质点组的质心公式的应用

质点组的质心公式的应用
质点组的质心公式的应用

形心重心的理论计算公式

§3-4 重心和形心 一、重心的概念: 1、重心的有关知识,在工程实践中是很有用的,必须要加以掌握。 2、重力的概念:重力就是地球对物体的吸引力。 3、物体的重心:物体的重力的合力作用点称为物体的重心。 无论物体怎样放置,重心总是一个确定点,重心的位置保持不变。 二、重心座标的公式: (1)、重心座标的公式 三、物体质心的坐标公式 在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下: 四、均质物体的形心坐标公式 若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下:

式中V=∑Vi。在均质重力场中,均质物体的重心、质心和形心的位置重合。 五、均质等厚薄板的重心(平面组合图形形心)公式: 令式中的∑A i.x i=A.x c=S y; ∑A i.y i=A.y c=S x 则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。 六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下: 1、对称法 凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。对称法求重心的应用见下图。 2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置, 常用的试验法有悬挂法和称重法。 (1)、悬挂法 利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。 悬挂法确定物体的重心方法见图 (2)、称重法 对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定

汽车质心位置的计算.qicheban

汽车质心位置的计算 燕山大学 车辆与能源学院 裴永生 2011年12月7日

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑-∑= ------------------------(2) gi L a G ∑?= 2 L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ?? ?????-∑=gi L Xi G )1(1

------------------------(2a ) ???????∑=gi L Xi G 2 ------------------------(3a ) )1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)( gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

汽车质心位置的计算教学内容

汽车质心位置的计算

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑-∑= ------------------------(2) gi L a G ∑?=2. L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ????? ??-∑=gi L Xi G )1(1 ------------------------(2a ) ?? ?????∑=gi L Xi G 2 ------------------------(3a )

)1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)(gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置 空载: gi 不包括乘员或/和载荷,仅包括相关总成。 满载: gi 包括乘员或/和载荷以及相关总成。 ② 簧载质量、非簧载质量的质心位置 簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。 非簧载质量:gi 只包括属于非簧载质量的总成。

汽车质心位置的计算

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑- ∑= ------------------------(2) gi L a G ∑?=2. L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ????? ??-∑=gi L Xi G )1(1 ------------------------(2a ) ?? ?????∑=gi L Xi G 2 ------------------------(3a )

)1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)( gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置 空载: gi 不包括乘员或/和载荷,仅包括相关总成。 满载: gi 包括乘员或/和载荷以及相关总成。 ② 簧载质量、非簧载质量的质心位置 簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。 非簧载质量:gi 只包括属于非簧载质量的总成。

质心算法

3.1 质心检测算法 系统采用质心法进行数据处理能提高测试精度。因为质心法能使CCD 上的图像分辨率达到光敏元尺寸的1/10,那么成像亮线中心在CCD 上所对应的光敏源序号就可以是小数,而非一定是整数,这样通过计算可知,精度提高了0.1个百分点。虽然测量系统的精度有提高,但0.11%的相对误差仍不能令人满意,从误差公式可知,系统误差的改善主要取决于CCD 的像元尺寸。随着CCD 技术的不断发,像元尺寸也会不断改善,系统误差也将会有大幅度减小。 质心法图像预处理算法步骤如下[5]:(1)对图像通过灰度化和反色后阈值选择得到光斑特征区域;(2)模糊去噪(mean blur ),消除热噪声以及像素不均匀产生的噪声;(3)再次进行阈值选择,得到更清晰的光斑区域;(4)形态学处理,选择disk 中和合适的领域模板,对图像进行腐蚀和填充处理,以得到连通域的规则形状图形;(5)边缘检测得到图像边缘,反复实验证明canny 边缘检测算法最好;(6)对边缘再进行形态学strel -imerode -imclose -imfill 相关运算得到更连通的边缘曲线,调用regionprops (L ,properties )函数,根据质心法计算质心。 下面介绍几种常用的质心算法 (1)普通质心算法 (,)ij ij ij c c ij ij x I x y I =∑∑ (3-1) 其中ij I 为二维图像上每个像素点所接收到的光强,该算法适用于没有背景噪 声,背景噪声一致或信噪比较高的情况。 (2)强加权质心算法 0000000000000000,/2,/2 ,/2,/2 ,/2,/2 ,/2,/2y w y x w x i ij j y w y i x w x c y w y x w x ij j y w y i x w x x I w x I w ++=-=-++=-=-=∑∑∑∑

