牛顿运动定律总结

牛顿运动定律总结
牛顿运动定律总结

牛顿运动定律总结

(一)牛顿第一定律(即惯性定律)

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(1)理解要点:

①运动是物体的一种属性,物体的运动不需要力来维持。

②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。

③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。

④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。

(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。

①惯性是物体的固有属性,与物体的受力情况及运动状态无关。

②质量是物体惯性大小的量度。

③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量

=2/严格相等。

m Fr GM

④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。

(二)牛顿第二定律

1. 定律内容

成正比,跟物体的质量m成反比。

物体的加速度a跟物体所受的合外力F

=

2. 公式:F ma

理解要点:

①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;

②方向性:a与F合都是矢量,方向严格相同;

③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。

(三)力的平衡

1. 平衡状态

指的是静止或匀速直线运动状态。特点:a=0。

2. 平衡条件

F0。

共点力作用下物体的平衡条件是所受合外力为零,即∑=

3. 平衡条件的推论

(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;

(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;

(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。

(四)牛顿第三定律

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式=-'。

可写为F F

、、(在国际制单位中)

(五)力学基本单位制:kg m s

2. 应用牛顿第二定律解题的一般步骤

①确定研究对象;

②分析研究对象的受力情况画出受力分析图并找出加速度方向;

③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上;

④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;

⑤统一单位,计算数值。

3. 解决共点力作用下物体的平衡问题思路

(1)确定研究对象:若是相连接的几个物体处于平衡状态,要注意“整体法”和“隔离法”的综合运用;

(2)对研究对象受力分析,画好受力图;

(3)恰当建立正交坐标系,把不在坐标轴上的力分解到坐标轴上。建立正交坐标系的原则是让尽可能多的力落在坐标轴上。

(4)列平衡方程,求解未知量。

4. 求解共点力作用下物体的平衡问题常用的方法

(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程求解)——平衡法,也可从力的分解的观点求解——分解法。两种方法可视具体问题灵活运用。

(2)相似三角形法:通过力三角形与几何三角形相似求未知力。对解斜三角形的情况更显优势。

(3)力三角形图解法,当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理。

5. 处理临界问题和极值问题的常用方法

涉及临界状态的问题叫临界问题。临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。

临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。

例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线

另一端拴一质量为m 的小球。当滑块以2g 加速度向左运动时,线中拉力T 等于多少?

解析:当小球和斜面接触,但两者之间无压力时,设滑块的加速度为a'

此时小球受力如图2,由水平和竖直方向状态可列方程分别为:

T ma T mg cos '

sin 45450?=?-=??

?

解得:a g '=

由滑块A 的加速度a g a =>2',所以小球将飘离滑块A ,其受力如图3所示,设线和竖直方向成β角,由小球水平竖直方向状态可列方程 T ma T mg sin '

'cos ββ=-=??

?0

解得:()()T ma mg mg '=

+=225

例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。如果突然把两水平细线剪断,求剪断瞬间小球A 、B 的加速度各是多少?(θ角已知)

解析:水平细线剪断瞬间拉力突变为零,图甲中OA 绳拉力由T 突变为T',但是图乙

中OB 弹簧要发生形变需要一定时间,弹力不能突变。

(1)对A 球受力分析,如图5(a ),剪断水平细线后,球A 将做圆周运动,剪断瞬间,小球的加速度a 1方向沿圆周的切线方向。 F mg ma a g 111==∴=sin sin θθ,

(2)水平细线剪断瞬间,B 球受重力G 和弹簧弹力T 2不变,如图5(b )所示,则 F m g a g B 22=∴=t a n t a n θθ,

小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。 (2)明确两种基本模型的特点:

A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。

B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。

例3. 传送带与水平面夹角37°,皮带以10m/s 的速率运动,皮带轮沿顺时针方向转动,

如图6所示。今在传送带上端A 处无初速地放上一个质量为m kg =05.的小物块,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16m ,g 取102

m s /,则物体从A 运动

到B 的时间为多少?

