pvc生产工艺基础知识

pvc生产工艺基础知识
pvc生产工艺基础知识

PVC型材生产工艺基础知识

配混料中应注意的问题

PVC树脂在加工中要加入各种助剂以改善PVC的性能,以适应加工和制品性能的需要。生产塑料门窗型材时一般要加入:热稳定剂、加工改性剂、冲击改性剂、润滑剂、光稳定剂、填充剂和色料等。虽然助剂的加入量是PVC树脂的0.1%到10%,但它们各自所起的作用是十分重要的,可以说缺一不可,而且加入量的变化对加工和最终产品的性能影响很大。因此,不仅配料中要称量准确而且混料过程中要混合均匀,达到物料的一致性。

物料的配制

PVC物料的配制过程主要包括配料、热混、冷混、输送、贮藏。其方法有人工配料、人工运输的小规模生产方式和自动配料、自动输送的大规模生产方式。近几年,我国硬PVC异型材挤出行业进入了高速发展期,企业的规模不断扩大,年产在万吨的企业,如采用人工配料的物料处理方法已不能满足大批量生产的需要,物料处理自动化已成普遍使用的方式。物料处理的自动化方式一般适合生产能力在5000吨以上的型材生产专业厂,其劳动强度低,生产环境好,可避免人为的误差,但是投资大,系统维护费用高,系统清理困难,不适合配方的频繁变动,尤其是色彩的变化。生产能力4000吨以下的企业多采用人工配料、运输、混料的方式。人工配料最大的问题是劳动强度高,配料、混合中形成粉尘污染,但投资小,生产灵活。

物料处理的自动化是指以电脑控制的自动配料系统为核心,辅以气力输送,再与热、冷混合机相组合构成一套完整的PVC配料、混料生产线。这项技术从20世纪80年代中期引入我国,并在一些有一定规模的大企业中应用。这种技术的优点在于配料精度高、生产效率高、污染少,能满足大批量挤出生产的需要。目前我国已有一些工厂能生产这种电脑控制的自动配料系统。

配料是混料的前道工序。配料的关键就是一个“准”字。在塑料型材生产的大型现代企业中,配料大都采用了电脑控制的多组分自动称量计量系统。比较广泛采用的是称重计量方式,根据不同的称重方法,又可分为分批次累加计重、失重式计重和流动过程物料的连续计重三种。而分批次累加计重方式与混合工艺中要求的分批次加料混合的工作方式非常谐调,最适合PVC的配混,所以在PVC型材生产中采用的较多。分批次累加计重的原理示意图见图1。

图1 自动分批次累加计重的原理示意图

1-料斗 2-电动螺杆加料器 3-气动阀门 4-称重料斗

5-质量传感器 6-计算机控制系统 7-高速捏合机

自动称重控制器包括称重料斗、质量传感器和计算机控制系统,它是本系统的核心,其主要功能有:将传感器的电信号还原为质量数值显示在屏幕上输入计算机中;根据所设定的参数要求对系统中的电机、阀门等进行逻辑控制(控制每一种助剂的加入量)。接受其它部分的控制信号达到联动,或者将自身的称重数据及时送到主控计算机进行处理。

人工配料是中小型工厂使用的方法,由于配料工序是一个非常重要的生产环节,配料的准确性直接关系到正常生产和产品的质量,各个工厂都根据自己的实际情况制定了相应的操作工艺和质量控制措施。

人工配料工序应注意:

1、上岗前人员必须进行培训,考核合格后才能上岗,培训应包括技能和职业道德的培训。人员应保持相对稳定。

2、每次操作前必须认真检查计量器具的准确度,定期进行计量鉴定。

3、做好操作前的准备工作,包括各种助剂的开包、检验、码放整齐、盛装袋的准备以及卫生环保器具、使用工具的准备。

4、操作应按所指定的程序和规程进行。例如:采用几个配料员,每人负责1~3种助剂流水作业的方法,先称哪种再称哪种,称量的精度都应严格按操作规程执行。

5、操作过程中应该精神集中,不得聊天或做其它事。

6、严格配料质量的检验制度,应有专人负责逐件进行检验,不合格的一律不得送到混料工序使用。一般是复核总重,即总重量应在允许范围内。

7、注意工作场地的卫生、环境,通风,照明条件。注意配料人员的身体健康。

混料工序

混料是将PVC树脂与热稳定剂、改性剂、润滑剂、填充剂色料等助剂混合均一化的过程。使用的设备主要是高速捏合机、冷却搅拌机。过程并不复杂,但混合的质量直接影响正常生产和制品的质量。混合的过程是依靠机械力作用在物料上产生的相互之间的摩擦力、剪切力使物料细化、升温,使一些助剂熔化,包覆在PVC树脂表面。PVC树脂在剪切、摩擦作用下细化,在温度作用下表面呈现松软、多孔状,将助剂吸附在表面并达到均一化,温度进一步升高,颗粒表面熔化,颗粒的密度增大。过程如图2所示。

图2 PVC树脂和助剂混合状态示意图

1-PVC树脂 2、3-助剂

混合的过程是在高速混合机中进行的,高速旋转的叶轮借助表面与物料的摩擦力和侧面对物料的推力使物料沿叶轮切向运动。同时,由于离心力的作用,物料被抛向混合室内壁,并且沿壁面上升,升到一定高度后,由于重力的作用,又回落到叶轮中心,接着又被抛起,如此往复。由于叶轮转速很高,物料运动速度很快,快速运动着的粒子间相互碰撞、摩擦,使得团块破碎,物料温度相应升高,同时迅速地进行着交叉混合,这些作用促进了组分的均匀分布和对已熔化成液态添加剂的吸收。

高速混合机的效率较高,所用时间远比Z型捏合机短,通常一次混合时间只需8~10分钟,物料温度随搅拌摩擦升高的很快,在

8~10分钟温度升至120~140℃,一般是通过控制物料温度来控制混料时间,温度控制在125~135℃出料,将物料迅速放入冷却搅拌机。物料进人冷混机后,在缓慢转动的搅拌桨作用下,可进行径向和部分轴向的混合,使接触冷却夹套的冷料与远离冷却表面的热料相混合,进行有效的热交换,使物料的温度降低。料温降至45℃以下时,即可由排料口出料。

冷混机的容积一般应为高混机的两倍以上。这样可保证混料工序的连续性,利于获得均一的干混料。干混料制备过程应严格控制工艺参数。有的厂家往往仅注意原料的质量、配方,以及挤出成型加工过程的工艺控制,而对于混料制备工艺重视不够。实际生产中出现的许多产品质量波动,却都因干混料制备工艺控制不严或不合理造成的。

混合工序应注意以下问题:

原料的准备

PVC树脂应有均匀的颗粒度,适当的相对分子质量范围,内部应多孔,质量应符合国家标准,应该使用疏松型树脂。树脂的含水量须符合生产要求,否则会加大在高速混合时排汽的难度。

各种助剂,特别是铅盐稳定剂和皂类稳定剂,颗粒应极细,有效成分的含量应稳定并合乎一级品的标准。助剂的含水量要低,否则应预先干燥处理。

高速混合机加料量的确定

高速混合机的加料量应能在保证混合温度的前提下,尽量提高生产效率。物料的体积为混合器空容积的50%以下时,摩擦生热较小。当达到预设的混合温度(如12O℃),需要l5min以上;加料量占50%~70%时,达到该温度则仅为8~10min;加料量在70%以上时,混合效果开始变差,升温速度也不再明显,混合机电机电流过大。因此,将加料量控制在混合室空容积的50~70%为宜。例如:PVC树脂的表观密度是0.45;对于400L的高速捏合机的加入量应是400×70%×0.45=126kgPVC树脂。为了操作方便一般加入4袋(4×25kg)树脂和所配合的各种助剂(20~30kg),总重量为120~130kg比较合适。

高速混合机出料温度的选择

研究结果表明,PVC树脂颗粒在强力搅拌下,料温在5O℃以下时,PVC结团的粉粒和较大的颗粒被磨擦,冲击颗粒粉碎变小,这时干混料的表观密度变化不大而树脂颗粒变小。料温在80℃以上至120℃左右(随配方而变)时,PVC树脂颗粒膨胀变大(玻璃化温度附近热膨胀系数较大),颗粒尺寸趋于均匀,颗粒的平均尺寸与未混合的PVC树脂颗粒相近;同时,由于颗粒吸收了助剂,干混料的表观密度迅速增加。料温在120℃以上(具体温度随配方而变),树脂颗粒尺寸减小而干混料表观密度仍在提高,在显微镜下可看到部分颗粒或颗粒表层变成半透明状,说明颗粒内的孔隙在减小,内部结构趋于紧密。

树脂颗粒的变大和均匀有利于干混料的流动,对输送有利;表现密度提高,有利于挤出成型产量的提高和减小排气量,对提高制品的密实度有利。同时,料温在100℃以上时,有利于物料中的水汽排除,所以高速混合的温度一般设在110~130℃。

使用液态稳定剂,同时物料含水率又很低时,热混温度可设置在较低的温度范围,如105℃,但不可低于90℃。使用固态稳定剂或物料含水率稍高时,热混温度宜在120~125℃;助剂中含有促进塑化的加工改性剂和内润滑剂时,热混温度可取下限。助剂中有推迟塑化、降低摩擦的铅盐和外润滑剂较多时,宜取上限。但在实际操作中应特别注意仪表所显示的温度与实际物料温度的差别,应经常定期校正仪表显示,以免造成质量事故。

