浅析电动汽车电池组充电智能化方案

浅析电动汽车电池组充电智能化方案

浅析电动汽车电池组充电智能化方案

电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。由于对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟。因此在向市场推广的过程中电动汽车用电池的快速充电是电动汽车研究与开发过程中的重要课题。尽管许多实用化的充电设备或商用充电器具有快速充电及均衡充电的功能,但其通常是按事先设定的充电电流对电池进行充电。

这种方法不能根据电池充电过程中的具体情况对充电电流进行调整,为了避免出现过充电,设定的充电电流通常偏小,因此充电时间仍然较长,而且由于不具备自适应能力,充电过程中容易出现过充电现象,对蓄电池的寿命不利。为了在实现快速充电的同时又不影响电池寿命,关键是要使快速充电过程具有自适应性,即根据电池的实际状态自动调节充电电流的大小,使其始终保持在充电可接受电流的临界值附近。

1 电池快速充电的分段恒流控制

1. 1 快速充电方法的选择

增大充电电流,电池极板上单位时间内恢复的活性物质增多,充电时间就可缩短,但过大的充电电流会损害电池。电池可接受的充电电流是有限的,且会随充电时间呈指数规律下降。在电池充电过程中,充电电流曲线在该指数函数曲线以上时会导致电池电解液发生析气反应(过充电),反之则不能有效缩短充电时间。理想化的电池快速充电过程是充电电流始终保持在电池充电可接受电流的极限值,即充电电流曲线与该电池的充电可接受电流曲线相重合。本文选择容易实现的分段恒流充电方法。其关键是要确定适当的分段恒流充电终止判断标准、恒流充电分段数和各阶段恒流充电电流值。

1. 2 分段恒流充电控制方案

要实现分段恒流充电的自动控制,阶段恒流充电终止判断参数可选择充电时间、电池温度和电池电压等。大量的调查分析和电池充电试验结果表明,单参数控制方法难以实现理想的分段恒流充电控制。

充电时间参数控制方法简单,但电池型号不同、充电起始状态不同,所需的充电时间

电动汽车无线充电技术文献综述

电动汽车无线充电技术的现状与展望 王利军(合肥工业大学,合肥230000) 刘小龙(合肥工业大学,合肥230000) 端木沛强(合肥工业大学,合肥230000) 景池(合肥工业大学,合肥230000) 【摘要】介绍了无线充电技术的分类、电动汽车无线充电技术的工作原理以及电动汽车无线充电技术的应用情况,对比分析电动汽车传统能源供给方式及无线充电方式的优缺点。分析电动汽车用无线充电技术的特点,并介绍应用于电动汽车的无线充电技术的研发现状。然后以行驶中的充电技术为重点,对将来电动汽车用无线充电技术的发展进行展望。Abstract:The categories, operating principles and applications of wireless charging technology are introduced in this paper. The advantages and disadvantages are analyzed by comparing traditional energy supply mode and wireless charging mode. The characteristic of wireless charging technology for EV is analyzed. And then the development present of wireless charging technology is introduced. Finally,the future of wireless charging technology for EV is described with focus on charging of a moving vehicle on road. 【关键词】电动汽车无线充电无线电力输送电磁感应 Key words:electric vehicle; wireless charging technology; wireless power transmission; electromagnetic induction; 0 引言 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车( EV) 和插电式混合动力汽车( PHEV) 的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 1 无线充电技术 无线充电技术引源于无线电力输送技术。无线电力传输也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。根据在空间实现无线电力传输供电距离的不同,可以把无线电力传输形式分为短程、中程和远程传输三大类。 1.1 短程传输 通过电磁感应电力传输(ICPT)技术来实现,一般适用于小型便携式电子设备供电。ICPT 主要以磁场为媒介,利用变压器耦合,通过初级和次级线圈感应产生电流,电磁场可以穿透一切非金属的物体,电能可以隔着很多非金属材料进行传输,从而将能量从传输端转移到接收端,实现无电气连接的电能传输。电磁感应传输功率大,能达几百千瓦,但电磁感应原理的应用受制于过短的供电端和受电端距离,传输距离上限是10 cm 左右。 1.2 中程传输 通过电磁耦合共振电力传输(ERPT)技术或射频电力传输(RFPT)技术实现,中程传输可为手机、MP3 等仪器提供无线电力传输。ERPT 技术主要是利用接收天线固有频率与发射场电磁频率相一致时引起电磁共振,发生强电磁耦合的工作原理,通过非辐射磁场实现电能的高