解析:由于μθ=<=05

075.tan .,物体一定沿传送带对地下移,且不会与传送带相对静止。

设从物块刚放上到皮带速度达10m/s ,物体位移为s 1,加速度a 1,时间t 1,因物速小于皮带速率,根据牛顿第二定律,a mg mg m

m s 1210=

+=sin cos /θμθ

,方向沿斜面向下。

t v a s s a t m 111112

112

5=

===<,皮带长度。 设从物块速率为102

m s /到B 端所用时间为t 2,加速度a 2,位移s 2,物块速度大于皮带速度,物块受滑动摩擦力沿斜面向上,有:

a

mg mg

m

m s

s vt a t

2

2

2222

2

2

1

2

=

-

=

=+

sin cos

/

θμθ

即16510

1

2

21

22

2

2

-=+?=

t t t s

,(t s

2

10

=-舍去)

所用总时间t t t s

=+=

12

2

例4. 如图7,质量M kg

=8的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=02.,假定小车足够长,问:

(1)经过多长时间物块停止与小车间的相对运动?

(2)小物块从放在车上开始经过t s

30

=.所通过的位移是多少?(g取102

m s/)

解析:(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。设物块在小车上相对运动时间为t,物块、小车受力分析如图8:

物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度为a2匀加速运动。

由牛顿运动定律:

物块放上小车后加速度:a g m s

1

2

2

==

μ/

小车加速度:()

a F mg M m s

2

2

05

=-=

μ/./

v a t

v a t

11

22

3

=

=+

由v v

12

=得:t s

=2

(2)物块在前2s内做加速度为a1的匀加速运动,后1s同小车一起做加速度为a2的匀加速运动。

以系统为研究对象:

根据牛顿运动定律,由()

F M m a

=+

3

得:

()

a F M m m s

3

2

08

=+=

/./

物块位移s s s =+12

()()s a t m

s v t at m s s s m

1122122

12124124484===+==+=//..

例5. 将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图9所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动。当箱以a m s =202

./的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为6.0 N ,下底板的传感器显示的压力为10.0 N 。(取g m s =102/)

(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况。 (2)若上顶板传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?

启迪:题中上下传感器的读数,实际上是告诉我们顶板和弹簧对m 的作用力的大小。对m 受力分析求出合外力,即可求出m 的加速度,并进一步确定物体的运动情况,但必须先由题意求出m 的值。

解析:当a m s 1220=./减速上升时,m 受力情况如图10所示:

mg N N ma m N N g a kg kg

+-==--=--=121

211106

102

05. (1)N N N N N N 2212102

5'''

====,

∴+-=N mg N 120''

故箱体将作匀速运动或保持静止状态。 (2)若N 10"=,则

()F N mg N N

a F m

m s 合合(向上)

=-≥-==

≥22

105510"/

即箱体将向上匀加速或向下匀减速运动,且加速度大小大于、等于102

m s /。

例6. 测定病人的血沉有助于对病情的判断。血液由红血球和血浆组成,将血液放在竖直的玻璃管内,红血球会匀速下沉,其下沉的速度称为血沉,某人血沉为v ,若把红血球看成半径为R 的小球,它在血浆中下沉时所受阻力f R v =6πη,η为常数,则红血球半径R =___________。(设血浆密度为ρ0,红血球密度为ρ)

解析:红血球受到重力、阻力、浮力三个力作用处于平衡状态,由于这三个力位于同一竖直线上,故可得 mg gV f =+ρ0

即ρπρππη?=?+434

3

6303R g g R R v 得:()R v

g

=-92

0ηρρ

1. 如图1所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是( ) A. 加速下降 B. 减速上升 C. 匀速向右运动

D. 加速向左运动

2. 如图2所示,固定在水平面上的光滑半球,球心O 的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A 点,另一端绕过定滑轮,如图所示。今缓慢拉绳使小球从A 点滑到半球顶点,则此过程中,小球对半球的压力大小N 及细绳的拉力T 大小的变化情况是( ) A. N 变大,T 变大 B. N 变小,T 变大 C. N 不变,T 变小

D. N 变大,T 变小

3. 一个物块与竖直墙壁接触,受到水平推力F 的作用。力F 随时间变化的规律为F kt =(常量k>0)。设物块从t =0时刻起由静止开始沿墙壁竖直向下滑动,物块与墙壁间的动摩擦因数为()μμ<1,得到物块与竖直墙壁间的摩擦力f 随时间t 变化的图象,如图3所示,从图线可以得出( )

A. 在01~t 时间内,物块在竖直方向做匀速直线运动

B. 在01~t 时间内,物块在竖直方向做加速度逐渐减小的加速运动

C. 物块的重力等于a

D. 物块受到的最大静摩擦力总等于b

4. 如图4所示,几个倾角不同的光滑斜面具有共同的底边AB ,当物体由静止沿不同的倾角从顶端滑到底端,下面哪些说法是正确的?( ) A. 倾角为30°时所需时间最短 B. 倾角为45°所需时间最短 C. 倾角为60°所需时间最短 D. 所需时间均相等

5. 如图5所示,质量为M 的木板,上表面水平,放在水平桌面上,木板上面有一质量为m 的物块,物块与木板及木板与桌面间的动摩擦因数均为μ,若要以水平外力F 将木板抽出,则力F 的大小至少为( ) A. μmg B. ()μM m g +

C.

