高一数学一元二次不等式解法习题

高一数学一元二次不等式解法习题
高一数学一元二次不等式解法习题

一元二次不等式

(一) 复习达标

填表:

ax 2+bx+c<0

(a >0)的解集ax 2+bx+c>0

(a>0)的解集ax 2+bx+c=0(a >0)的根

y=ax 2+bx+c (a>0)的图象

判别式△=b 2-4ac △>0有两相异实根x 1, x 2 (x 1x 2}{x|x 1< x

△=0△<0有两相等实根x 1=x 2

={x|x ≠}x 1x 2x

y O

y

x

O Φ

Φ

R 没有实根

y

x

O x 1

a

b

2-a

b 2-

一元二次不等式的解法大于取两端小于取中间

()2110x ->

例1:解下列不等式: 2(3).230

x x -+->2(4).(21)(1)0

x m x m m -+++<2(2).4410

x x -+>

思考题:解不等式 变式:解不等式

小结:解一元二次不等式的基本思想: (1)解对应的一元二次方程; (2)画出对应开口向上图象

(3)最后根据对应的二次函数的大致图象以及不等号的方向,写出不等式的解集.

解一元二次不等式的基本步骤: (1)先把二次项系数化成正数; (2)再解对应的一元二次方程;

(3)最后根据对应的二次函数的大致图象以及不等号的方向,写出 不等式的解集. (大于取两端小于取中间) 解下列不等式

练习:

2(1)10(1)

ax a x a -++<>2(1)10(01)0ax a x a a -++<<<>、()

(1).(1)(3)(5)0

x x x +--≥23(2).(1)(2)(3)0x x x -+->()32(3)(1)1(2)0x x x x ++--≤

1、解关于x 的不等式()012 ---a a x x (a 为常数)。

2、关于x 的不等式02 c bx ax ++的解为2- x 或2

1- x ,求不等式

02 c bx ax +-的解。

3、若不等式()()042222 --+-x a x a 对一切实数x 的值成立,求实数a 的取值范围。

4、已知关于x 的不等式()03122 -+-x k kx 的解为31 x -,求实数k 的值。

三、解一元二次不等式的基本步骤: (1)把每个因式的最高次项系数化为正; (2)解相应的方程;

(3)“穿针引线”,根据图象得到不等式的解。

课后练习 小测

(1)不等式2x x >的解集是( ) (A )(),0-∞ (B )()0,1

(C )()1,+∞ (D )(),0(1,)-∞+∞

(2)已知集合{}{}2|230,|3M x x x N x x =+-<=≤-,则集合{}|1x x ≥=( ) (A )M N (B) M N (C) ()R C M N (D)

()R C M N

(3)不等式()()()1220x x x -+->的解集为( )

(A )()2,1- (B) ()2,+∞ (C) ()(2,1)2,-+∞ (D)

()(,2)1,-∞-+∞

(4)不等式2220(0)x ax a a --<<的解集为

初中数学 一元二次不等式解法

2.3.2 一元二次不等式解法 二次函数y=x2-x-6的对应值表与图象如下: x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 由对应值表及函数图象(如图2.3-1)可知 当x=-2,或x=3时,y=0,即x2-x=6=0; 当x<-2,或x>3时,y>0,即x2-x-6>0; 当-2<x<3时,y<0,即x2-x-6<0. 这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程 x2-x-6=0 的解就是 x1=-2,x2=3; 同样,结合抛物线与x轴的相关位置,可以得到 一元二次不等式 x2-x-6>0 的解是 x<-2,或x>3; 一元二次不等式 x2-x-6<0 的解是

-2<x<3. 上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集. 那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢? 我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0). 为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解. 我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解. (1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知 不等式ax2+bx+c>0的解为 x<x1,或x>x2; 不等式ax2+bx+c<0的解为 x1<x<x2. (2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c =0有两个相等的实数根x1=x2=-b 2a,由图2.3-2②可知不等式ax2+bx+c>0的解为 x≠-b 2a; 不等式ax2+bx+c<0无解.

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

解一元二次方程及一元二次不等式练习题--

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式: 1、0652>++x x 2、0652≤--x x 3、01272<++x x

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

一元二次不等式解法

一元二次不等式解法一、知识梳理 1.“三个二次”的关系 2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法

口诀:大于取两边,小于取中间. 二、例题讲解 题型一 一元二次不等式的求解 命题点1 不含参的不等式 例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=3 2 , ∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(3 2,+∞), 即原不等式的解集为(-∞,-1)∪(3 2,+∞). 命题点2 含参不等式 例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1, ①当a >1时,x 2-(a +1)x +a <0的解集为{x |11. 若a <0,原不等式等价于(x -1 a )(x -1)>0,

解得x <1 a 或x >1. 若a >0,原不等式等价于(x -1 a )(x -1)<0. ①当a =1时,1a =1,(x -1 a )(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1 a 1,解(x -1a )(x -1)<0得11}; 当a =0时,解集为{x |x >1};当01 时,解集为{x |1 a

高一数学不等式的解法人教版知识精讲

高一数学不等式的解法人教版 【同步教育信息】 一. 本周教学内容: 不等式的解法 二. 数学目标: 1. 会解c b ax c b ax >+<+,两类不等式。 2. 了解一元二次不等式、一元二次函数、一元二次方程的联系。 3. 掌握一元二次不等式的解法步骤,能熟练地解一元二次不等式。 三. 知识讲解: c b ax c b ax >+?>+或)0(>-<+c c b ax )0(><+<-?<+c c b ax c c b ax 4. 分式不等式的解法: 利用不等式的性质可以把分式不等式 0)()(0)()(>??>x g x f x g x f ???≠≥??≥0 )(0)()(0)() (x g x g x f x g x f