两体质心公式与应用

两体质心公式与应用 1. 两体质心公式 2. 两体质心公式在静力学中的应用 3. 两体质心公式在动力学中的应用 1. 两体质心公式 如图1所示,质点系由质量分别是1m 和2m 、相距l 的两个质点构成,则其质心C 的位置 由公式 l b a a b m m =+=21 (1.1) 确定。 图1 两体质心 2. 两体质心公式在静力学中的应用 4. 两体质心公式在动力学中的应用 例1 ] 1[一个人从船的一头走到另一头,如人和船的重量分别是P 和Q ,船长为a 2。若忽略水 的阻力,问船移动多少? 图2 船移动问题

解:如图1,设开始0t t =时,人、船和系统的质心分别在人C 、船C 和C 处,由(1) a Q P P CC += =?船 (1) 当人由船的右端走到左端时(0t t =),人、船的质心分别在人 C '、船C '处,若忽略水阻力的影响,及开始是系统是静止的,故系统质心C 点位置保持不变,于是 a Q P P C C +='=?船 (2) 由(1)(2) 当人由船的右端走到左端时,船移动距离 Q P Pl a Q P P C C +=+=?='22船船 (3) 如果船的质量分布不是关于中间对称的,(3)式仍然成立。并且有: 命题1 如果两个物体开始静止,并水平方向受合力为零。若重为P 的物体在重Q 物体上运动,相对位移为l ,那重Q 物体质心移动的距离为)/(Q P Pl +。 例2 ] 1[三角木块B 放置光滑的水平面上,三角木块A 从B 的顶端自由地滑到底端,若B 的质 量是A 的三倍,问木块B 移动多少? 图3 三角木块自由下滑 解:当三角木块A 从B 的顶端自由地滑到底端时,其相对B 的位移为a b -,由命题1,B 的位移为4/)(a b -。 例3 ] 1[如图4示浮动起重机举起质量kg m 20001=的重物。设起重机质量kg m 200002=,杆 长m l 8=;开始时杆OA 与铅直位置成0 60角,水的阻力和杆重均略去不计。当起重机杆OA 转到与铅直位置成0 30角时,求起重机的位移。

求物体或系统质心的方法总结

徐慎?编号032015年4?25? 物理学探究案 求物体或系统质?的?法总结 ?、质?的概念 物体的质?即质量中?,可以表?物体的位置。质?的运动状态可以表?物体或整个系统的运动状态。 我们可以定义质?为系统内各物体位置关于质量的加权平均值,即 其中和分别表?质?和各个物体的位置?量,m i 代表各个物体的质量,M 表?整个系统的质量,即 显然,对于单个物体,其质?也可以由积分给出 其中和分别是关于 t 的参数?程。 当然,?般我们使?分量表达式来求取质?。此时不需要参数,对应的变量即可?来表?坐标位置。 ?、求取质?的?法①微元法求质? r C !"= 1M m i r i !i =1 n ∑r C !"r i ! M =m i i =1n ∑r C !"= 1M m t ()r ! t ()d t t 1 t 2 ∫ m t ()=m x (),m y (),m z ()()r ! t ()=x t ()y t ()z t ()???? T