电动汽车充电桩项目初步方案 (1)

电动汽车充电桩项目 初步方案 规划设计/投资方案/产业运营

电动汽车充电桩项目初步方案 日前,中国电动汽车充电基础设施促进联盟(EVCIPA)公布了2019年1月全国电动汽车充电基础设施运行情况。截至1月底,全国电动汽车充电基础设施总量34.2万台、全国充电站总量21.1千座,其中以上海3003座居首。 该电动汽车充电桩项目计划总投资6142.69万元,其中:固定资产投资5306.07万元,占项目总投资的86.38%;流动资金836.62万元,占项目总投资的13.62%。 达产年营业收入6407.00万元,总成本费用5030.63万元,税金及附加97.19万元,利润总额1376.37万元,利税总额1663.40万元,税后净利润1032.28万元,达产年纳税总额631.12万元;达产年投资利润率22.41%,投资利税率27.08%,投资回报率16.81%,全部投资回收期7.45年,提供就业职位106个。 努力做到合理布局的原则:力求做到功能分区明确、生产流程顺畅、交通组织合理,环境保护良好,空间处理协调,厂容厂貌整洁,有利于生产管理和工程分区建设。 ......

电动汽车充电桩项目初步方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

电动汽车充电技术国内外研究现况及发展趋势

电动汽车充电技术国内外研究现况及发展趋势 班级: 姓名: 学号:

摘要:对国内外电动汽车、电动汽车充电技术及规划布局等方面现状进行了研究,并对电动汽车充电需求进行了分析。介绍了国内外电动汽车充电设施的发展状况,对未来我国电动汽车发展前景进行了初步研究,提出积极推动电动汽车充电设施建设应是电网企业义不容辞的责任以及未来发展机遇。 关键词:电动汽车充电技术研究现状发展趋势 1.前言 电动汽车是全部或部分由电能驱动电机作为动力系统的汽车,按照目前技术的发展方向或者车辆驱动原理,可划分为纯电动汽车、混合动力汽车和燃料电池电动汽车三种类型。近年来,我国电动汽车行业取得了快速发展,攻克了一系列关键技术难题,在部分领域已实现了与日美欧等国同步发展。目前我国发展电动汽车已具有消费市场规模大、制造成本低、技术取得局部突破、资源保障能力强的四大优势。在技术突破和政策扶持的双重刺激下,我国电动汽车已处于市场引爆的临界点,预计未来两年电动汽车的市场规模和生产规模将迅速扩大,电动汽车将进入快速成长期。电动汽车充电设施是电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展。 1 电动汽车充电的基本方式 目前常用的电动汽车充电方式有慢充、快充和快换三种: (1) 慢充方式。慢充一般以较小交流电流进行充电,充电时间通常为6~10 h,慢充方式一般利用晚间进行充电,充电时可以采用晚间低谷电价,有利于降低充电成本,但是难以满足使用者紧急或者长距离行驶需求。慢充一般采用单相220V/16A 交流电源,通过车载充电器对电动汽车进行充电,车载充电器可采用国标三口插座,基本不存在接口标准的问题。电动汽车慢充一般通过充电桩进行。 (2) 快充方式。快充又称应急充电,以较大直流电流在20 min 至1 h 内,为电动汽车提供短时充电服务,快充方式可以解决续航里程不足时电能补给问题,但是对电池寿命有影响,因电流较大,对技术、安全性要求也较高。快充的特点是高电压、大电流,充电时间短(约1 h)。目前,这种充电方式的充电插口的针脚定义、电压、电流值、控制协议等均没有国家标准,也没有国际标准,已投入使用的充电机和电动车电池充电插口均由各生产厂家自定,世界各国都在积极争夺标准的制订权,各大电动汽车厂家也纷纷抢先投放产品,抢占市场、提高占有率,试图使多数充电站不得不采用其充电设备,从而成为事实标准。快充方式主要在充电站中进行。 (3) 快换方式。快换则是通过直接更换车载电池的方式补充电能,换电时间与燃油汽车加油时间相近,大约需要5~10 min。快换方式最为便捷,但是需要电动汽车和车载电池实现标准化,而且快换过程中需要专业人员进行操作。快换可以在充电站也可在专用电池更换站完成。这种方式的优点是电动车电池不需现场充电,更换电池时间较短,但要求电池的外形、容量等参数完全统一,同时,还要求电动汽车的构造设计能满足更换电池的方便性、快捷性。 2 国外电动汽车充电设施发展状况