()μm M g +2

D. ()2μM m g +

6. 一个质量不计的轻弹簧,竖直固定在水平桌面上,一个小球从弹簧的正上方竖直落下,从小球与弹簧接触开始直到弹簧被压缩到最短的过程中,小球的速度和加速度的大小变化情况是( )

A. 加速度越来越小,速度也越来越小

B. 加速度先变小后变大,速度一直是越来越小

C. 加速度先变小,后又增大,速度先变大,后又变小

D. 加速度越来越大,速度越来越小

7. 质量m kg =1的物体在拉力F 作用下沿倾角为30°的斜面斜向上匀加速运动,加速度的大小为a m s =32

/,力F 的方向沿斜面向上,大小为10N 。运动过程中,若突然撤去拉

力F ,在撤去拉力F 的瞬间物体的加速度的大小是____________;方向是____________。

8. 如图6所示,倾斜的索道与水平方向的夹角为37°,当载物车厢加速向上运动时,物对车厢底板的压力为物重的1.25倍,这时物与车厢仍然相对静止,则车厢对物的摩擦力的大小是物重的________倍。

9. 如图7所示,传送带AB 段是水平的,长20 m ,传送带上各点相对地面的速度大小是2 m/s ,某物块与传送带间的动摩擦因数为0.1。现将该物块轻轻地放在传送带上的A 点后,经过多长时间到达B 点?(g 取102

m s /)

10. 鸵鸟是当今世界上最大的鸟。有人说它不会飞是因为翅膀退化了,如果鸵鸟长了一副与身体大小成比例的翅膀,它是否就能飞起来呢?这是一个使人极感兴趣的问题,试阅读下列材料并填写其中的空白处。

鸟飞翔的必要条件是空气的上举力F 至少与体重G =mg 平衡,鸟扇动翅膀获得的上举力可表示为F cSv =2

,式中S 为鸟翅膀的面积,v 为鸟飞行的速度,c 是恒量,鸟类能飞起的条件是F G ≥,即v ≥_________,取等号时的速率为临界速率。

我们作一个简单的几何相似性假设。设鸟的几何线度为l ,质量m ∝体积∝l 3,

S l ∝2

,于是起飞的临界速率v l ∝。燕子的滑翔速率最小大约为20 km/h ,而鸵鸟的体长大约是燕

子的25倍,从而跑动起飞的临界速率为________km/h ,而实际上鸵鸟的奔跑速度大约只有40km/h ,可见,鸵鸟是飞不起来的,我们在生活中还可以看到,像麻雀这样的小鸟,只需从枝头跳到空中,用翅膀拍打一两下,就可以飞起来。而像天鹅这样大的飞禽,则首先要沿着地面或水面奔跑一段才能起飞,这是因为小鸟的_______,而天鹅的______。

11. 如图8所示,A 、B 两个物体靠在一起放在光滑水平面上,它们的质量分别为M kg M kg A B ==36,。今用水平力F A 推A ,用水平力F B 拉B ,F A 和F B 随时间变化的关系是()()F t N F t N A B =-=+9232、。求从t=0到A 、B 脱离,它们的位移是多少?