0)()(0)()(+++++x x x (*) 解: (1)当3-------x x x ,∴ 3-++----x x x ,∴ 3-++++--x x x ,∴ 1->x ,x 无解 (4)当1-≥x 时,(*)化为3321>+++++x x x ,∴ 1->x ,∴ 1->x 综上,不等式的解集为}1,3|{->---+x x (*) 解: (1)当3--+--x x ,即36>,∴ 3--++x x ,23>x ,∴ 23>x 或2 3 -,∴ 3≥x 综合(1)(2)(3)得}2 3 ,23|{>---+x x 或333-<--+x x ,略。 [例4] 解不等式1032 <+x x 解:2501032 <<-?<-+x x x ,∴ 20<≤x ,∴ 22<<-x ∴ 原不等式的解集为}22|{<<-x x 另解:原不等式化为???<-+≥010302x x x 或? ??<--<01030 2x x x 解得22<<-x [例5] 解不等式4652 2-<+-x x x 解:原不等式化为???<+->+-?-<+-<-0 1050 252465422 2 2 x x x x x x x ∴ 2>x ∴ 原不等式的解集为}2|{>x x

一元二次不等式的解法

- 2 - 一元二次不等式的解法 一、选择题 1.不等式x 2<3x 的解集是 ( ). A .{x |x >3} B .{x |x <0或x >3} C .R D .{x |0<x <3} 2.不等式-x 2-x +2≥0的解集是 ( ). A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1} D .? 3.不等式x (x -a +1)>a 的解集是{x |x <-1或x >a },则 ( ). A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 4.已知全集U =R 集合A ={x |x 2-2x >0},则?U A 等于 ( ). A .{x |0≤x ≤2} B .{x |0<x <2} C .{x |x <0或x >2} D .{x |x ≤0或x ≤2} 5.不等式ax 2+5x +c >0的解集为? ??? ?? x ?? 13 <x <12,则a ,c 的值为 ( ). A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6 6.已知集合M =? ????? ??? ?x ??? x +3 x -1<0,N ={} x | x ≤-3,则集合{x |x ≥1}等于 ( ). A .M ∩N B .M ∪N C .?R (M ∩N ) D .?R (M ∪N ) 7.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若 每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 ( ). A .100台 B .120台 C .150台 D .180台 8.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ). A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4} 9.关于x 的不等式a -x x +b <0, a +b >0的解集是 ( ). A .{x |x >a } B .{x |x <-b ,或x >a } C .{x |x <a ,或x >-b } D .{x |-b <x <a } 10.在R 上定义运算?:x ?y =x (1-y ).若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则( ). A .-1<a <1 B .0<a <2 C .-12<a <32 D .-32<a <1 2 11、函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________. 12、二次函数y =ax 2+bx +c (a ≠0,x ∈R )的部分对应值如下表: 13、设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为________. 14、关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________. 15、不等式(3x -4)(2x +1) (x -1)2 <0的解集为________. 三、解答题 16、解不等式1)-2x 2+103x -1 3>0; 2)x -1x -2≥0; 3)2x -13-4x >1.

一元二次不等式的解法

知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。比如:. 任意的一元二次不等式,总可以化为一般形式:或 . 知识点二:一般的一元二次不等式的解法 设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表: 注意: (1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分三种情况,得到一元二次不等式 与的解集。 知识点三:解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程,计算判别式: ①时,求出两根,且(注意灵活运用因式分解和配方法); ②时,求根; ③时,方程无解 (3)根据不等式,写出解集. 知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程规律方法指导 1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法; 3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系; 5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数 二次函数()的图象

经典例题透析 类型一:解一元二次不等式 1.解下列一元二次不等式 (1);(2);(3) 思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当 且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) ;(2) (3) ;(4) . 【变式2】解不等式: 类型二:已知一元二次不等式的解集求待定系数 2.不等式的解集为,求关于的不等式的解集。

高一数学不等式的解法2(教师版)

学科教师辅导讲义 年 级: 高一 辅导科目: 数学 课时数: 课 题 不等式的解法(二) 教学目的 1、复习回顾一元二次不等式、分式不等式、绝对值不等式的解法 教学内容 【知识梳理】 问题思考: 1、 一元二次不等式的解法步骤是什么? 2、 解分式不等式的时候应该注意哪些问题? 3、 解绝对值不等式的时候,我们常用的有几种去绝对值的符号? 1、一元二次不等式的解法:求200)bx c a ++>>ax ( 的解集,还可以用配方法以及考察2 00)bx c a ++>>ax (函数图形的方法来解不等式 0>? 0=? 0a )的 图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 20ax bx c ++= ()0a >的根 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、解分式不等式时,切忌随意去分母。正确的解法是通过讨论决定分母的正负号后,利用不等式的基本性质,将原 不等式化为几个不等式组,或先通过移项将不等式的一边变为零后,再通分找到原不等式的等价不等式(组)。 3、绝对值不等式,关键在于去掉绝对值符号,一般有三种方法:①分段讨论;②两边平方法;③转化方法。 【典型例题分析】

相关文档
最新文档