (9) 4.2采用石墨烯材料进行膜改进 (10) 4.3石墨烯基膜在脱盐技术的应用 (11) 5展望 (12)

摘要 石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构(Fig.1)。在石墨烯平面内,碳原子以六元环形式周期性排列,每个碳原子通过σ键与临近的三个碳原子

石墨烯的制备与应用--课程论文

石墨烯的制备与应用前景 石墨烯是由碳原子以sp2链接的单元子层构成,其基本结构为有机材料中最稳定的苯六元环。它是目前发现的最薄的二维材料。石墨烯是构成其他石墨材料的基本单元,它可以翘曲成为零维的富勒烯,卷曲成为一维的CNTs或者堆垛成为三维的石墨。石墨烯是人类已知强度最高的物质,比钻石还坚硬,厚度相当于普通食品塑料袋的石墨烯能够承担大约两吨重的物品。石墨烯最大的特点是石墨 烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”的性质和相对论性的中微子非常相似。此外石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性 的体现。 石墨烯的合成方法 1.微机械剥离法 这是最早制备出石墨烯的方法。2004年Novoselovt等用这种方法制备出了单层石墨烯。典型制备方法是用另外一种材料膨化或者引入缺陷的热 解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的 晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片 来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供 应用的石墨薄片样本。 2.外延生长法 一般是通过加热6H—SiC单晶表面,脱附Si(0001面)原子制备出石墨烯.先将6H- SiC单晶表面进行氧化或H 刻蚀预处理在超高真空下加热去除表面氧化物,通过俄歇电子能谱确认氧化物完全去除后,继续恒温加热10-20分钟,所得的石墨烯片层厚度主要由这一步骤的温度所决定,这种方法能够制备出l-2碳原子层厚的石墨烯,但由于SiC晶体表面结构较为复杂,难以获得大面积、厚度均一的石烯。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性,但观测不到量子霍尔效应。 3.碳纳米管轴向切割法 前文已经提到过,碳纳米管从结构上可以看作是由单层的石墨烯纳米带卷曲

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

相关文档
最新文档