12. 如图9所示,在倾角为θ的长斜面上有一带风帆的滑块,从静止开始沿斜面下滑,滑块质量为m ,它与斜面间的动摩擦因数为μ,帆受到的空气阻力与滑块下滑速度的大小成正比,即f kv =。

(1)写出滑块下滑加速度的表达式。 (2)写出滑块下滑的最大速度的表达式。

(3)若m kg g m s ==?=2030102

./,,θ,从静止下滑的速度图象如图所示的曲线,图中直线是t =0时的速度图线的切线,由此求出μ和k 的值。

13. 如图10所示,一个弹簧台秤的秤盘和弹簧质量均不计,盘内放一个质量m kg =12的静止物体P ,弹簧的劲度系数k N m =800/。现施加给P 一个竖直向上的拉力F ,使P 从静止开始向上做匀加速运动。已知在头0.2s 内F 是变力,在0.2s 以后,F 是恒力,取

g m s =102/,求拉力F 的最大值和最小值。

【试题答案】

1. ABD

解析:木箱未运动前,A 物体处于受力平衡状态,受力情况:重力mg 、箱底的支持力N 、弹簧拉力F 和最大的静摩擦力f m (向左),由平衡条件知: mg N F f m ==,

物体A 被弹簧向右拉动(已知),可能有两种原因,一种是弹簧拉力F f m >'(新情况下的最大静摩擦力),可见f f m m >',即最大静摩擦力减小了,由f N m =μ知正压力N 减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,由于物体原来静止,所以木箱运动的情况可能是加速下降,也可能是减速上升,A 对B 也对。

另一种原因是木箱向左加速运动,最大静摩擦力不足使A 物体产生同木箱等大的加速度,即μμmg kx ma mg +=>的情形,D 正确。

匀速向右运动的情形中A 的受力情况与原来静止时A 的受力情况相同,且不会出现直接由静止改做匀速运动的情形,C 错。

2. C

小球受力如图11(甲),T 、N 、G 构成一封闭三角形。 由图11(乙)可见,??AOB ANT ~

∴===?=?T AB N OA G OB T G AB OB N G OA OB

/////

AB 变短,OB 不变,OA 不变,故T 变小,N 不变。

3. BC

在01~t 时间内,物块受到的摩擦力小于物块受到的重力,物块向下做加速运动,A 错。滑动摩擦力随正压力的增大而逐渐增大,合外力逐渐减小,加速度逐渐减小,B 对。当摩擦力不再随正压力的变化而变化时,一定是静摩擦力了。静摩擦力的大小恰好与重力平衡,所以物块受的重力等于a ,C 对。最大静摩擦力随正压力的增大而增大,不会总等于b ,D 错。 4. B

解析:设沿一一般斜面下滑,倾角为θ,长为l ,物体沿斜面做初速为零加速度为a g =sin θ的匀加速直线运动,滑到底端的时间为t ,则有:

l g t l AB =

<>=<>

1

2122sin /cos θθ

<1><2>联立解得:t AB

g AB

g =

=

242sin cos sin θθθ

所以当29045θθ=?=?,时,t 最小,故选B 。

5. D

解析:将木板抽出的过程中,物块与木板间的摩擦力为滑动摩擦力,m 的加速度大小为a g m =μ,要抽出木板,必须使木板的加速度大于物块的加速度,即a a g M m >=μ,对木板受力分析如图12,根据牛顿第二定律,得:

()()()()F M m g mg Ma F M m g mg Ma M m g mg Mg M m g

M

M -+-=∴=+++>+++=+μμμμμμμμ2

选项D 正确

a m

μ

图12

6. C

当弹簧的弹力等于重力时,小球的速度最大,a =0。 7. 72

m s /,沿斜面向下

有拉力时,F mg f ma -?-=sin30 代入a m s =32

/,求得f N =2 撤F 瞬间,f mg ma +?=sin30 8. 0.33

提示:N mg ma f ma tg a a y x y x

-==?=

,,静37

9. 11s

提示:物块放到A 点后先在摩擦力作用下做匀加速直线运动,速度达到2m/s 后,与传送带一起以2m/s 的速度直至运动到B 点。

10. 解析:根据题意,鸟类飞起的必要条件是F G ≥ 即满足cSv mg 2≥ 故v mg

cS

燕子的最小滑翔速率约为20 km/h ,而鸵鸟的体长大约是燕子的25倍。因 v l ∝ 故

v v l l 鸵燕

鸵燕

=

==255

v v km h 鸵燕==5100/

可见,鸵鸟起飞的临界速率约为100km/h ,而实际上鸵鸟的速率约为40km/h ,可见鸵鸟是飞不起来的。

11. 4.17m

提示:以A 、B 整体为对象: ()F F m m a A B A B +=+? ∴=

a m s 4

3

2/ 当A 、B 相互脱离时,N =0,则以A 为研究对象

F m a t

t s

A A ===-∴=49225.