微元法应?于求取质?位置,需要?到由积分给出的质?公式来求解。通常我们会将物体看成由?穷个微元构成,然后逐个求取。这是定义法的?种。 1 R 解 要求半圆环的质?,?先要求总质量。设半圆环质量线密度为 λ,则 如图所?,由对称可以看出质??定在 x 轴上,故只需考虑其横坐标位置。即 ?对圆的?程求导可得 故得到 故物体质?。 ②组合法 将系统各个质量已知、位置已知的部分求取关于质量的加权平均位置,这也是定义法的?种。 本?法直接套?定义式即可,这?不再展开。 M =λπR 2 x C = 1M x λd l R ∫ =1λπR x λ1+d y d x ??????2 ??????d x 0R ∫=1πR x 1+d y d x ??????2????? ?d x 0R ∫x 2+y 2=R 2? d y d x =?x y =?x R 2?x 2y >0()x C =1πR x 1+d y d x ??????2 ????? ?d x 0R ∫=1πR xR 2 R 2?x 2d x 0R ∫=2R π 2R π,0? ??? ??

质心定位算法 江南大学

无线传感网技术实验报告(三) 班级:微电子1101学号:0301110115姓名:杨海平 一,实验目的: 通过仿真实验掌握无线传感器网络的定位算法—质心定位算法。 二,实验内容: 在100*100M2的正方形区域里,有n个信标节点和一个未知节点,未知节点和新表节点的通信半径均为R,则: (1),当通信半径R=50M,信标节点个数n=6,12,18,24,30时,利用Monte Carlo方法,分别计算未知节点的实际位置与估计未知的平均误差; (2),当信标节点个数n=20,通信半径R=5,10,15,20,25,30,35,40,45,50m时,利用Monte Carlo方法,分别计算未知节点的实际位置与估计位置的平均误差; 三,实验方法: (1),在边长为100m的正方形中,产生一个信标节点为n,未知节点为1的随机分布图; (2),确定与未知节点相连的信标节点; (3),利用质心算法,对未知节点的位置进行估计; (4),每一组数据(信标节点个数n,通信半径R)需要仿真800次,得出该组数据下未知节点的实际位置与估计位置的平均误差。 四,实验分析过程: (1),实验内容一:当通信半径R=50M,信标节点个数n=6,12,18,24,30时,按照实验一的方法随机产生X,Y坐标为0~100的n个信标节点的坐标,再随机产生一个未知节点的X,Y坐标,然后判断n个信标节点是否能与未知节点通信,把能与未知节点通信的信标节点X,Y坐标相加,除以能与未知节点通信的节点数,即为用质心定位算法估计的未知节点个数,误差即为未知节点与估计未知节点坐标的距离。每组信标节点个数仿真800次,累加每次仿真的误差,取平均值即得到估计误差。 (2),实验内容二:思想方法与实验内容一相同,当信标节点个数n=20,通信半径R=5,10,15,20,25,30,35,40,45,50m时,每组通信半径仿真800次,累加每次仿真的误差,取平均值即得到估计误差。 五,程序 (1),实验内容一程序如下: clear all; close all; nbeacon=[612182430];%信标节点个数n=6,12,18,24,30 nbeaconi=5; error=zeros(1,nbeaconi);%误差数组error nunknow=1;%知节点个数为1 r=50;%通信半径r为50 optimes=800; for ni=1:1:5;%每组信标节点得到一个平均误差 errorsum=0; validtimes=0;%800次仿真中至少有一个信标与未知节点通信的次数 for optimei=1:1:optimes

N维空间几何体质心的计算方法

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (), y f x a x b =≤≤)的形状体对x轴与y轴的静力矩分别 为( b a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y),则,, y x M M x y M M == 其 中() b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。 若在式 y M x M = 与式 x M y M = 两端同乘以2π,则可得 到22() b a y xl f x S ππ == ? , 22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x)为 [],a b 上的连续非负函数,考虑形如区域 {} (,),0() D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为 1 (,()), 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,()) 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 ()() 2 x dM u f x f x dx = , () y dM uxf x dx = .两个静力矩为2 1 () 2 b x a M u f x dx =? ? , () b x a M u xf x dx =?.设质心坐标为(,) x y,则有() y b a M u x xf x dx M M ==? , 2 1 () 2 y b a M u y f x dx M M ==? .其中 () b a M u f x dx MA == ? 为该