高速混合时各种助剂的加料顺序

硬PVC配方的组分很多,加料顺序应严格遵守。所选择的加料顺序应有利于助剂作用的发挥,避免助剂的不良协同效应,还要有

利于提高混合分散速度。

稳定剂宜在树脂加入后或与树脂同时加到热混机中,以便与树脂及早均匀混合在升温中发挥出稳定作用。

皂类稳定剂和内润滑剂宜随后加入,以便熔化,充分渗入树脂内部。

蜡类外润滑剂宜在料温接近出料温度时最后加入,如在85~100℃加入,以免蜡类干扰其它助剂的分散,避免树脂颗粒表面摩擦系数降低,自摩擦生热速度降低,延长混合时间。

填料对助剂有吸收作用,而且一般用量较大,应在加入外润滑剂之前或与外润滑剂一起加入。以使助剂先在树脂中得以分散,减少填料对助剂的吸收。同时也可减小热混机的磨损。

加工改性剂应在蜡类加入之前,稳定剂加入之后加入。抗冲击改性剂可与树脂一并加到热混机中,特别是对具有热分解倾向的改性剂,如CPE。加工改性剂ACR是较细的粉末,搅拌中粉尘较大也容易随排气跑掉,所以一般选择在高混后期,物料温度较高,粘度较大时加入,尽量减少损失。

液体的助剂应在搅拌进行中缓缓加入。

总之,助剂的加料顺序以应尽可能发挥助剂功效,避免助剂之间的相克相消,提高助剂的相辅相成效果为宜。

1、建议加料顺序如下:(铅盐稳定剂系列配方为例)

(1)在低转速下将PVC树脂加到混合锅中。

(2)在60℃下,在高速转速下,将稳定剂及皂类加到树脂中。

(3)在80℃左右,于高转速下将加工改性剂,内润滑剂、颜料以及抗冲击改性剂加到料中。

(4)在90℃左右,于高转速下,加入填料。

(5)在100℃,在高转速下,加入外润滑剂如蜡类。

(6)在125℃,低转速下排物料送入转动着的冷混机中。

(7)在45℃以下,冷混机中排物料。

(8)过筛,计量,装袋,储藏待用。

2、简化的加料顺序如下:(铅盐稳定剂系列配方,200L以下混合机人工加料)

(1)在启动电机前将PVC树脂和热稳定、抗冲击改性剂加到混合锅中,盖好盖。

(2)低速启动电机,正常后进入高速混合。

(3)在80℃左右时,于高转速下将加工改性剂、内润滑剂、颜料、以及填料加到料中。

(4)在100℃左右时,在高转速下加入外润滑剂(如蜡类)。

(5)在125℃时,低转速下排料送入转动着的冷混机中。

(6)在降至45℃以下时,冷混机排料。

(7)过筛、计量、装袋,储存待用。

单、双螺杆挤出机结构特点和工作原理的差异

挤出成型工艺是聚合物加工领域中生产品种最多、变化最多、生产率高、适应性强、用途广泛、产量所占比重最大的成型加工方法。挤出成型是使高聚物的熔体(或粘性流体)在挤出机螺杆的挤压作用下通过一定形状的口模成型,制品为具有恒定断面形状的连续

型材。

挤出成型工艺适合于所有的高分子材料。几乎能成型所有的热塑性塑料,也可用于热固性塑料,但仅限于酚醛等少数几种热固性塑料。塑料挤出的制品有管材、板材、棒材、片材、薄膜、单丝、线缆包覆层、各种异型材以及塑料与其它材料的复合物等。目前约50%的热塑性塑料制品是通过挤出成型的。此外挤出工艺也常用于塑料的着色、混炼、塑化、造粒及塑料的共混改性等,以挤出成型为基础,配合吹胀、拉伸等技术,又发展为挤出一吹塑成型和挤出拉幅成型制造中空吹塑和双轴拉伸薄膜等制品。可见挤出成型是聚合物成型中最重要的方法。

挤出设备有螺杆挤出机和柱塞式挤出机两大类,前者为连续式挤出,后者为间歇式挤出,主要用于高粘度的物料成型,如聚四氟乙烯、超高分子量聚乙烯。螺杆挤出机可分为单螺杆挤出机和多螺杆挤出机。单螺杆挤出机是生产上最基本的挤出机。多螺杆挤出机中双螺杆挤出机近年来发展最快,其应用日渐广泛。目前,在PVC塑料门窗型材的加工中,双螺杆挤出机已成为主要生产设备,单螺杆挤出机将被逐步淘汰。但在其它聚合物的挤出加工中,单螺杆挤出机仍占主导地位。二者有各自的特点:

单螺杆挤出机:

●结构简单,价格低。

●适合聚合物的塑化挤出,适合颗粒料的挤出加工。对聚合物的剪切降解小,但物料在挤出机中停留时间长。

●操纵容易,工艺控制简单。双螺杆挤出机:

●结构复杂,价格高。

●具有很好的混炼塑化能力,物料在挤出机中停留时间短,适合粉料加工。

●产量大,挤出速度快,单位产量耗能低。

在PVC塑料门窗型材生产中,采用双螺杆挤出机与单螺杆挤出机的生产工艺为 见页下):

可以看出,单螺杆挤出机适合粒料加工,使用的原料是经造粒后的颗粒或经粉碎的颗粒料。双螺杆挤出机适合粉料加工,可以直接使用混合好的PVC料,减少了造粒的工序,但多了废料的磨粉工序。近几年,国产双螺杆挤出机的质量已基本达到进口双螺杆挤出机的水平,价格仅为进口机的1/3~1/5。由于双螺杆挤出机的产量大,挤出速度快,一般可达到2~4米/分钟,适合PVC塑料门窗型材的大规模生产。而单螺杆挤出机一般只用作小型辅助型材生产,挤出速度仅为1~2米/分钟,许多的PVC型材加工厂已淘汰了单螺杆挤出机,改用双螺杆挤出机一模多腔生产小型辅助型材。

挤出机的基本工作原理是将聚合物熔化压实,以恒压、恒温、恒速推向模具,通过模具形成产品熔融状态的型坯。但单螺杆挤出机与双螺杆挤出机结构不同,工作原理不同,其控制的工艺条件也不相同。

单螺杆挤出机

结构特点

单螺杆挤出机是由传动系统、挤出系统、加热和冷却系统、控制系统等几部分组成(另外还有一些辅助设备)。其中挤出系统是挤出成型的关键部位,对挤出的成型质量和产量起重要作用。挤出系统主要包括加料装置、料筒、螺杆、机头和口模等几个部分(如图3所示)。下面仅就挤出系统讨论挤出机的基本结构及作用。

PVC树脂

+—→称量计量—→高速混合—→冷却混合—→

双螺杆挤出机挤出—→冷却定型—→

各种助剂

↑单螺杆挤出机

造粒—→单螺杆挤出机

挤出—┘

—→牵引—→切割—→包装—→型材产品

废料—→粉碎—→与造粒料混合单螺

杆挤出机挤出

磨粉—→与混合的粉料混合双螺杆挤

出机挤出

图3 单螺杆挤出机结构示意图

1-树脂 2-料斗 3-硬合金衬套 4-热电耦 5-机筒 6-加热装置

7-机头加热器 8-多孔板 9-挤出熔体型坯 10-模具 11-模具连接体

12-过滤网 13-螺杆 14-冷却夹套

1、加料装置

挤出成型的供料一般采用粒状料。加料装置是保证向挤出机料筒连续供料的装置,形状如漏斗,有圆锥形和方锥形,亦称料斗。其底部与料筒连接处是加料孔,该处有截断装置,可以调整和截断料流。在加料孔的周围有冷却夹套,用以防止料筒高温向料斗传热,避免料斗内塑料升温发粘,引起加料不均和料流受阻情况发生。料斗的侧面有玻璃视孔及标定计量装置。有些料斗还有防止塑料从空气中吸收水分的预热干燥真空减压装置,以及带有能克服粉状塑料产生“架桥”现象的搅拌器和能够定时定量自动加料的装置。

2、料筒

料筒又叫机筒,是一个受热受压的金属圆筒。物料的塑化和压缩都是在料筒中进行的。挤出成型时的工作温度一般在180~290℃,料筒内压可达60MPa。在料筒的外面设有加热和冷却装置。加热一般分三至四段,常用电阻或电感加热器,也有采用远红外线加热的。冷却的目的是防止塑料的过热或停车时须对塑料快速冷却以免塑料的降解。冷却一般用风冷或水冷。料筒须承受高压,要求具有足够的强度和刚度,内壁光滑。料筒一般用耐磨、耐腐塑料摩擦使塑料过热,同时让螺杆表面温度略低于料筒,防止物料粘附其上,利于物料的输送。

螺杆用止推轴承悬支在料筒的中央,与料筒中心线吻合,不应有明显的偏差。螺杆与料筒的间隙很小,使塑料受到强大的剪切作用而塑化并推动向前。

螺杆由电动机通过减速机构传动,转速一般为10~120r/min,要求是无级变速。

(1)螺杆的几何结构参数

螺杆的几何结构参数有直径、长径比、压缩比、螺槽深度、螺旋角、螺杆与料筒的间隙等(见图4)其中长径比(L/Ds)对螺杆的工作特性有重大的影响。一般挤出机长径比为15~25,但近年来发展的挤出机有达40的,甚至更大。L/Ds大,能改善塑料的温度分布,能使混合更均匀,还可减少挤出时的逆流和漏流,提高挤出机的生产能力。L/Ds过小,对塑料的混合和塑化都不利。因此,对于硬塑料、粉状塑料要求塑化时间长,应选较大的。L/Ds大的螺杆适应性强,可用于多种塑料的挤出。但L/Ds太大,热敏性塑料会因受热时间太长而出现分解,同时增加螺杆的自重,使制造和安装都困难,也会增大挤出机的功率消耗。目前,L/Ds以25居多。

图4一般螺杆结构

(2)螺杆的压缩比ε

螺杆的压缩比ε是指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之比,它表示塑料通过螺杆的全过程被压缩的程度。ε越大,塑料受到挤压的作用也就越大,排除物料中空气的能力就大。但ε太大,螺杆本身的机械强度下降。一般压缩比ε在2~5之间。压缩比ε的大小取决于挤出塑料的种类和形态,如粉状塑料的相对密度小,夹带空气多,其压缩比应大于粒状塑料。另外挤出薄壁状制品时,压缩比ε应比挤出厚壁制品的大。