∴==

s at m 1225

6

2 12. (1)对滑块应用牛顿第二定律有:

mg mg kv ma sin cos θμθ--= 滑块下滑加速度表达式为: ()a g kv m

=--<>sin cos /θμθ1

(2)由<1>式可知,当滑块的速度增大时,其加速度是减小的,当加速度为零时,滑块的速度达到最大,由<1>式可知最大速度为: ()v mg k max sin cos /=-<>θμθ2 (3)由图可知,当滑块的速度为零时,其加速度为最大加速度a m s max /=32

,而由<1>式可知当滑块的加速度为零时,它的速度最大,滑块的最大速度为v m s max /=2,由<1>式和<2>式有:

()()3324=-<>=-<>g mg k sin cos sin cos /θμθθμθ

将g 、m 、θ代入<3>式和<4>式后解得: μ==2315023/.

k kg s =30

./

13. 解析:根据题意,F 是变力的时间t s =02.,这段时间内的位移就是弹簧最初的压缩

量S ,由此可以确定上升的加速度a ,

()KS mg S mg K m ===?=,12100

800

015. 由S at =122得:()a S t m s ==?=2201502

7522

2.

../ 根据牛顿第二定律,有:

F mg kx ma -+= 得:()F m g a kx =+-

当x S =时,F 最小

()()F m g a ks m g a mg ma N min .()=+-=+-==?=127590 当x =0时,F 最大

()()()()F m g a k m g a N m a x .=+-?=+=+=0121075210 ∴拉力的最小值为90N ,最大值为210N

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

高考物理邢台力学知识点之牛顿运动定律单元汇编含解析

高考物理邢台力学知识点之牛顿运动定律单元汇编含解析 一、选择题 1.如图,某人在粗糙水平地面上用水平力F推一购物车沿直线前进,已知推力大小是 80N,购物车的质量是20kg,购物车与地面间的动摩擦因数,g取,下列说法正确的是() A.购物车受到地面的支持力是40N B.购物车受到地面的摩擦力大小是40N C.购物车沿地面将做匀速直线运动 D.购物车将做加速度为的匀加速直线运动 2.如图所示,质量为m的小物块以初速度v0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>tanθ,(规定沿斜面向上方向为速度v和摩擦力f的正方向)则图中表示该物块的速度v和摩擦力f随时间t变化的图象正确的是() A.B. C.D. 3.如图A、B、C为三个完全相同的物体。当水平力F作用于B上,三物体可一起匀速运动,撤去力F后,三物体仍可一起向前运动,设此时A、B间作用力为f1,B、C间作用力为f2,则f1和f2的大小为()

A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f ,f 2=2 3F D .f 1=F ,f 2=0 4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v?t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( ) A .甲球质量大于乙球 B .m 1/m 2=v 2/v 1 C .释放瞬间甲球的加速度较大 D .t 0时间内,两球下落的高度相等 5.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( ) A .0 B .2m/s 2,水平向右 C .4m/s 2,水平向右 D .2m/s 2,水平向左 6.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )

高一物理-牛顿运动定律知识点归纳

高一物理:牛顿运动定律知识点归纳 ; 1.牛顿第一定律 (1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。一切物体都有惯性,惯性是物体的固有性质。质量是物体惯性大小的唯一量度。 (3)牛顿第一定律说明了物体不受外力时的运动状态是匀速直线运动或静止,所以说力不是维持物体运动状态的原因,而是使物体改变运动状态的原因,即产生加速度的原因。 2、牛顿第二定律 (1)内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。表达式为。 (2)牛顿第二定律的瞬时性与矢量性 对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定。当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义。 (3)运动和力的关系

牛顿运动定律指明了物体运动的加速度与物体所受外力的合力的关系,即物体运动的加速度是由合外力决定的。但是物体究竟做什么运动,不仅与物体的加速度有关还与物体的初始运动状态有关。比如一个正在向东运动的物体,若受到向西方向的外力,物体即具有向西方向的加速度,则物体向东做减速运动,直至速度减为零后,物体再在向西方向的力的作用下,向西做加速运动。由此说明,物体受到的外力决定了物体运动的加速度,而不是决定了物体运动的速度,物体的运动情况是由所受的合外力以及物体的初始运动状态共同决定的。 3、牛顿第三定律 (1)内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。 (2)作用力和反作用力与一对平衡力的区别与联系 关系类别作用力和反作用力一对平衡力相同大小相等相等方向相反、作用在同一条直线上相反、作用在同一条直线上不同作用点作用在两个不同的物体上作用在同一个物体上性质相同不一定相同作用时间同时产生同时消失一个力的变化,不影响另一个力的变化 本文链接: ://..//xuexizongjie/2800716