电动汽车无线充电系统设计

毕业设计任务书题目电动汽车无线充电系统设计 二级学院汽车工程学院 专业新能源汽车应用技术专业 班级 学生姓名 学号 指导教师李兵 年月

设计题目 电动汽车无线充电系统设计 课题简介 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车(EV)和插电式混合动力汽车(PHEV)的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 课题目标与任务 任务:1、能够满足电动汽车无线充电系统的实际需求。2、设计高效合理的电动汽车无线充电系统,设计的无线充电系统应能够监控电压,电流以及温度等数据。3、设计有效、低成本的电动汽车电源管理系统,该系统应具有相应的故障报警系统,能够准确迅速对故障进行处理或警报等功能。 目标:通过对电动汽车无线充电系统设计,促进学生掌握电动汽车无线充电系统电路设计方法,学会调查研究各项电动汽车无线充电电路的工作原理,完成毕业设计方案撰写,要求学生能够运用在校所学的基本知识、基础理论、技能与方法等,研究和探讨电动汽车无线充电系统电路中的相关问题,对实际电动汽车无线充电系统电路设计工作做出具体计划,并在撰写实践中提高分析和解决实际问题的能力,提升创新意识和专业综合素质,提升语言能力与文字能力。同时,促进学生进一步提高独立思考、自主学习的能力;获取信息的能力,设计电动汽车无线充电系统电路的能力;自我评价、控制等能力。 实施步骤和方法 1.确定选题:收集资料,了解电动汽车无线充电系统需求,进行分析,了解所需知识与元器件使用要点,选定设计题目; 2.现场调查:制作调研表格,现场调查了解项目背景,对项目进行初步分析并收集相关数据和资料 3.统计分析与论证:统计分析项目各项数据,进行数据变量分析,撰写调研报告,提出设计的主要思路。 4.毕业设计方案设计:根据电动汽车无线充电系统的要求,运用所学电子电路知识,设计电动汽车无线充电系统电路。 5.撰写设计文档:按照学校要求与教育厅要求,对策划方案整理成相应格式的文档(包括毕业设计任务书、毕业设计设计方案、毕业设计作品、毕业设计成果报告) 6.设计文档答辩:经过指导后进行修改,并参加答辩。

电动汽车无线充电技术

电动汽车无线充电技术 电动汽车普通充电方式及优缺点 目前市面上对电动汽车充电主要有两种方式,一种是使用车载充电机,另一种是使用外置充电桩。这两种方式的区别是车载充电机可以接入220V的家用工频电,功率较小,可以进行慢速充电;而充电桩一般接入的是380V的三相电,功率较大,理论上可以实现快速充电。相同之处是他们都采用插入式连接器的方式进行充电。 电动汽车普遍采用的充电方式是利用充电粧或充电站通过导线与电网进行有线连接(即电缆连接),从电网获取电能为电动汽车进行常规充电、快速充电和换电,然而上述充电方式存在诸多弊端;①电池的充电需在人为情况下对插头进行插拔,存在安全隐患; ②充电全程均需人工操作,自动化程度低; ③在温度低、天气恶劣的条件下无法对电动汽车进行室外充电。 ④插电容易产生火花、容易产生磨损、不容易维护、不够美观、不够灵活、不够安全 无线充电技术分类及特点 WPT技术主要分为三种:射频或微波WPT、电磁感应式WPT以及电磁共振式WPT,下面分别予以介绍。 所谓微波WPT,就是以微波(频率在300MHz–300GHz之间的电磁波)为载体在自由空间无线传输电磁能量的技术[16]。由于工作频率高、系统效率较低,微波WPT并不适合于EV这种能量传输距离较短的应用场合。系统能量变换效率仅有38%。