(3)螺槽深度H

螺槽深度影响塑料的塑化及挤出效率,H较小时,对塑料可产生较高的剪切速率,有利于传热和塑化,但挤出生产率降低。因此,热敏性塑料宜用。H大的深槽螺杆宜用熔体粘度低和热稳定性较高的塑料。在实际生产中,根据工艺需要,螺槽深度往往是变化的,根据螺杆各段的功能不同,螺槽的深度不同,最通用的是渐变螺杆,如:加料段的螺槽深度Hl是个定值,一般H1>0.1Ds;压缩段的螺槽深H2是渐变的,是一个变化值;均化段的螺槽深H3是个定值,按经验H3=0.02~0.06Ds。螺旋角θ是螺纹与螺杆横截面之间的夹角,随着θ的增大,挤出机的生产能力提高,但螺杆对塑料的挤压剪切作用减少。出于机械加工的方便,取Ds=Ls,则θ为17.26。为最常用的螺杆。

(4)螺杆与料筒的间隙δ

螺杆与料筒的间隙δ,其大小影响挤出机的生产能力和物料的塑化。δ值大,热传导差,剪切速率低,不利于物料的熔融和混合,生产效率也不会高。但δ小时,热传导和剪切率都相应提高。但δ过于小,就易引起物料降解。

单螺杆挤出机挤出过程和螺杆各段的功能

由高分子物理学知道,高聚物存在三种物理状态,即玻璃态、高弹态和粘流态,在一定条件下,这三种物理状态会发生互变。固态塑料由料斗进人料筒后,随着螺杆的旋转向机头方向前进,在此过程中,塑料的物理状态在不断发生着变化。根据塑料在挤出机中的三种物理状态的变化过程及对螺杆各部位的工作要求,通常将挤出机的螺杆分成加料段(固体输送区)、压缩段(熔融区)和均化段(熔

体输送区)三段。对于常规渐变螺纹的螺杆来说,塑料在挤出机中的挤出过程可以通过螺杆各段的基本职能及塑料在挤出机中的物理状态变化过程来描述,见图5。

图5 塑料在挤出机中的挤出过程

1、加料段

塑料自料斗进入挤出机的料筒内,在螺杆的旋转作用下,由于料筒内壁和螺杆表面的摩擦作用向前运动。在该段,螺杆的职能主要是将塑料压实提供向前输送的动力,物料仍以固体状态存在,虽然由于强烈的摩擦热作用,在接近末端时与料筒内壁相接触的塑料已接近或达到粘流温度,固体粒子表面开始发粘,但熔融仍未开始。这一区域称为迟滞区,是指固体输送区结束到最初开始出现熔融的一为粘流态。

3、均化段

从熔融段进人均化段的物料是已全部熔融的粘流体。向前输送的粘流体在机头口模阻力下,一部分回流被进一步混合塑化,一部分被定量定压地从机头口模挤出。

从以上单螺杆挤出机的工作原理不难看出,塑料在挤出机中塑化,向前挤压流动,其主要动力来源于加料段的固体输送,塑化的均匀程度很大程度是由于均化段的结构和机头模具的阻力所造成的回流。在改善螺杆混炼结构上已经有了许多新型的结构,但其往往适合于热稳定性很好的聚合物,却不适宜PVC树脂的生产,这就不一一介绍了。

双螺杆挤出机

随着聚合物加工业的发展,对高分子材料成型和混合工艺提出了越来越多和越来越高的要求,单螺杆挤出机在某些方面就不能满足这些要求。例如:用单螺杆挤出机进行填充改性和加玻璃纤维增强改性等,混合分散效果就不理想。另外,单螺杆挤出机尤其不适合粉状物料的加工。为了适应聚合物加工中混合工艺的要求,特别是硬聚氯乙烯粉料的加工,双螺杆挤出机自20世纪30年代后期在意大利开发出来以后,经过半个多世纪的不断改进和完善,得到了很大的发展。在国外,目前双螺杆挤出机已广泛应用于聚合物加工领域,已占全部挤出机总数的40%。硬聚氯乙烯粒料、管材、异型材、板材几乎都是采用双螺杆挤出机加工成型的。作为连续混合机,双螺杆挤出机已广泛用来进行聚合物共混、填充和增强改性,也有用来进行反应挤出。近20年来,高分子材料共混和反应挤出技术的发展进一步促进了双螺杆挤出机数量和类型的增加。

双螺杆挤出机的结构与分类

双螺杆挤出机由传动装置、加料装置、料筒和螺杆等几个部分组成,各部件的作用与单螺杆挤出机相似。与单螺杆挤出机区别之处在于双螺杆挤出机中有两根平行的螺杆置于同一的料筒中,如图6所示 转下页)。

双螺杆挤出机有许多种不同的形式,主要差别在于螺杆结构的不同。双螺杆挤出机的螺杆结构要比单螺杆挤出机复杂得多,这是因为双螺杆挤出机的螺杆还有诸如旋转方向、啮合程度等等问题。

图6 双螺杆挤出机示意图

1-电动机 2-连接器 3-减速器 4-料斗

5-加料器 6-加热器 7-料筒 8-螺杆

常用于PVC型材挤出的双螺杆挤出机通常是紧密啮合且异向旋转的螺杆,少数也有使用同向旋转式双螺杆挤出的,但一般只能在低速下操作,约在10r/min范围内。而高速啮合同向旋转式双螺杆挤出机用于混炼、排气造粒或作为连续化学反应器使用,这类挤出机最大螺杆速度范围在300~600r/min。非啮合型挤出机与啮合型挤出机的输送机理大不相同,比较接近于单螺杆挤出机的输送机理,二者有本质上的差别。

双螺杆挤出机的工作原理

双螺杆挤出机的结构尽管与单螺杆挤出机很相似,但工作原理差异却很大。在双螺杆挤出机中,物料由加料装置(一般为定量加料)加入,经螺杆作用到达机头口模。在这一过程中,物料的运动情况因螺杆的啮合方式、旋转方向不同而不同。

1、非啮合型双螺杆挤出系统

物料在非啮合双螺杆挤出系统中,除了向机头方向的运动形式外,还有多种流动方式,见图7。由于两螺杆不啮合,它们之间的径向间隙很大,存在较大的漏流。主要流动方式:1、由于两螺杆的螺棱的相对位置是错开的,即一根螺杆的推力面的物料压力大于另一螺杆拖带面的物料压力,从而产生了流动。

图7 物料在非啮合双螺杆挤出机中的流动示意图

2、物料从压力较高的螺杆推力面向另一螺杆拖带面的流动,同时随着螺杆的旋转,在两螺杆的间隙处物料不断受到搅动并被不断带走、更新(不论两螺杆的转向如何),特别是在异向旋转过程中,物料在A处受到阻碍,产生了流动。3、多种物料的流动形式(包括由于在两根螺杆的相互作用下产生的各种流动)都增加了对物料的混炼和剪切。但这种双螺杆没有自清洁作用,一般仅用于混料,不适合PVC型材的生产。

2、啮合型同向旋转双螺杆挤出系统

物料在同向旋转的双螺杆挤出系统的全螺纹段的流动情况见图8。由于同向旋转双螺杆在啮合位置的速度方向相反,一根螺杆要把物料拉入啮合间隙,而另一根螺杆要把物料从间隙中推出,结果使物料从一根螺杆转到另一个螺杆,呈∞形前进,这种速度的改变以及啮合区较大的相对速度,非常有利于物料混合和均化,由于啮合区间隙很小,啮合处螺纹和螺槽的速度相反,剪切速度高,有很好自洁作用,即能刮去粘附在螺杆上的任何积料,从而使物料的停留时间很短。这种挤出机主要用于混炼物料和造粒。但由于物料在啮合区间所受剪切力很大,所以也不适应PVC型材的生产。

图8 物料在啮合同向双螺杆挤出机中的流动示意图

图9 啮合型异向旋转双螺杆挤出系统中物料的运动情况

3、啮合型异向旋转双螺杆挤出系统

啮合型异向旋转双螺杆挤出系统中物料的运动情况见图9。在啮合型异向旋转的双螺杆挤出中,两根螺杆是对称的,由于回转方向不同,一根螺杆上物料螺旋前进的道路被另一根螺杆的螺棱堵死,不能形成“∞”字型运动。在固体输送部分,物料是以近似的密闭“C”形小室的形态向前输送。但为了使物料混合设计中将一根螺杆的外径与另一根螺杆的根径之间留有一定的间隙量,以便使物料能够通过。物料通过两螺杆之间的径向间隙时,受到强烈的剪切、搅拌和压延作用,因此,物料的塑化比较好,多用于加工制品。由于两螺杆的径向间隙比较小,因此,有一定的自洁性能,但自洁性比同向旋转的双螺杆要差。

双螺杆挤出机的主要参数

1、螺杆公称直径。螺杆公称直径是指螺杆外径,单位为mm。对于变直径(或锥形)螺杆而言,螺杆直径是一个变值,一般用最小直径和最大直径表示如:65/130。双螺杆的直径越大,表征机器的加工能力越大。

2、螺杆的长径比。螺杆的长径比是指螺杆的有效长度与外径之比。一般整体式双螺杆挤出机的长径比是在7~18之间。对于组合式双螺杆挤出机,长径比是可变的。从发展看,长径比有逐步加大的趋势。

3、螺杆的转向。螺杆的转向有同向和异向之分。一般同向旋转的双螺杆挤出机多用于混料,异向旋转的挤出机多用于挤出制品。

4、螺杆的转速范围。螺杆的转速范围是指螺杆的最低转速到最高转速(允许值)间的范围。同向旋转的双螺杆挤出机可以高速旋

转,异向旋转的挤出机一般转速仅在0~40r/min。

5、驱动功率。驱动功率是指驱动螺杆的电动机功率,单位为kW。

6、产量。产量指每小时物料的挤出量,单位为kg/h。

双螺杆挤出机与单螺杆挤出机的差别

物料的传送方式

在单螺杆挤出机中,物料传送是拖曳型的。固体输送段中为摩擦拖曳,熔体输送段中为粘性拖曳。固体物料的摩擦性能和熔融物料的粘性决定了输送行为。如有些物料摩擦性能不良,如果不解决喂料问题,则较难将物料喂入单螺杆挤出机。所以颗粒状的原料适合单螺杆挤出机进料。