牛顿运动定律知识点总结归纳

牛顿运动定律 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。(1 )运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速 度定义:a ,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产 A t 生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); WKJV (3)定律说明了任何物体都有一个极其重要的属性一一惯性;一切物体都有保持原有运动状态的性质,这就是 惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的 量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律 (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿 - rr—.r” - r—―― —- - j- ■ ■ ■ —. ■ ■1—r?_— 第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量 地给出力与运动的关系。 f ~1 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的 运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x,F y=ma y, 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不 是物体的实际加速度。 (4)牛顿第二定律F=ma定义了力的基本单位一一牛顿(使质量为1kg的物体产生1m/s2的加速度的作用力为 2 1N,即1N=1kg.m/s . (5 )应用牛顿第二定律解题的步骤: ①明确研究对象。 ②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高考物理新力学知识点之牛顿运动定律单元汇编附答案(3)

高考物理新力学知识点之牛顿运动定律单元汇编附答案(3) 一、选择题 1.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( ) A .上升过程处于超重状态,下落过程处于失重状态 B .上升过程处于失重状态,下落过程处于超重状态 C .上升过程和下落过程均处于超重状态 D .上升过程和下落过程均处于完全失重状态 2.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( ) A .可能落在A 处 B .一定落在B 处 C .可能落在C 处 D .以上都有可能 3.如图所示,质量为2 kg 的物体A 静止在竖直的轻弹簧上面。质量为3 kg 的物体B 用轻质细线悬挂,A 、B 接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B 对A 的压力大小为(g =10 m/s 2) A .12 N B .22 N C .25 N D .30N 4.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( ) A . 0m m mg m + B . 00m m F m +

C . m m mg m + D . 000 m m F m + 5.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示.取g =10m/s 2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为( ) A .0.2,6N B .0.1,6N C .0.2,8N D .0.1,8N 6.如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( ) A .小球受木板的摩擦力一定沿斜面向上 B .弹簧弹力不可能为 3 4 mg C .小球可能受三个力作用 D .木板对小球的作用力有可能小于小球的重力mg 7.如图,物块a 、b 和c 的质量相同,a 和b 、b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O ;整个系统处于静止状态;现将细绳剪断,将物块a 的加速度记为a 1,S 1和S 2相对原长的伸长分别为?x 1和?x 2,重力加速度大小为g ,在剪断瞬间( ) A .a 1=g B .a 1=3g C .?x 1=3?x 2 D . ?x 1=?x 2 8.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )

第4章牛顿运动定律8份-章末总结

物理·必修1(人教版) 章末总结

1.掌握解决动力学两类问题的思路方法. 其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁. 2.力的处理方法. (1)平行四边形定则. 由牛顿第二定律F 合=ma 可知,F 合是研究对象m 受到的外力的合力;加速度a 的方向与F 合的方向相同.解题时,若已知加速度的方向就可推知合力的方向;反之,若已知合力的方向,亦可推知加速度的方向. (2)正交分解法. 物体受到三个或三个以上的不在同一直线上的力作用时,常用正交分解法. 表示方法????? F x =ma x F y =ma y 为了减少矢量的分解,建立直角坐标系时,一般不分解加速度. 风洞实验室中可产生水平方向的、大小可调节的风力.现将 一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径(如 动力学两类基本问题

图所示) (1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数. (2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s所需时间为多少?(sin 37°=0.6,cos 37°=0.8) 解析:(1)设小球所受的风力为F,小球的质量为m,因小球做匀速运动,则F=μmg,F=0.5mg,所以μ=0.5. (2)小球受力分析如图所示.根据牛顿第二定律,沿杆方向上有 F cos 37°+mg sin 37°-F f=ma, 垂直于杆的方向上有F N+F sin 37°-mg cos 37°=0 又F f=μF N 可解得:

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高考物理力学知识点之牛顿运动定律单元检测(4)

高考物理力学知识点之牛顿运动定律单元检测(4) 一、选择题 1.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。球A 用轻绳悬挂于右侧面细线与竖直方向的夹角为37°,小车左下角放置球B,并与左侧面接触。小车在沿水平面向右运动过程中,A与右侧面的弹力恰好为零。设小车的质量为M,两球的质量均为m,则() A.球A和球B受到的合力不相等 B.小车的加速度大小为6m/s2 C.地面对小车的支持力大小为(M+m)g D.小车对球B的作用力大小为1.25mg 2.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2) A.12 N B.22 N C.25 N D.30N 3.如图所示,质量为m的小物块以初速度v0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>tanθ,(规定沿斜面向上方向为速度v和摩擦力f的正方向)则图中表示该物块的速度v和摩擦力f随时间t变化的图象正确的是() A.B.