整车计算及质心位置确定

第六章整车计算及质心位置确定 第一节轴荷计算及质心位置确定 1、本章所用质量参数说明(Kg) T 底盘承载质量 F 底盘整备质量(不含上车装置) NL 有效载荷 V A1 底盘整备质量时的前轴荷 HA1 底盘整备质量时的后轴荷 V A2 允许前轴荷 HA2 允许后轴荷 HAG2 允许总的后轴荷(驱动轴+支撑轴) NLA2 允许后支撑轴轴荷 VLA2 允许中支撑轴轴荷 GG2 允许总质量(载货汽车底盘整备质量+上车装置质量+允许载荷) NL2 允许有效载荷 V A3 实际有效载荷(AB+NL)时的前轴荷 HA3 实际有效载荷(AB+NL)时的后轴荷) GG3 实际有效载荷(AB+NL)时的总质量 NL3 实际有效载荷(AB+NL) HA4 底盘后轴荷(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)GG4 底盘总质量(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)NLV 由轴荷超载引起的有效载荷损失 HAü超过允许后轴荷 V Aü超过允许前轴荷 AB 上车装置质量 EG整车整备质量(载货汽车底盘+AB) M 附加质量,例如: M1 驾驶员+副驾驶员 M2 备胎(新、老位置移动时) M3 起重机(随车吊)、起重尾板等 LV A 前轴荷占总质量的比例(%) 2、本章所用尺寸参数说明(mm) A、轴距

A1、轴距(第一后轴中心线至第二后轴中心线) A理论理论轴距(只用于3轴或4轴) a1 与轴荷比例(驱动轴与支撑轴之比)有关的从理论轴线到驱动轴的距离W 前轴中心线至驾驶室后围的距离 W2 前轴中心线至上车装置前缘的距离 X 货厢或上车装置的长度 y 均布载荷时最佳质心位置至前轴中心线的距离(AB+NL) y'假设的质心位置至前周中心线的位置 y1 驾驶员+副驾驶员位置距前轴中心线位置 y2 备胎(新、老位置移动的距离) y3 起重机(随车吊)、起重尾板等 MHS 附加质量的质心高度 GHSL 整车空载质心高度 GHSV 整车满载质心高度 FHS 底盘的质心高度 ABHS 上车装置的质心高度 NLHS 允许有效载荷的质心高度 2、轴荷计算 a)双后轴: a1=A1/2 A理论=A+a1 b)后支撑轴: a1=NLA2×A1/HAG2

物体质心计算方法

物体质心计算方法 卢庆杨晓赟 摘要叙述了通过用圆规和直尺画出重物质心位置的方法及其原理分析。 关键词质心规尺作图载荷线段 1 前言 作为工程设计人员,计算零、部、组件及总成的质心是经常性的工作。虽然质心的计算方法多种多样,但计算工作量大,常常不得不经过反复验算后才能确定。下面以计算汽车质心为例,向大家介绍一种简单实用的计算质心的方法——规尺作图法。 2 水平方向质心 (即后轴载荷缩小K′倍,取K′=10);通过B点垂直于AB向下画一线段BD,其长度等于63.7 mm(即前轴载荷缩小K′倍)。 最后,连接C、D两点,与线段AB交于点O,该点即为汽车在水平方向上的质心,量出AO的长度乘以K(K=10)为847mm,即质心在在水平方向上距前轴的距离。 注:K、K′为任意实数,二者可以不相等。作图时,前轴载荷画在后轴上,后轴载荷画在前轴上,且二者必须位于线段AB的两侧。 3 原理分析 我们知道力是矢量,有大小和方向,可以用线段来表示。矢量三角形,就是我们最常见的例子。下面我们将把力用长度来表示。 本文中,如图1所示,在测水平方向质心时,是以汽车为研究对象,对质心G取矩,即有