而在双螺杆挤出机中,特别是啮合型双螺杆挤出机,物料的传送在某种程度上是正向位移传送,正向位移的程度取决于一根螺杆的螺棱与另一根螺杆的相对螺槽的接近程度。紧密啮合异向旋转挤出机的螺杆几何形状能得到高度的正向位移输送特性。形成了强制进料,粉末状的物料有利于挤压进料。

表7 双螺杆挤出机温度控制

物料的流动速度场

研究人员对物料在单螺杆挤出机中的流动速度分布已描述得相当明确,而在双螺杆挤出机中物料的流动速度分布情况相当复杂且难以描述。许多研究人员只是不考虑啮合区的物料流动情况来分析物料的流动速度场,但这些分析结果与实际情况相差很大,因为双螺杆挤出机的混合特性和总体行为主要取决于发生在啮合区的漏流,然而啮合区中的流动情况相当复杂。双螺杆挤出机中物料的复杂流谱,宏观上表现出单螺杆挤出机无法媲美的优点,例如:混合充分,热传递良好,熔融能力大,排气能力强及对物料温度控制良好等。

生产工艺控制的差别

由于单螺杆挤出机与双螺杆挤出机在结构和工作原理上的差别,在PVC型材生产工艺控制上也有很大的差别,具体表现在:1、温度控制

单螺杆挤出机一般采用温度逐步升高的控制方法,物料在加料段应处于未熔化的固体状态以利于达到固体输送的能力,如果物料过早熔化会抱在加料段的螺杆上与螺杆同步转动,阻止物料向前移动,形不成固体塞的输送能力,使挤出机挤不出料,长时间会造成PVC的分解。从加料口到机头的温度分布如表6所示:

双螺杆挤出机与单螺杆挤出机输送物料的机理不同,它是采用强制进料的方法。PVC物料一进入挤出机中便在通过两螺杆之间的径向间隙时,受到强烈的剪切、搅拌和压延作用,很快塑化后,进入排气段排气。如果PVC物料得不到很好的塑化,不但加大螺杆挤压的负荷,同时进入排气段时,粉状的PVC物料还会随空气一同排除,因此双螺杆挤出机的温度控制应为表7所示。

2、螺杆转速控制

(1)单螺杆挤出机

挤出速度和挤出机的螺杆转速有直接关系,螺杆转速提高,挤出速度加快。当然温度、模具的阻力、螺杆的塑化能力对挤出速度都有影响。单螺杆挤出机挤出PVC型材的螺杆转速应在10-40r/min。因物料是直接通过料斗加入到螺杆和料筒之间的,进料速度与螺杆的转速有直接关系,同时也与原料形状、密度、表面物理性质有关,粉状的物料、密度小的物料、物料不光滑、流动阻力大的物料都会使进料速度变慢,有时还容易产生“架桥”阻止进料。单螺杆挤出机螺杆的转速直接影响挤出的压力、物料的塑化程度和转动螺杆电机的负荷。

综上所述,单螺杆挤出机的螺杆转速的确定,是根据物料的进料能力、塑化能力、机头的阻力和电机的负荷来决定的。

(2)双螺杆挤出机

双螺杆挤出机进料方式是依靠两根螺杆的间隙挤压的强制进料方式,尤其是常用于PVC型材挤出的锥型双螺杆挤出机,它与单螺杆挤出机的摩擦拖曳的固体输送有很大的区别。在双螺杆挤出机中往往采用限制或是定量加料的方式。在进料口上方设有加料器,由加料器中的加料螺杆转速来控制物料进入挤出机的量,实际上也控制了挤出型材的速度。而螺杆的转速更多的体现在塑化能力的变化,速度加快,螺杆的塑化能力提高。但二者有密切的关系,加料速度应与挤出机螺杆的转速相匹配,达到最好的塑化质量和形成适当的机头压力。

用于PVC型材生产的锥型双螺杆挤出机螺杆的转速一般应控制在10~25转/分钟,加料器的螺杆转速应控制在使挤出机负荷在满负荷的40~60%。加料速度过快会造成电机负荷过大,对螺杆,电机都是损坏。加料速度过慢,使机头压力过低,不利于熔体的合模压实,产量也会相应降低。在双螺杆挤出机挤出PVC型材生产中,PVC粉料容易挤压、塑化快、被经常使用,而PVC颗粒料体积大、挤压困难、塑化慢并容易造成设备损害,需要磨细后使用。

配方要求的差异

由于单螺杆挤出机与双螺杆挤出机物料流动状态不同,物料在螺杆中所受的剪切力不同,所经历的塑化时间、历程不同,因此对PVC体系的配方组成要求也有所不同。物料在双螺杆挤出机中所受的剪切力远远大于在单螺杆挤出机所受的剪切力,对PVC体系的内润滑要求高些。但在双螺杆挤出机中物料的塑化时间短、塑化历程短,对PVC体系的热稳定性要求没有单螺杆挤出机挤出塑化时间长,对热稳定剂稳定时间要求长。此外双螺杆挤出机塑化能力、物料塑化均匀度都远远大于单螺杆挤出机,双螺杆挤出机挤出制品的质量也比单螺杆挤出机要高,主要表现在材料的拉伸强度、抗冲击强度以及焊角强度上。具体表现在单螺杆挤出机挤出PVC型材配方中所使用的热稳定剂、加工助剂、改性剂均比双螺杆挤出机PVC型材配方中所使用的要多些。

年产万吨聚氯乙烯生产工艺设计

设计课题 年产10万吨聚氯乙烯生产工艺设计方案 2014年 10 月16日

设计说明 聚氯乙烯(PVC)是一种热塑性合成树脂,有优良的电绝缘性,难以自燃,主要用于生产透明薄膜、塑料管件、各类板材等。其再加工产品在全球不同领域都有着非常广泛的应用。 根据设计任务书,本设计进行了年产10万吨聚氯乙烯(PVC)工艺的设计。在查阅、参考大量文献以及对以往部分车间设计的研究学习下,进行了科学的设计以及对相关物料的衡算。 本设计计划采用悬浮聚合法生产聚氯乙烯,原料为氯乙烯单体以及混合用有机过氧化物和偶氮类引发剂、明胶分散剂和去离子水。结合所选择的生产工艺方案和产品生产实际情况,进行了有关物料和热量平衡的计算。安排每日三班次,每班8小时的生产强度,设计可达到日产303吨年产达10万吨的聚氯乙烯生产车间。 本设计也充分考虑到工作人员的工作环境以及工作安全性,尽可能将车间规划为安全的,绿色的,在工作人员遵守车间操作规程的情况下,工作更加安全高效。 本设计由许春华副教授指导,在反应确定、生产流程安排等整个设计过程中提出了许多宝贵意见,使得设计能更高效地完成,在此表示衷心感谢。 鉴于知识和实际经验所限,设计难免存在欠缺,恳请批评指正。

目录 1总论 .................................................... 1.1 概述.................................................................................................................................. 1.1.1 聚氯乙烯(PVC)概述与应用范围......................................................................... 1.1.2 聚氯乙烯(PVC)改性品种..................................................................................... 1.1.3 聚氯乙烯(PVC)生产行业现状及发展前景......................................................... 1.2 聚氯乙烯(PVC)产品的分类和命名............................................................................ 1.2.1 聚氯乙稀(PVC)产品分类..................................................................................... 1.2.2 聚氯乙稀(PVC)产品命名..................................................................................... 1.3 聚氯乙烯(PVC)生产方法[5]......................................................................................... 1.3.1 悬浮聚合法[6] ............................................................................................................ 1.3.2 乳液聚合法............................................................................................................... 1.3.3 本体聚合法............................................................................................................... 1.3.4 溶液聚合法............................................................................................................... 1.4 设计规模原料选择与产品规格 ...................................................................................... 1.4.1设计规模.................................................................................................................... 1.4.2主要原料规格及技术指标 ........................................................................................ 1.4.3产品规格.................................................................................................................... 2工艺设计与计算 .......................................... 2.1 工艺原理.......................................................................................................................... 2.2 工艺条件影响因素 .......................................................................................................... 2.2.1 聚氯乙烯(PVC)聚合主要影响因素................................................................... 2.3 工艺路线选择.................................................................................................................. 2.3.1 工艺路线选择原则................................................................................................... 2.3.2 悬浮法聚氯乙烯(PVC)工艺流程具体工艺路线................................................. 2.3.3 工艺流程示意图..................................................................................................... 2.4 工艺配方与工艺参数 ...................................................................................................... 2.4.1 工艺配方(质量份): ........................................................................................... 2.4.2 工艺参数:............................................................................................................... 2.5 物料衡算........................................................................................................................ 2.5.2 物料衡算的方法与步骤 ........................................................................................... 2.5.3 物料衡算...................................................................................................................