C . D . 4.如图A 、B 、C 为三个完全相同的物体。当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( ) A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 5.下列单位中,不能.. 表示磁感应强度单位符号的是( ) A .T B . N A m ? C . 2 kg A s ? D . 2 N s C m ?? 6.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 7.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( ) A .0 B .2m/s 2,水平向右 C .4m/s 2,水平向右 D .2m/s 2,水平向左 8.下列对教材中的四幅图分析正确的是

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

主题单元设计——牛顿运动定律

主题单元设计——牛顿运动定律 适用年级高一年级 所需时间4课时(每周 2 课时,共 4 课时) 主题单元概述 (简述单元在课程中的地位和作用、单元的组成情况,解释专题的划分和专题之间的关系,主要的学习方式和预期的学习成果,字数300-500) 本章是在前面对运动和力分别研究的基础上的延伸——研究力和运动的关系,建立起牛顿运动定律。牛顿运动定律是动力学的基础,是力学中也是整个物理学的基本规律。 本章在牛顿第一定律的研究中采用的理想实验法;牛顿第二定律中的控制变量法;运用牛顿第二定律处理问题时常用的整体法与隔离法,以及单位的规定方法,单位制的创建等。对这些方法要认真体会、理解,以提高认知的境界。 为了更扎实地理解牛顿第二定律,本章第二节安排了实验:探究加速度与力、质量的关系,并提供了参考案例,实验操作方便,规律性强,结论容易获得,控制变量法在此得到了实践。第五节牛顿第三定律的研究引入了传感器――计算机的组合,现代气息浓厚,实验效果很好。 主题学习目标 (描述该主题学习所要达到的主要目标) 知识与技能: 1、认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变 2、理解力是产生加速度的原因 3、理解质量是惯性大小的量度 4、通过演示实验认识加速度与质量和和合外力的定量关系 5、会用准确的文字叙述牛顿第二定律并掌握其数学表达式 6、通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律 7、认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系 8、能初步运用运动学和牛顿第二定律的知识解决有关动力学问题 9、会用准确的文字叙述牛顿第三定律 10、能区分相互平衡的两个力与一对作用力、反作用力 11、掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题 过程与方法: 1、培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力 2、通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力 3、培养学生审题能力、分析能力、利用数学解决问题能力、表述能力 情感态度与价值观: 1、善于思考、善于总结,把物理与实际生活紧密结合 2、培养认真的科学态度,严谨、有序的思维习惯 3、与实际问题相结合,培养学习兴趣 4、培养严谨的科学态度,养成良好的思维习惯

高一物理牛顿运动定律总结

高 一 物 理 第 四 章 《 牛 顿 运 动 定 律 》 总 结 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得: F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 问题2:必须弄清牛顿第二定律的瞬时性。 牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。 例2、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1 的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。现将L 2线剪断,求剪断瞬时物体的加速度。 (l )下面是某同学对该题的一种解法: 分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有 T 1cos θ=mg , T 1sin θ=T 2, T 2=mgtan θ 剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。 你认为这个结果正确吗?请对该解法作出评价并说明理由。 L 1 L 2 θ 图2(b) L 1 L 2 θ 图2(a) 300 a F N mg F f 图1 x y x a x a y