M G=F A×L AO=F B×L BO (1)所以 L AO/L BO=F B/F A (2)式中: M G—对质心G的力矩; F A、F B—前、后轴载荷; L AO、L BO—质心距前、后轴距离。 由公式(2),我们可将求质心的问题简化为:已知F A、F B大小,及线段AB长度,求AB上一点O,使得AO/BO=F B/F A。 解题过程如下: (1) 如图3,画出已知线段AB; (2) 过A作AE⊥AB,取线段AC=F B, CE=F A; AB 图 3 原理分析图 B CE∥BD,CD∥BE,所以BD=CE=F A。 h=600mm,其前、后轴的 图4 抬高前轴测前、后轴载荷 如图5,BE与水平地面平行,E为A在BE上的投影,图中AE=60mm,CE=37.57mm,BD=60.43mm。连接CD,交BE于点O′,该点即为汽车质心G在BE上的投影。连接A、B两点,取AO=84.7mm。过点O作AB的垂线,与过O′的垂线(垂直于BE)交于点G,该点即为汽车的质心。线段GO即为汽车质心距车轴AB的距离(316mm),再加

轴荷分配及质心位置的计算

4 轴荷分配及质心位置的计算 4.1轴荷分配及质心位置的计算 根据力矩平衡原理,按下列公式计算汽车各轴的负荷和汽车的质心位置: g 1l 1+g 2l 2+g 3l 3+…=G 2L g 1h 1+g 2h 2+g 3h 3+…=Gh g g 1+g 2+g 3+…=G (4.1) G 1+G 2=G G 1L=Gb G 2L=Ga 式中: g 1 、g 2、 g 3—— 各总成质量,kg ; l 1 、l 2 、l 3—— 各总成质心到前轴距离,m ; h 1 、h 2 、h 3—— 各总成质心到地面距离,m ; G 1—— 前轴负荷,kg ; G 2—— 后轴负荷,kg ; L —— 汽车轴距,m ; a ——汽车质心距前轴距离,m ; b ——汽车质心距后轴距离,m ; h g ——汽车质心到地面高度,m 。 质心确定如表 4.1所示 表4.1 各部件质心位置 部件 重量i g i l i h (满) i h (空) i gh i gh (满) i gh (空) 人 195 0 1.3 1.4 0 253.5 273 发动机附件 340 0.1 0.9 1 34 306 340 离合器及操纵机构 8.4 1 0.85 0.94 8.4 7.14 7.896

变速器及离合器壳 112 0.4 0.85 0.94 44.8 95.2 105.28 后轴及后轴制动器 260 3.36 0.17 0.82 873.6 44.2 213.2 后悬架及减振器 135 3.36 0.6 0.65 453.6 81 87.75 前悬架及减振器 40.5 0.6 0.72 24.3 29.16 前轴前制动器轮毂转向梯形 151.9 0 0.7 0.8 0 106.33 121.52 车轮及轮胎总成 310.6 2.3 0.6 0.65 714.38 186.36 201.89 车架及支架拖钩装置 263 2.6 0.7 0.8 683.8 184.1 210.4 转向器 16.9 -0.35 0.9 0.95 -5.915 15.21 16.055 挡泥板 64.5 1.6 0.6 0.7 103.2 38.7 45.15 油箱及油管 16.3 1.4 0.6 0.65 22.82 9.78 10.595 蓄电池组 33.8 1.4 0.6 0.65 47.32 20.28 21.97 车箱总成 317.3 2.7 0.9 1 856.71 285.57 317.3 驾驶室 179.8 0.2 1.1 1.2 35.96 197.78 215.76 货物 2250 2.85 1.2 6412.5 2700 0 ∑ 4695 10258.06 4555.45 2216.926 ⑴.水平静止时的轴荷分配及质心位置计算 根据表4.1所求数据和公式(4.1)可求 满载: G 2= kg L l g n i i i 99.305236 .310258.06 1 == ∑= G 1=4695-3052.99=1642.01kg m G L G a 18.24695 36 .399.30522=?=?= m a L b 18.118.236.3=-=-= 前轴荷分配: 4695 01 .16421=G G =35.0%