Pvc生产工艺设计以和流程

Pvc生产工艺以及流程 其中SG-1型用生产高级电绝缘材料,SG-2型用于生产电绝缘材料、一般软制品和薄膜,SG-3型用于生产电绝缘材料、农用薄膜、日用塑料制品,SG-4型用于生产工业与民用微膜、软管、高强度管材,SG-5型用于生产透明制品、型材、硬管、装饰材料、生活日用品等,SG-6型用于生产透明片、硬板、焊条,SG-7型、SG-8型用于生产透明片、硬质注塑管件。依据的质量标准为GB/T5761-1993。 聚氯乙烯树脂质量标准GB/T5761-1993

电石制乙烯,乙烯制pvc(某塑料),烧碱吸收氯碱工业的尾气 聚氯乙烯简称PVC,是我国重要的有机合成材料,广泛用于工业、建筑、农业、日用生活、包装、电力、公用事业等领域。我国是全球最大的PVC生产和消费国。 根据生产方法的不同,PVC可分为通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。根据氯乙烯单体的获得方法来区分,可分为电石法、乙烯法和进口(EDC、VCM)单体法,习惯上把乙烯法和进口单体法统称为乙烯法。我国国内聚氯乙烯总产能的75%采用以煤化工为基础的电石法装置。中国电石法聚氯乙烯装置的总能力已经占全球聚氯乙烯装置总能力的25%甚至更高。 电石法以煤炭为上游原料,烟煤在隔绝空气的条件下,经过高温干馏生成焦炭。焦炭和石灰石(CaCO3)反应生成电石(CaC2),电石遇水,就生成了乙炔。乙炔和氯化氢发生加成反应就生成氯乙烯,氯乙烯聚合生成聚氯乙烯。 PVC生产过程中的关键一步是原盐水解生成氯气和烧碱(NaOH)。氯气进一步制成次氯酸钠、聚氯乙烯、甲烷氯化物等氯产品,其作用自不待言。烧碱在工业生产中也有广泛的应用,使用最多的部门是化学药品的制造,其次是造纸、炼铝、炼钨、人造丝、人造棉和肥皂制造业等等。鉴于氯和烧碱在这些行业中的巨大作用,工业上就将与这两种化学品相关的产业称作烧碱产业。 烧碱项目出来的产品主要是:氯气、氢气和烧碱,烧碱是主要出售的产品,而氯气和氢气则不好出售,所以需要PVC来平衡,正好PVC生产需要氯气和氢气来生产氯化氢气体,所以……HCl需要烧碱项目提供,所以要上烧碱项目,离子膜法是当前生产烧碱最先进最流行的方法,是因果关系 企业要考虑化工产品的平衡,前面的产品后面要有消耗的,聚氯乙烯生产需要消耗氯气,而较之其他的像氯化石蜡项目等量要大,而且利润上要差好多。烧碱项目产生的氯气就是被PVC消耗掉,烧碱只是单独的一个产品,有的做液碱销售,也有的要蒸发成固碱 PVC的生产主要有两种制备工艺,一是电石法,主要生产原料是电石、煤炭和原盐;二是乙烯法,主要原料是石油。国际市场上PVC的生产主要以乙烯法为主,而国内受富煤、贫油、少气的资源禀赋限制,则主要以电石法为主,截至到2007年12月,电石法约占我国PVC总产能的70%以上。 在PVC生产成本这部分,影响价格的主要因素应该考虑煤炭、焦炭、电力、电石、原油、乙烯、VCM等价格成本,另外,原盐的价格也会通过氯的价值传导对PVC 的价格进行一定程度的影响。 原盐的主要消费领域就是氯碱产品的生产。原盐电解后产生的氯部分用于生产PVC 和其他氯产品,钠部分用于生产纯碱和烧碱。 根据应用范围不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC 树脂。 根据氯乙烯单体的聚合方法,聚氯乙烯的获得又有悬浮法、乳液法、本体法和溶液法

聚氯乙烯的聚合基础学习知识原理

聚氯乙烯的聚合

聚合在带有夹套的搪瓷釜或不锈钢釜内进行,间歇操作。大型釜除依靠夹套传热外,还配有内冷管或(和)釜顶冷凝器,并设法提高传热系数。悬浮聚合体系粘度不高,搅拌一般采用小尺寸、高转数的透平式、桨式、三叶后掠式搅拌桨。 二、氯乙烯单体中杂质对聚合反应的影响 1.VCM中乙炔对聚合的影响 首先表现在对聚合时间和聚合度的影响上,见表1. 可知聚合生产中除去单体中的乙炔很重要,一般要求低于10ppm (0.001%)。乙炔的主要危害是和引发剂的自由基、单体自由基发生链转移反应。当乙炔含量高时,生产上一般采取降低聚合温度的办法,以免树脂转型;或在聚合反应初期适当提高聚合温度,以消除诱导期的延长;

2.VCM中高沸物对聚合的影响 VCM中乙醛、二氯乙烯、二氯乙烷等高沸物,均为活泼的链转移剂,从而降低PVC聚合度和降低反应速度。由于高沸物存在于VCM中不便于聚合温度的掌握,以及高沸物对分散剂的稳定性有明显的破坏作用,因此对VCM中的高沸物含量要严加控制。 此外,高沸物杂质高,影响树脂的颗粒形态,造成高分子歧化,以及影响聚合釜粘釜和“鱼眼”等。工业生产要求单体中高沸物总含量控制在100ppm(0.01%)以下,即单体纯度≥99.99%。一般高沸物含量较高时,可借降低聚合反应温度来处理。 3.铁质对聚合的影响 VCM中铁离子的存在,使聚合诱导期延长,反应速度减慢,产品热稳定性差,还会降低树脂的电绝缘性能(特别是铁离子混入PVC中时)。此外,铁离子还会影响产品颗粒的均匀度。 4.水质对聚合的影响。 聚合投料用水的质量,直接影响到产品树脂的质量。如硬度(表征水中金属等阳离子含量)过高,会影响产品的电绝缘性能和热稳定;氯根(表征水中阴离子含量)过高,特别对聚乙烯醇分散体系,易使颗粒变粗,影响产品的颗粒形态;PH值影响分散剂的稳定性,较低的PH值对分散体系有显著的破坏作用,较高的PH值会引起聚乙烯醇的部分醇解,影响分散效果及颗粒形态。此外,水质还会影响粘釜及“鱼眼”的生成。 三、聚合生产过程中常用的助剂 氯乙烯悬浮聚合过程中,聚合配方体系或为改善树脂性能而添加各种各样的助剂,其中用得比较广泛的有以下几种:分散剂、引发剂、PH

聚氯乙烯生产工艺说明

第一部分氯乙烯的制备 工艺流程: 乙炔工段送来的精制乙炔气(纯度≥98.5%),经乙炔沙封后,与氯化氢工段送来的氯化氢(纯度≥93%,不含游离氯)在混合器以一定比例(1:1.05)混合后进入一级石墨冷却器,用-35℃冷冻盐水冷却至(2±4)℃,再经二级石墨冷却器用-35℃冷冻盐水间接冷却至(-14±2)℃左右,在这两级石墨设备内各依重力作用除去大部分冷凝液滴后依次进入一级酸雾过滤器、二级酸雾过滤器,由氟硅油玻璃棉过滤捕集除去少量粒径很小的酸雾,排出40%的盐酸送氯化氢脱吸或作为副产品包装销售。得到含水分≤0.06%的混合气依次进入石墨预热器,蒸气预热器预热至70~80℃温度送入串联的两段装有氯化高汞触媒的转化器,可分别由数台并联操作,反应生成粗氯乙烯,第一段转化器出口气体中尚有20%~30%的乙炔未转化,在进入第二段转化器继续反应,使其出口处的乙炔含量控制在3%以下。第二段转化器装填的是活性高的新催化剂,第一段转化器装填的则是活性较低的催化剂,即由第二段更换下来的旧催化剂。合成反应热,通过转化列管间的循环热水移支去。精氯乙烯经过装有活性炭填料的除汞器填料塔的稀酸及解吸后的稀酸吸收混合气中的大部分氯化氢气体,制得氯化氢含量为28%~30%的盐酸送氯化氢脱吸或作为副产品包装销售;经过吸收后的粗氯乙烯气体进入二级填料水洗塔二次清洗,水洗后含有极微量的氯化氢酸雾、二氧化碳及惰性气体,进入碱洗塔用8%~20%的NAOH溶液洗涤,净化后的气体经汽水分离器部分脱水后送入压缩工序。生产间的波动则由设置的氯乙烯气柜来实现缓冲。工艺原理: 混合气脱水:利用氯化氢吸湿性质,预先吸收乙炔气中的绝大部分水,生成40%左右的盐酸,降低混合气中的水分,利用冷冻方法混合脱水,是利用盐酸冰点低,盐酸上水蒸气分压低的原理,阄混合气体冷冻脱酸,以降低混合气体中水蒸气分压来降低气相中水含量,达到进一步降低混合气中的水分至所必需的工艺指标。在混合气冷冻脱水过程中,冷凝的40%的盐酸,除少量是以液膜状自石墨冷却器列管内壁流出外,大部分呈极细微(≤2μm)的“酸雾”悬浮于混合气流中,形成“气溶胶”,该“气溶胶”无法依靠重力自然沉降,要采用浸渍3%~5%憎水性

材料员基本知识

精心整理 材料员基本知识 1、基础工程材料一般有哪些? 一般有钢筋、水泥、砂、石子、砖、外加剂、木材、给排水管及管件、电气穿地管等。 2、主体工程的材料和构件一般有哪些? 答:钢筋、水泥、砂、石子、粉煤灰、白灰、木材、外加剂、苯板、砖、通风道等 3 4 5 《硅酸泥》、、42.5、62.5、62.5R 。 7 定强度等级,按鉴定后的强度等级使用。所以贮存和使用水泥时就注意先入库的先用。 8、常用砌筑用砖共分为几种及规格是什么? 答:分为红砖和空心砖。红砖规格为240*115*53,空心砖的规格为240*115*180。空心砖还有190*115*90和180*115*90两种规格,但不经常用。 9、1立米砖砌体需用多少红砖? 答:标准尺寸为240×115×53mm 的直角平行六面体,加上砖砌灰缝10mm ,则4块砖长,8块

砖宽,16块砖厚均为1M,1立方(M3)砖砌体的用砖量为512块。 10、现场材料员如何检测红砖质量? 答:按焙烧时的火候不同还可分为正火砖、欠火砖和过火砖。欠火砖色浅、声哑、吸水率大、强度耐久性差,过火砖色深、声音响亮、吸水率低、强度高但常有弯曲变形。二种砖均为不合格品。 11、什么是顺砖、丁砖?什么是眠砖、斗砖? 答:顺砖,指砖的长度沿墙面;丁砖,指砖的宽度沿墙面;砖平砌叫眠砖;砖侧立砌筑叫斗砖。 12 B C 13 14 (1) (2) (3) 15 得超过 16 答:包装水泥要实行抽检,以防每袋重量不足,防止重量不足而影响混凝土和砂浆强度,产生质量事故;散装水泥可按出厂秤码单计量净重,但要注意卸车时要卸净,检查方法是看罐车上的压力表是否为零及拆下的泵管是否有水泥。 17、水泥在储存和运输时为什么应防止受潮? 答:因为水泥受潮后,因表面水化而结块,丧失胶凝能力,强度大为降低,而且,即使在良好的条件下,也不可储存过久,因为水泥会吸收空气中的水分和二氧化碳,缓慢地水化和碳化,故储存过久的水泥在使用前要重新检验其实际强度。 18、水泥净重的检查标准是什么?