人教高一物理必修一《牛顿运动定律》

第一讲牛顿第一定律、牛顿第三定律 一、【目标】 1、掌握牛顿第一定律和牛顿第三定律的内容 2、区分相互作用力和平衡力 二、【知识梳理】 (一)、牛顿第一定律 1、内容:一切物体总保持状态或状态,直到有外力迫使它改变这种状态为止. 说明:(1)物体不受外力是该定律的条件. (2)物体总保持匀速直线运动或静止状态是结果. (3)直至外力迫使它改变这种状态为止,说明力是产生加速度的原因. (4)物体保持原来运动状态的性质叫惯性,惯性大小的量度是物体的质量. (5)应注意:①牛顿第一定律不是实脸直接总结出来的.牛顿以伽利略的理想斜面实脸为基拙,加之高度的抽象思维,概括总结出来的.不可能由实际的实验来验证; ①定律揭示了力和运动的关系:力不是维持物体运动的原因,而是物体运动状态的原因. (二)、牛顿第三定律 (1)内容:两物体之间的作用力与反作用力总是大小,方向,而且在一条直线上.(2)表达式:F=-F/ 说明:①作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各产生其效果,不能抵消,所以这两个力不会平衡. ①作用力和反作用力的关系与物体的运动状态无关.不管两物体处于什么状态,牛顿第三定律都适用(三)、作用力和反作用力与平衡力的区别 【例1】(上海春季高考题)火车在直线轨道上匀速运动,车厢内有一人向上跳起,发现仍落回到车上原处,这是因为[ ] A.人跳起后,车厢内空气给他向前的推力,使他向前运动 B.人跳起的瞬间,地板给他一个向前的力,推动他向前运动 C.人跳起后,车继续向前运动,所以人下落后必定偏后一些,只是由于时问很短,偏后距离太小,不明显而已 D.人跳起后,在水平方向上人和车始终具有相同的速度 【变式练习】(2012全国新课标).伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。早期物理学家关于惯性有下列说法,其中正确的是

牛顿运动定律典型例题分析报告

牛顿运动定律典型例题分析 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性; (4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,

F x=ma x,F y=ma y,F z=ma z; (4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点: (1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提; (2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力; (3)作用力和反作用力是同一性质的力; (4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序: (1)确定研究对象; (2)采用隔离法分析其他物体对研究对象的作用力; (3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力; (4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重: (1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

高考物理力学知识点之牛顿运动定律单元检测(7)

高考物理力学知识点之牛顿运动定律单元检测(7) 一、选择题 1.质量为m的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为 a=1 3 g,则f的大小是() A.f=1 3 mg B.f= 2 3 mg C.f=mg D.f=4 3 mg 2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示.取g=10m/s2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为() A.0.2,6N B.0.1,6N C.0.2,8N D.0.1,8N 3.下列关于超重和失重的说法中,正确的是() A.物体处于超重状态时,其重力增加了 B.物体处于完全失重状态时,其重力为零 C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D.物体处于超重或失重状态时,其质量及受到的重力都没有变化 4.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接 .当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的 A.圆环不一定加速下滑 B.圆环可能匀速下滑 C.圆环与杆之间一定没有摩擦 D.圆环与杆之间一定存在摩擦

5.如图A 、B 、C 为三个完全相同的物体。当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( ) A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 6.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( ) A .3s t =时,部件属于失重状态 B .4s t =至 4.5s t =时,部件的速度在减小 C .5s t =至11s t =时,部件的机械能守恒 D .13s t =时,部件所受拉力小于重力 7.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 8.下列对教材中的四幅图分析正确的是

牛顿运动定律章末测试题及答案

1、在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A.伸长量为 B.压缩量为 C.伸长量为 D.压缩量为 2、汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患.行车过程中,如果车距较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车到完全停止需要的时间为5 s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)( ) A.450 N B.400 N C.350 N D.300 N 3、 (2012·衡阳模拟)如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M的 竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对地面上的人的压力大小为 ( )A.(M+m)g-ma B.(M+m)g+ma C.(M+m)g D.(M-m)g 4、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为mA=6 kg, m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则( ) A.当拉力F<12 N时,物体均保持静止状态 B.两物体开始没有相对运动,当拉力超过12 N时,开始相对滑动 C.两物体从受力开始就有相对运动 D.两物体始终没有相对运动 5、某人在地面上用弹簧测力计称得其体重为490 N,他将弹簧测力计移至电梯内称其体重,t0至t3时间段内,弹簧测力计的示数如图所示,电梯运行的v -t图可能是(取电梯向上运动的方向为正)( ) 6、 (2012·大连模拟)如图所示,一个重力G=4 N的物体放在倾角为30°的光滑斜面上,斜面放在台秤上,当烧断细线后,物块正在下滑的过程中与稳定时比较,台秤示数( ) A.减小2 N B.减小1 N C.增大2 N D.增大1 N

相关文档
最新文档