形心重心的理论计算公式

§3-4重心与形心 一、重心得概念: 1、重心得有关知识,在工程实践中就是很有用得,必须要加以掌握。 2、重力得概念:重力就就是地球对物体得吸引力、 3、物体得重心:物体得重力得合力作用点称为物体得重心。 无论物体怎样放置,重心总就是一个确定点,重心得位置保持不变。 二、重心座标得公式: (1)、重心座标得公式 三、物体质心得坐标公式 在重心坐标公式中,若将G=mg,Gi=mig代入并消去g,可得物体得质心坐标公式如下: 四、均质物体得形心坐标公式 若物体为均质得,设其密度为ρ,总体积为V,微元得体积为Vi,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体得形心坐标公式如下: 式中V=∑Vi。在均质重力场中,均质物体得重心、质心与形心得位置重合。 五、均质等厚薄板得重心(平面组合图形形心)公式: 令式中得∑Ai.x i=A。xc=Sy; ∑A i。y i=A。y c=S x 则S y、S x分别称为平面图形对y轴与x轴得静矩或截面一次矩。 六、物体重心位置得求法工程中,几种常见得求物体重心得方法简介如下: 1、对称法 凡就是具有对称面、对称轴或对称中心得简单形状得均质物体,其重心一定在它得对称面、对称轴与对称中心上、对称法求重心得应用见下图。 2、试验法对于形状复杂,不便于利用公式计算得物体,常用试验法确定其重心位置,常用得试验法有悬挂法与称重法。

(1)、悬挂法 利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线得交点上。 悬挂法确定物体得重心方法见图 (2)、称重法 对于体积庞大或形状复杂得零件以及由许多构件所组成得机械,常用称重法来测定其重心得位置。例如,用称重法来测定连杆重心位置。如图。 设连杆得重力为G,重心C点与连杆左端得点相距为Xc,量出两支点得距离L,由磅秤读出B端得约束力F B, 则由∑M A(F)=0FB。L-G、x c=0 xc=F B.L/G (3)、分割法: 工程中得零部件往往就是由几个简单基本图形组合而成得,在计算它们得形心时,可先将其分割为几块基本图形,利用查表法查出每块图形得形心位置与面积,然后利用形心计算公式求出整体得形心位置、此法称为分割法。 下面就是平面图形得形心坐标公式: (4)、负面积法: 仍然用分割法得公式,只不过去掉部分得面积用负值、 3、查表法在工程手册中,可以查出常用得基本几何形体得形心位置计算公式。 下面列出了几个常用得图形得形心位置计算公式与面积公式。

形心重心的理论计算公式

¥ §3-4 重心和形心 一、重心的概念: 1、重心的有关知识,在工程实践中是很有用的,必须要加以掌握。 2、重力的概念:重力就是地球对物体的吸引力。 3、物体的重心:物体的重力的合力作用点称为物体的重心。 无论物体怎样放置,重心总是一个确定点,重心的位置保持不变。 二、重心座标的公式: (1)、重心座标的公式 : 三、物体质心的坐标公式 在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下: 四、均质物体的形心坐标公式 若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下:

式中V=∑Vi。在均质重力场中,均质物体的重心、质心和形心的位置重合。 ¥ 五、均质等厚薄板的重心(平面组合图形形心)公式: 令式中的∑==S y; ∑==S x 则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。 六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下: 1、对称法 凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。对称法求重心的应用见下图。 % 2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。 (1)、悬挂法 利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。 悬挂法确定物体的重心方法见图

(2)、称重法 — 对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。例如,用称重法来测定连杆重心位置。如图。 设连杆的重力为G ,重心 C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤 读出B端的约束力F B, 则由∑M A(F)=0 -=0 x c=G (3)、分割法: · 工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将 其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求 出整体的形心位置。此法称为分割法。 下面是平面图形的形心坐标公式:

质心的求解办法

大学物理 力学 ——怎么求解质心位置 清华大学电子工程系 无13班 蔡杨 一.实验法 原理:利用的是质心的性质。对于一个质点系,质心可以代表这个质点系的受力情况。当然这对于重力也就成立。因此理论上,任意一个平面物体悬挂后,质心都应该位于悬线所在的直线上(这条直线也是重力对于物体的作用线) 二.定义法 (1)对于多质点系统: ∑∑= i i i c m r m r 可以写出三个分量式 ∑∑=i i i c m x m x ∑∑=i i i c m y m y ∑ ∑=i i i c m z m z (2)对于质量分布连续的物体:

??= dV r dV r i c ρρ )( 可以写出三个分量式 ??= dV x dV x i c ρρ)( ??= dV y dV y i c ρρ)( ??= dV z dV z i c ρρ)( 三.对称法 对于一个质量分布均匀的物体,其质心位于其几何中心。因此,轴对称图形的质心位于其对称轴上(几何中心位于对称轴上)。 四.组合法 对于由好几部分质量已知且质心位置已知的质点系组成的系统: 质量: ),质点系(,),3(),2(),1(321i m m m m i 质点系质点系质点系 位置: ),(,),3(),2(),1(321i r r r r i 质点系质点系质点系质点系 整个系统的质心位置仍由下式决定: ∑∑= i i i c m r m r 例如:一个质点m (位置为1r )和一个刚体M (其质心位置为2r )组

成的系统的质心的位置为: M m r M r m r c ++= 21 五.负质量法 此方法用于求解:规则图形挖去一部分的图形求解质 心的问题。 如:下图为一半径为R 的均匀圆盘,挖去一个半径为2 R 的圆形部分。试求其质心所在的位置。 解答:如图建立坐标。有对称性,质心必定位 于x 轴上。 假设该图形为一个半径为R ,面密度为σ的圆盘和一 个半径为 2 R ,面密度为(σ-)的圆盘的叠加。 则由方法四,不难得出: x R R R x R R R M M r M r M r c ?6 1])2()[()(?2])2()[(0)(22 22 2 12211-=-+?-+?= ++= πσπσπσπσ 此即其质心的位置。 *六.巴普斯定理

质心的求解办法

大学物理 力学 ——怎么求解质心位置 一.实验法 原理:利用的是质心的性质。对于一个质点系,质心可以代表这个质点系的受力情况。当然这对于重力也就成立。因此理论上,任意一个平面物体悬挂后,质心都应该位于悬线所在的直线上(这条直线也是重力对于物体的作用线) 二.定义法 (1)对于多质点系统: ∑∑= i i i c m r m r ρρ 可以写出三个分量式 ∑∑=i i i c m x m x ∑∑= i i i c m y m y ∑ ∑=i i i c m z m z (2)对于质量分布连续的物体: ??= dV r dV r i c ρρρ ρ )(

可以写出三个分量式 ??= dV x dV x i c ρρ)( ??= dV y dV y i c ρρ)( ??= dV z dV z i c ρρ)( 三.对称法 对于一个质量分布均匀的物体,其质心位于其几何中心。因此,轴对称图形的质心位于其对称轴上(几何中心位于对称轴上)。 四.组合法 对于由好几部分质量已知且质心位置已知的质点系组成的系统: 质量:ΛΛ),质点系(,),3(),2(),1(321i m m m m i 质点系质点系质点系 位置:Λρ Λρ ρ ρ ),(,),3(),2(),1(321i r r r r i 质点系质点系质点系质点系 整个系统的质心位置仍由下式决定: ∑∑= i i i c m r m r ρρ 例如:一个质点m (位置为1r ? )和一个刚体M (其质心位置为2r ρ )组 成的系统的质心的位置为:

M m r M r m r c ++= 21ρρρ 五.负质量法 心的问题。 如:下图为一半径为R 一个半径为2 R 的圆形部分。试求其质心所在的位置。 于x 轴上。 假设该图形为一个半径为R ,面密度为(σ-)的圆盘的叠加。 则由方法四,不难得出: x R R R x R R R M M r M r M r c ?6 1])2()[()(?2])2()[(0)(22 22 2 12211-=-+?-+?= ++= πσπσπσπσρρρρ 此即其质心的位置。 *六.巴普斯定理 这个定理在微积分的课上曾经有所涉及。