PVC管材工艺流程-2

软质聚氯乙烯管材生产工艺流程 软质聚氯乙烯管材生产工艺流程见下图: PVC 树 脂 助 剂 一、混合工艺 在高速混合时,助剂渗入PVC 树脂的空隙,使助剂在树脂中均匀分散,考虑到温度在100℃以上有利于物料中水蒸气蒸出,所以一般热混机的温度设在100—120℃。为了让助剂充分地与PVC 微粒接触,减少填充剂对助剂的吸附作用,应该在加入PVC 树脂后即启动热混机,再按如下顺序投料:稳定剂、各种加工助剂、色料、填充剂。在实际生产中,大都是将原辅料全都投入后再启动热混机。 热混机放出的混合料温度很高,需立即进行冷却,若散热不及时会引起物料分解和助剂挥发。冷混一般控制在料温40℃左右时出料。 二、挤出成型工艺 挤出机螺杆分3个区段:加料段(送料段)、熔化段(压缩段)、计量段(均化段),这三段相应的对物料组成了3个功能区:固体输送区、物料塑化区、熔体输送区。 固体输送区的料筒温度一般控制在100—1400C 。若加料温度过低,使固体输送区延长,减少了塑化区和熔体输送区的长度,会引起塑化不良,影响产品质量。 物料塑化区的温度控制在170—1900C 。控制该段的真空度是一个高速混合 低速混合 冷却定型 助烤扩口 切割 油墨印字 成品 牵引 挤出

重要的工艺指标,若真空度较低,会影响排气效果,导致管材中存有气泡,严重降低了管材的力学性能。为了使物料内部的气体容易逸出,应控制物料在该段塑化程度不能过高,同时还要经常清理排气管路以免阻塞。料筒真空度一般为0.08—0.09MPa。 熔体输送区的温度应略低一些,一般为160—1800C。在该段提高螺杆转速、减小机头阻力及在塑化区提高压力都有利于输送速率的提高,对于PVC这样的热敏塑料,不应在此段停留时间过长,螺杆转速一般为20—30r/min。 机头是挤出制品成型的重要部件,它的作用是产生较高的熔体压力并使熔体成型为所需的形状。各部分工艺参数分别为:口模连接器温度1650C,口模温度1700C、1700C、1650C、1800C、1900C。 三、定型工艺 从机头口模挤出来的管状物要经过冷却,使它变硬而定型。定型一般用定径套进行外径定型和内径定型两种方式。其中外径定型结构较为简单,操作方便,我国普遍采用。外径定型的定径外套长度一般取其内径的3倍,定径套的内径应略大于(一般不超过2mm)管材处径的名义尺寸。管材的冷却方法有水浸式冷却和喷淋式冷却,较常用的是喷淋式冷却。真空冷却成型是借助于真空泵将真空槽抽成真空,使管坯外壁吸附在定型套的内壁上而达到冷却定型。真空定型的工艺条件一般为:真空度20.0—53.3kPa,水温15—250C,真空槽中的水成雾状为最佳。若真空度偏小,导致管外径偏小,小于标准尺寸;反之,若真空度偏大,管径偏大,甚至出现抽胀现象。若水温过低,

聚氯乙烯(PVC)-的生产工艺和基础知识

聚氯乙烯(PVC)-的生产工艺和基础知识

PVC的生产工艺 聚氯乙烯是由氯乙烯通过自由基聚合而成的。 有悬浮聚合法、乳液聚合法和本体聚合法,以悬浮聚合法为主,约占PVC总产量的80%左右。 单体的来源:乙烯法、石油法和电石法。 我国的方法:主要还是电石法。 树脂的质量以粒度和粒度分布、分子量和分子量分布、表观密度、孔隙度、鱼眼、热稳定性、色泽、杂质含量及粉末自由流动性等性能来表征。 (1)悬浮聚合法使单体呈微滴状悬浮分散于水相中,选用的油溶性引发剂则溶于单体中,聚合反应就在这些微滴中进行,聚合反应热及时

于作聚氯乙烯糊,制人造革或浸渍制品。 (3)本体聚合法聚合装置比较特殊,主要由立式预聚合釜和带框式搅拌器的卧式聚合釜构成。聚合分两段进行。单体和引发剂先在预聚合釜中预聚1h,生成种子粒子,这时转化率达8%~10%,然后流入第二段聚合釜中,补加与预聚物等量的单体,继续聚合。待转化率达85%~90%,排出残余单体,再经粉碎、过筛即得成品。树脂的粒径与粒形由搅拌速度控制,反应热由单体回流冷凝带出。此法生产过程简单,产品质量好,生产成本也较低。 PVC发明小故事 一些德国企业认为乙炔气是一个很大的市场,就投资制造了大量的乙炔气。可就在大量的乙炔被生产出来时,新型发电机被发明了。随之而来的是电价的大幅度下降,从此再没有人用乙炔气灯了。这样一来,大量的乙炔气就没用了。PVC的发明过程很有意思。这要从100多年前

的德国说起——当时电的价格很贵,照明用灯是一般是用乙炔气为燃料的。 为了利用这些乙炔气,在1912年的时候,有一个叫Fritz Klatte的德国化学家,将乙炔与盐酸反应得到了氯乙烯。他把得到的氯乙烯放在实验室的架子上,过了一段时间,发现氯乙烯聚合了。聚氯乙烯就这样被发明了。 遗憾的是,当时他并不知道聚氯乙烯有什么用处,虽然他所在的公司(Greisheim Electron)将聚氯乙烯这种材料在德国申请了专利,但直到1925年专利过期,他们也没有想出聚氯乙烯有什么用途。然而就在一年后,即1926年,美国化学家,Waldo Semon,又一次独立地发明了聚氯乙烯,而且发现这种材料具有优良隔水性能,非常适合做浴帘。 于是,Semon和他所在的B.F.Goodrich公司将聚氯乙烯在美国申请了专利,就这样PVC 开始被大量生产应用。

PVC生产工艺流程简介

PVC生产工艺 一、氯碱系统生产工艺 1、电解装置 (1)一次盐水工序 原盐由装载机送入化盐桶,盐自上而下入桶,来自电解的淡盐水、板框压滤机的滤液、氢处理含碱废水、再生系统废水以及固碱蒸发冷凝水等杂水,均进入化盐水贮槽。为了避免盐水中硫酸根积累超标,淡盐水进化盐水贮槽之前先分流一部分约30%流量经膜过滤,除掉硫酸根澄清后的淡盐水再进入化盐水贮槽。 上述各部分水在贮槽中混合后,经泵输送至化盐水槽溶解原盐后得到饱和粗盐水。粗盐水流入前反应槽之前于前折流槽内按工艺要求,加入精制剂32%氢氧化钠溶液,在前反应槽内粗盐水中的镁离子与精制剂氢氧化钠反应生成氢氧化镁。用加压泵将前反应槽内的粗盐水送至气水混合器中与空气混合,进入加压溶气罐溶气,再进入预处理器,并在预处理器进口加1%FeCl3溶液。经过预处理的盐水进入后反应槽,同时加入20%碳酸钠溶液,盐水中的钙离子与碳酸钠反应形成碳酸钙作为膜过滤器的助滤剂,充分反应后的盐水自流进入中间槽,并由过滤器给料泵送入过滤器过滤。过滤后盐水加入5%亚硫酸钠溶液除去盐水中游离氯后进入一次精制盐水贮槽,用泵送至二次盐精制工序。进入二次盐水工序的一次盐水中的固体悬浮物含量≤10wtppm。预处理器及过滤器的滤渣则排入盐泥池。盐泥池中的盐泥经盐泥泵打出,送至板框压滤机压滤。盐泥经压滤洗涤除水并经压缩空气吹干为含液率约40%wt的滤饼,滤饼送园区固体废物填埋场,过滤盐水回用。膜运行一定时间后,为了保持较高的过滤能力和较低的过滤压力,须用15%盐酸进行化学再生。 (2)二次盐水精制工序 过滤之后的盐水进入过滤盐水储槽,用过滤盐水泵送至离子交换树脂塔,离子交换树脂塔共有3台,塔内装有螯合树脂,正常时2台串联运行,1台再生,运行中2台离子交换树脂塔的第1台负责操作除去盐水中所含微量多价阳离子,第2台仅起保护作用,通过离子交换,使盐水中含有的微量Ca2+、Mg2+等多价离子含量达到规定值:≤20wtppm。由离子交换树脂塔出来的二次精制盐水送入电解工序。3台离子交换树脂塔每24小时进行一次运转和再生过程的自动切换

聚氯乙烯生产工艺

PVC塑料的工艺 聚氯乙烯(PVC)塑料是以聚氯乙烯树脂为基础的多组份混合材料。在生活中拥有广泛的应用。聚氯乙烯(PVC)是一种无毒、无臭的白色粉末。聚氯乙烯由氯乙烯单体通过自由基聚合而成,聚合度n一般在500~20000范围内,其分子结构式如下: 由于它具有优良的耐化学腐蚀性、电绝缘性、阴燃性、物理及机械性能、抗化学药品性能、质轻、强度高且易加工、成本低,可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,是一种能耗少、生产成本低的产品。因而聚氯乙烯(PVC)制品广泛用二工业、农业、建筑、电子电气、交通运输、电力、电讯和包装及人们生活中的各个领域。 一主要原料:单体氯乙烯,分散剂聚乙烯醇(PVC),去离子水和引发剂等 其他辅助试剂:脱盐水,PH调节剂碳酸氢铵和氨水,聚合物分子量调节剂(-巯基乙醇),引发剂过氧化二碳酸二乙基己酯(EHP)和过氧化二碳酸二异丙酯(IPP),可塑剂,防粘釜剂,终止剂二乙基羟胺(DEHA),缓释阻垢剂(H-9),碱液(40%)等 1单体:氯乙烯主要用乙炔法和乙炔氧氯化法制备,用于悬浮聚合的氯乙烯单体纯度在%以上。生产原料对聚氯乙烯质量很重要。氯乙烯杂质含量应尽可能低一些,其中脱盐水PH值要近乎中性,为,导率应小于2um/cm 2分散剂:主分散剂主要是纤维素醚和部分水解的聚乙烯醇。纤维素应为水溶性衍生物,如甲基纤维素、羟乙基纤维素、羟丙基纤维素等,聚乙烯醇应由聚醋酸乙烯酯经碱性水解得到,影响其分散效果的因素为其聚合度和水解度,而且-OH基团为嵌段分布时效果最好;副分散剂主要是小分子表面活性剂和地水解度聚乙烯醇。常用非离子型的脱水山梨醇单月硅酸酯。用88%聚乙烯醇和%的聚乙烯醇。 ) 3引发剂:引发剂的有效溶度对VC悬浮聚合速率有着直接的影响,因此溶剂型引剂的有效溶度为引发剂最重要的质量指标。引发剂在较低温度下就会逐步分解,因此除了必须按要求在低温条件下进行储运外,对于储运时间过长或可能经历非低温放置的引发剂必须进行有效溶度的分析,再确定聚合的实际用量。单独使用高活性引发剂虽可提高聚合平均速率、缩短聚合时间,但会出现聚合前中期聚合速率过大、后期聚

聚氯乙烯的生产工艺

第一章概述 第一节聚氯乙烯简述 氯乙烯的聚合物。英文缩写PVC。聚氯乙烯是仅次于聚乙烯的第二大塑料品种。玻璃化温度80~85℃,密度1.35~1.45克/厘米3,使用温度-15~60℃。PVC具有优良的耐酸碱、耐磨、耐燃及绝缘性能,与大多数增塑剂的混合性好,因此可大幅度改变材料的力学性能。加工性能优良,价格便宜,但对光、热稳定性差,100℃以上或光照下性能迅速下降。 聚氯乙烯用自由基加成聚合制备,方法有悬浮、本体、乳液和溶液等,其中以悬浮法为主,以过氧化物等引发,加分散剂后可得到疏松树脂颗粒,加工性能好。聚合温度高,链转移速率高,产物分子量小,一般应稳定在±0.5℃以内。溶液聚合产物直接用作涂料胶粘剂,乳液聚合产物也可直接应用,或喷雾干燥为固体。 聚氯乙烯(PVC)是五大通用塑料之一,其产量仅次于聚乙烯居第二位。PVC以其具有的阻燃、绝缘、耐磨损等优良的综合性能赢得了广阔市场,广泛应用于轻工、建材、农业、日常生活、包装、电力、公用事业等部门,尤其在建筑塑料、农用塑料、塑料包装材料、日用塑料等领域占有重要地位。 聚氯乙烯(PVC)用途广泛,并是最早用于工业化生产的塑料管道材料,至今仍是管道生产的主导材料。PVC的强度高、造价低、可回收利用、性能受环境影响小、安全卫生,可用于压力和重力管道,也可用于塑料包装、制品等领域,其低廉的价格和突出的均衡性能,已经在工业和消费用途方面成为十分理想的材料。 聚氯乙烯是由液态的氯乙烯单体经悬浮,乳液,本体或溶液法工艺聚合而成,其中悬浮工艺在世界PVC生产装置中大约占百分之九十的比例。在世界PVC总产量中均聚物也占大约百分之九十的比例。PVC是应用最广泛的热塑性树脂,可以制造强度和硬度制品。硬质品目前占PVC总消费量的百分之六十五左右,今后PVC消费量进一步增长的机会主要是在硬质制品应用领域。目前PVC在建筑领域中的消费量占总消费量的一半以上。 第二节国内生产及应用状况

Pvc生产工艺以及流程

300.400.42 2.0904025- 5×10-3 300.400.42 2.0904025-5×10-3 Pvc生产工艺以及流程 其中SG-1型用生产高级电绝缘材料,SG-2型用于生产电绝缘材料、一般软制品和薄膜,SG-3型用于生产电绝缘材料、农用薄膜、日用塑料制品,SG-4型用于生产工业与民用微膜、软管、高强度管材,SG-5型用于生产透明制品、型材、硬管、装饰材料、生活日用品等,SG-6型用于生产透明片、硬板、焊条,SG-7型、SG-8型用于生产透明片、硬质注塑管件。依据的质量标准为GB/T5761-1993。 聚氯乙烯树脂质量标准GB/T5761-1993 项目\指标\级别\型号 粘数, ml/g(或K值) (或平均聚合 数) 挥发 杂质物 粒子(包 数,个括水) ≤含量, %≤ 表观 密度, g/ml≥ 筛余物%白度 "鱼眼"100g树(160 0.063数个/脂的增°C,水萃取 0.25 mm400塑剂吸10min液电导 mm 筛孔cm2收量,g后),率,s/m≤ 筛孔≤ ≥≤≥% ≥ 残留 氯乙 烯含 量, ppm ≤ 优等品160.300.45 2.0902027748 156-144 SG1一等品10 (77-75) 合格品900.500.408.090-----优等品160.300.45 2.0902027748 143-136 SG2一等品10 (74-73) 合格品900.500.408.080----- 优等品SG3一等品135-127 (70-69) 160.300.45 2.0902026748 300.400.42 2.0904025- 5×10-3 10 合格品[1350-1250]900.500.408.080-----优等品126-119160.300.45 2.0902023748 SG4一等品(72-71)300.400.42 2.0904022--10合格品[1250-1150]900.500.408.080----优等品118-107160.400.45 2.0902020-748 SG5一等品(68-66)300.400.42 2.0904019--10合格品[1100-1000]900.500.408.080----优等品106-96160.400.48 2.0902018748 SG6一等品(65-63)300.400.45 2.0904016--10合格品[950-850]900.500.408.080----优等品95-87200.400.48 2.0903016708 SG7一等品(62-60)400.400.45 2.0905014--10合格品[850-750]1000.500.408.080----优等品86-73200.400.48 2.0903014708 SG8一等品(59-55)400.400.45 2.0905014--10合格品[750-650]1000.500.408.080---- 电石制乙烯,乙烯制pvc(某塑料),烧碱吸收氯碱工业的尾气

PVC工艺流程

1. 1.门窗选型首先,请仔细审阅工程图纸、依照图纸式样要求确定所需窗的类型 和数量,并结合当地风压值、洞口尺寸大小,楼层高度等因素确定选用型材及钢衬厚度。 2. 2.门窗设计按照此种型材的下料规则,警醒优化下料设计,包括玻璃、五金件、 刚才、教条、毛条等辅助配件的选定,进行下料设计。制成下料工艺单。3. 3.型材切割、铣排水孔、锁孔A、主型材下料一般采用双斜锯下料。料的每端 留2.5mm~3mm做余量,焊接下料公差应控制在1mm以内,角度公差控制在0.5度以内。B、框型材要铣排水孔,扇型一般要铣排水孔和气压平衡孔. 要求排水孔的直径为5MM,长为3MM,排水孔不应设置在有增强型钢的腔内,也不能穿透设置增强型钢的腔窒.C、如果要安装传动器和上门窗,要铣锁孔4. 4.增强型钢的装配当门窗构标尺寸大于或等于规定的长度时,其内腔必须加强 型钢.另外,对五金件装配处及组合门窗拼接处必须加入增强型钢,增强型钢的装配在不影响焊接的部位预先插入并固定,在十安型和T型连接受能力部位的型钢应在型材熔融后焊板刚刚提起对接刚开始时插入,待焊后固定.增强型钢的紧固件不得少于3个,其间距不大于300MM,距型钢端头不大于100MM。 5. 5.焊接焊接时要注意焊接温度240-250 °C进给压力0.3-0.35MPA,夹紧压力 0.4-0.6MPA,熔融时间20-30秒,冷却时间25-30秒。 6. 6.清角、装胶条A、清角分手工清角和机械角,焊接后,一般冷却30分钟后方可 开始清角.B、将清角后的框,扇及玻璃压条,按照要求安装不同类型的胶条.框,扇胶条的上挺部位;胶条长度应长1%左右,防止胶条回缩。 7.7.五金件的装配塑钢门窗成品由框与扇两者通过五金件装配而成。五金件装配 的原则是:要有足够的强度,正确位置,满足各项功能以及便于更换,五金件应固