50汽车质心位置的计算

汽车质心位置的计算 东风汽车工程研究院陈耀明2008年10月8日

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑= )( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?- =)1(1 L Xi gi gi ) (?∑-∑= ------------------------(2) g i L a G ∑?=2 L Xi gi ) (?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ??? ????-∑=gi L Xi G )1(1 ------------------------(2a ) ? ? ? ????∑=gi L Xi G 2 ------------------------(3a )

)1(12G G L G G L a - ?=? = ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑= )( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出) (gi hi gi ∑?再合 成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置 空载: gi 不包括乘员或/和载荷,仅包括相关总成。 满载: gi 包括乘员或/和载荷以及相关总成。 ② 簧载质量、非簧载质量的质心位置 簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。 非簧载质量:gi 只包括属于非簧载质量的总成。

重心与质心

重心与质心 重心与质心是物理学中两个重要概念,由于它们只有一字之差,运用中很容易混淆。其实,“重心”和“质心”这两个概念有着不同的内涵和外延,是两个截然不同的力学概念。 首先看重心,任何物体都可以看作是由很多微粒所 组成,每个微粒都受到竖直向下的重力的作用,由于地 球很大,这些力可认为彼此平行。因此,又可以说任何 一个物体都受到很多的平行力——物体的各微粒所受的 重力的作用。所有这些重力的合力就等于整个物体的重 力,它可以根据平行力的合成法则来求得。这些平行力 ... 的合力作用点就叫做物体的重心 ..............(如图1-18的C点)。 由此可见,重心必须依赖重力而存在。实际上,重 心反映了重力“三要素”中的“作用点”要素,因此,可以说重心是重力概念的一个派生概念。根据重心的定义,严格地讲, 在地面上方的物体有重心的充分必要条件是作用在它各部分的重力 的作用线是相互平行的。在地面上方的大物体不存在以上意义的重心 1。可见,重心概念只对地球附近处受到地球引力的一切小物体有意义。 另外,根据重心定义可以知道,重心是一个定点,与物体所在的位置 和如何放置无关。均匀物体的重心只跟物体的形状有关,规则形状的 均匀物体的重心就在它的几何中心。如均匀直棒的重心就在它的中 点,均匀圆板的重心就在圆板的圆心,均匀球体的重心就在它的球心 等等。几何上之所以把三角形的二条中线的交点称为重心,就是因为 此交点实为物理上的重心位置。形状不规则、质量分布又不均匀的物 体的重心位置,除与物体的形状有关外,还与物体内部质量的分布情 况有关:找物体重心除用计算法外还可用实验悬挂法;用线悬挂物体 (A点),平衡时,物体重心一定在悬挂线(或其延长线)上,然后 把悬挂点换到物体上另一点(B点),再使之平衡,则物体的重心又一定在新的悬挂线(或其延长线)上,前后两次悬挂线的交点C就是所求物体的重心位置,如图1-19所示。有一点必须注意,即物体的重心可以不在物体内部,关于这点,请读者自行举例。 在物理学上,把物体的平衡程度称稳度 ..,而稳度的大小与物体的重心有紧密的联系。一般来说,重力相同,底面积相同,重心高的物体稳度小;重力相同,底面积不同,而重心高度相同的物体,底面积小的则稳度小。杂技演员表演成功的关键往往就是掌握好自己的重心。 下面我们再来看质心。众所周知,当物体不是作单纯的平动而是作比较复杂的运动时,物体上的各点运动状态(速度与加速度)不相同。但是,我们总可以把物体看成质点组来分析、处理,即想象把物体分成许多的质元,在每一质元范围内,速度和加速度是相同的。于是,对于每个质元,按牛顿第二定律有运动方程: ′f ij(1) m i a i=F i+∑ j 式中a i是第i个质元m i的加速度,F i是第i个质元m i受到来自物体外部的外力,∑ ′f ij是 j m i受到除它自己以外的物体上其他质元的作用力之和。对于物体中每一质元,均有类似(1)

相关文档
最新文档