影响聚氯乙烯树脂颗粒形态的因素

影响聚氯乙烯树脂颗粒形态的因素 【摘要】随着工业科技的发展,聚氯乙烯在工业发展道路上也发挥着至关重要的作用。聚氯乙烯树脂的质量不仅影响着树脂加工性能,还关系着PVC制品的质量。聚氯乙烯树脂的颗粒形态作为树脂质量的一项重要指标,解决树脂质量问题的一项重要工作的就是改善树脂的颗粒形态。但要改善树脂的颗粒形态,就需要考虑到影响聚氯乙烯树脂颗粒形态的种种因素,改善其各方面情况,不仅有利于工业的发展,也有利于整个社会的发展。 【关键词】聚氯乙烯树脂,颗粒形态,因素 一.前言 社会水平的发展,人们的物质要求越来越高,市场竞争愈来愈激烈,要稳保市场地位,就必须对产品进行改造,尤其是对于由聚氯乙烯树脂参与制造的一些物品。工业的发展对人们的生活有着巨大影响,不仅在数量上有着很大影响,在质量上对人们也影响深远。改善其内在结构,就要探究影响其形态的因素。本文就影响聚氯乙烯树脂颗粒形态的因素进行了探究。 二.聚氯乙烯单体中高沸物的成份的影响 1.乙醛产生的机理及对形态的影响 生产实践表明,当单体中乙醛含量较高时,乙醛在密闭容器中较高压力及温度下,能聚合生成聚乙醛,同时产生大量热,乙醛的存在会使聚合反应速度减慢,树脂的聚合度下降,从而影响到树脂的初级粒子。HCl的存在会使反应体系的PH值降低,稳定性下降,树脂内部孔隙减少,结构紧密。 2.1,1-二氯乙烷产生的机理及对颗粒形态的影响 在实际生产过程中,当1,1-二氯乙烷含量≥200μL/L时,就会对聚合树脂的粘数,颗粒形态及热稳定性产生影响,通常会使用降低反应温度的方法达到保证树脂粘数,实际生产过程中,1,1-二氯乙烷含量≥200μL/L时,不降温操作,会使树脂粘数偏低,影响树脂的后加工性能。聚合生产中,1,1-二氯乙烷含量≥200μL/L 时,降温0.2℃处理,1,1-二氯乙烷含量每增加150μL/L,需降温0.1℃处理,从而使树脂粘数及颗粒形态保持稳定。 三.其他外部条件对聚氯乙烯树脂颗粒的影响 1.保证聚合原料与助剂质量 严把质量关,才能保证PVC的内在质量和防止大颗粒的产生。2010年3月上旬,由于用于干燥VCM的固碱干燥器干燥质量不过关引起的VCM单体质量有问题,一周内共造成了4釜大颗粒。这是由于VCM单体中含碱与部分分散剂聚乙烯

聚氯乙烯生产工艺简介

聚氯乙烯生产工艺简介 PVC树脂是氯乙烯单体经聚合制得的一类热塑性高分子聚合物,分子式为: [ CH2—CHCl ]n,其中n表示聚合度,一般n=590~1500。 一、氯乙烯单体的制备 工业上制备氯乙烯的方法主要有:乙炔法、联合法、乙烯氧氯化法、乙烯平衡氧氯化法等。 1、乙炔法:乙炔与氯化氢反应生成氯乙烯是最早实现工业化的方法,乙炔可由电石(碳化钙)与水作用制得。此法能耗大,目前用此法生产氯乙烯制造PVC树脂主要集中在我国,占我国PVC树脂总量的一半以上。 2、联合法:由石油裂解制得的乙烯经氯化后生成二氯乙烷,然后在加压条件下将其加热裂解,脱去氯化氢后得到氯乙烯,副产品氯化氢再与乙炔反应又制得氯乙烯。 3、乙烯氧氯化法:使用乙烯、氯化氢和氧气反应得到二氯乙烷和水,二氯乙烷再经裂解,生成氯乙烯。副产的氯化氢在回收到氧氯化工段,继续反应。 4、乙烯平衡氧氯化法:是将直接氯化和氧氯化工艺相结合。乙烯与氯反应生成二氯乙烷,二氯乙烷裂解产生氯乙烯和氯化氢。氯化氢与乙烯和氧气反应又生成二氯乙烷,二氯乙烷裂解再产生氯乙烯和氯化氢。氯化氢回收后,继续参与氧氯化反应。 进入90年代以后,国外先后开发了一些生产氯乙烯单体的新工艺。例如开发出不产生水的直接氯化/氯化氢氧化工艺;使用最便宜的乙烷作原料,直接氧氯化生产氯乙烯单体的技术;二氯乙烷/纯碱工艺生产氯乙烯单体的新技术路线等。 二、氯乙烯的聚合 在工业化生产氯乙烯均聚物时,根据树脂应用领域,一般采用5种方法生产,即本体聚合、悬浮聚合、乳液聚合、微悬浮聚合和溶液聚合。 1、本体聚合:一般采用“两段本体聚合法”,第一段称为预聚合,采用高效引发剂,在62~75℃温度下,强烈搅拌,使氯乙烯聚合的转化率为8%时,输送到另一台聚合釜中,再加入含有低效引发剂的等量新单体,在约60℃温度下,慢速搅拌,继续聚合至转化率达80%时,停止反应。 本体聚合氯乙烯单体中不加任何介质,只有引发剂。因此,此法生产的PVC树脂纯度较高,质量较优,其构型规整,孔隙率高而均匀,粒度均一。但聚合时操作控制难度大,PVC树脂的分子量分布一般较宽。 2、悬浮聚合法:液态氯乙烯单体以水为分散介质,并加入适当的分散剂和不溶于水而溶于单体的引发剂,在一定温度下,借助搅拌作用,使其呈珠粒状悬浮于水相中进行聚合。聚合

-PVC胶粒生产基础知识

PVC胶粒生产基础知识-概述 PVC为聚氯乙烯(polyvinyl choride)的英文宿写,它是由氯乙烯单体聚合而成的一种高分子化合物。聚氯乙烯塑料是目前使用最广泛的用塑料之一,其产品种类繁多,性能各异;因而相应的生产加工方式也就多种多样,如压延成型、挤出成型、注射成型、模塑成型等。加工方式不同,生产工艺和技术也就千差万别。电线电缆用PVC胶料主要是通过挤出成型方式的,下面我就同大家一起来探讨一下PVC胶粒生产方面的一些基础知识。 PVC胶粒是由PVC树脂加上增塑剂、稳定剂、填充剂等多种助剂经混合、混炼,然后押出造粒而成。在胶料生产中,影响产品品质及生产效率的因素主要有五个:即设备、原材料、配方、配色、和生产工艺。选用不同的生产设备,具体的生产流程就会的一定的差别。 PVC胶粒生产基础知识-生产流程 1、水冷生产流程: PVC粉、增塑剂、安定剂、填充剂、其它助剂(计量、输送)→高速混合机(混合、混炼)→泠却混合机(冷却)→挤出机( 挤出)→切粒机(切粒)→风冷输送装置(冷却/分离)→储料桶→计量、包装 2、风冷生产流程:

PVC粉、增塑剂、安定剂、填充剂、其它助剂(计量、输送)→高速混合机(混合、混炼)→泠却混合机(冷却)→挤出机(挤出)→水槽(冷却)→除湿装置(除湿)→ 切粒机(切粒)→风送(干燥)料桶→计量、包装 PVC造粒生产线主要包括三大部分:即计量供料设备,混合储料设备以及押出造粒设备。 一、计量供料设备包括PVC粉、碳酸钙等粉体原材料料仓,增塑剂、液体安定剂贮罐,输送装置,计量仪器等。计量供料系统有自动和人工之分,自动计量系统则PVC粉、增塑剂、碳酸钙甚至粉体安定剂均以自动仪器计量,生产时只需将配方输入控制盘,设定好相关程序,即可完成从计量到混合的操作,半自动或人工计量则原材料部分或全部由人工称量再加入混 合机。自动计量供料系统采用全封闭操作,因此生产操作简单,现场环境较好,不过由于仪器系统复杂,精确度要求高,因而对使用环境要求高,维护较麻烦,一旦维护不好则容易失控甚至瘫痪。因此目前胶料厂大多采用半自动系统,即增塑剂自动计量和输送,其它原材料采用人工计量。 二、混合储料设备,一般包括高速混合机和冷却混合机两部分,高速混合机和泠拌机根据混合缸容积大小有很多规格,一般胶料厂常采用300L/800L和500L/1000L组合,打样则多采用50L小混合机,高速混合机与冷缸之间以及冷缸与押出机料斗之间均以料筒连接。

聚氯乙烯

聚氯乙烯的合成及发展、应用 摘要:简述了VCM及PVC的生产技术,对其发展及不同的聚合机理进行了比较,同时对PVC的聚合所涉及的设备进行了大致的介绍。对PVC工业在全世界及我国的发展情况和应用情况整体上进行了总结。 关键词:聚氯乙烯(PVC)聚合设备应用发展 [1]聚氯乙烯(PVC)是世界上最早实现工业化生产的塑料品种之一。由于其具有难燃、抗化学腐蚀、耐磨、电绝缘性优良和机械强度较高等优点,在工业、农业、建筑、日用品、包装以及电力等方面具有广泛的应用。PVC树脂以其优良的综合性能和较低的价格一直受到各工业国家的普遍重视,保持着长盛不衰的发展势头。另外,PVC树脂作为氯碱工业最大的有机耗氯产品,在有机氯产品中耗氯量占首位,是氯碱工业的重要支柱,对氯碱工业的碱、氯平衡和发展具有重要的作用。 1[2]生产技术 1.1 VCM 生产技术 目前氯乙烯单体(VCM) 的成熟工艺路线有电石法和乙烯氧氯化平衡法两种。前者一般只在发展中国家应用,世界VCM 生产工艺和发展主流是乙烯氧氯化平衡法。乙烯氧氯化平衡法主要包括直接氯化、氧氯化、裂解及精制过程等。直接氯化有低温氯化(500℃ )、中温氯化(800℃ )、高温氯化(1200~C)、气相法等技术,高温氯化由于能充分回收利用反应热、设备单位产能大等优势而成为技术发展主流。氧氯化技术有固定床和流化床两大类。比较有代表性的包括EVC公司的固定床技术,三井东压公司、西方化学公司和赫斯特公司的流化床技术。流化床技术优于固定床技术,赫斯特公司的流化床技术更是国际领先。裂解技术一般采用热裂解,世界EDC裂解炉技术发展的趋向是回收利用裂解热能,三井东压公司和赫斯特公司这方面的技术不分仲伯,都很成功。 1.2悬浮法PVC技术 世界PVC生产大部分采用悬浮法间歇式生产。使用大型聚合釜,提高聚合釜的单位生产能力,改进PVC质量是主要目标。世界最大的聚合釜体积有200m 。采用全密闭技术、多元高效引发剂、釜壁外采用半管式强化换热、釜顶设回流冷凝器、釜内采用内冷管或挡板通冷却水、选用高效防粘剂和高压水洗、釜外VCM 单体回

相关文档
最新文档