电磁感应式WPT是基于电磁感应原理,利用一次、二次分离的变压器,在较近距离条件下进行无线电能传输的技术。目前较成熟的无线供电方式均采用该技术。然而,电磁感应式WPT仍存在一系列问题:传输距离较短,距离增大时效率急剧下降;传输效率对非接触变压器的一次、二次的错位非常敏感等。 ICPT技术的原理是在原边发射线圈中产生高频的正弦波电流,它会在原边线圈的周围产生高频的交变磁场,而副边线圈将会在磁场中感应出电能,再经过能量变换便得到我们需要的电能形式给用电设备供电。 感应耦合电能传输技术与一般的变压器的原理非常接近,都是高频交流电通过电磁感应来进行传输。区别在于ICPT的发射线圈和接收线圈是松耦合方式的,通常情况下发射线圈和接收线圈的距离较大,而且根据传输的需要还分为有磁芯和无磁芯的感应线圈。由于是松耦合方式,能量在原边到副边线圈传递过程中,会在空气中有一部分的损失。 电磁共振式WPT,两个固有谐振频率相等的铜绕组(为方便表述,称其为“变压器”),在共振激励条件下(即激励频率等于绕组的固有谐振频率),距离2m处,成功点亮了一个60W的灯泡[21],其中变压器的效率达到了40%。与电磁感应式WPT相比,电磁共振式WPT可显著提高能量的有效耦合及变压器的传输效率。相比于电磁感应式WPT的一些优点:如对非接触变压器绕组间错位的敏感度减小。利用共振模式对激励频率要求的严格性,可通过合理设置激励频率,向指定电器供电,提高安全性。然而,目前该方向的研究要么过于理论化,要么为实验研究,缺乏对应用、工程设计有定量指导意义的研究成果。目前,该技术传输的功率较小,尚未用于EV充电。 (3)无线充电部分包括DC/DC变换器、DC/AC高频逆变器、收发线圈及相应调谐电容。光伏微电网发出的电能经DC/DC变换器、DC/AC高频逆变器逆变为20kHz高频电压为无线传输系统发射端供电,谐振式系统将电能高效地传到接收端为下级负荷供电。 (4)车载电池系统包括AC/DC整流器、DC/DC变换器和车载电池,AC/DC整流器将20kHz高频电压变换成直流,通过DC/DC变换器实现车载电池的充电控制。 非接触变压器的设计 非接触变压器是非接触充电器中的核心元件,图10和图11给出了目前电动汽车的两种非触充电方式和对应的非接触变压器结构示意图。 (1)适于人工操作的手持插入式充电,SAEJ-1773给出其变压器方案,如图10b所示,并用于GMEV1车型。该方案将变压器一次绕组和部分磁心(嵌在中部)作为可活动的手持部分。当手持部分插入磁心间隙,则构成变压器;且一次绕组被二次绕组夹绕,实现了“非接触”和变压器的紧耦合。由于该变压器的耦合系数k高,易于实现高效率-输出功率1kW时,直直变换效率可达到90%[27]。 该方案利用手持部分,使充电站与电动汽车无电气连接,但实际充电时变压器的一二次仍为紧耦合;且无法实现自动或移动充电,不能起到应用WPT减少EV电池容量和汽车自重的作用。该铁心外径超过140mm,质量约6kg,体积重量均较大。 (2)全分离型充电方式,如图11所示,这种方式可实现自动和移动充电,是理想的非接触充电方式。静止充电用变压器的气隙通常在10~50mm[28],移动充电用变压器的气隙可达到150mm[29]甚至更大。根据对图11b所示结构的变压器的分析结果,磁心横向尺寸L越大,磁柱中心间距Lc与气隙比值Lc/g越大,

汽车充电桩专用电表的应用方案

汽车充电桩专用电表的应用方案 一、背景 近期,关于鼓励电动汽车充电桩投资的利好政策密集出台,从发改委发布《关于加强城市停车设施建设的指导意见》,到克强总理提出加快电动汽车充电基础设施,再到国务院办公厅下发《关于加快电动汽车充电基础设施建设的指导意见》,充电桩行业迎来重大的发展机遇。充电桩投资的增长,也带来了部用电计量设备的需求。新宏博智能电表,为各类充电桩厂家及系统集成商提供了一整套配电系统监测,充电电能计量产品及解决方案。 二、产品概述 智能电表采用现代先进的微电子技术、计算机技术、电测量技术以及数据通信技术研制而成。新宏博智能电表具有极高的性能价格比,且具有测试精度高、性能稳定的特点,无需外部供电可查询参数配置和电量、采用DIN35mm轨道,方便安装于各种充电桩箱体部。 三、应用方案 交流充电桩应用方案 交流充电桩是指采用传导方式为具有车载充电机的电动汽车提供交流电源的专用供电装置,最大额定功率为7kW,主要适用于为小型乘用车慢速充电。交流充电桩作为输出设备,需要对输出电能进行计量和控制,通过安装交流电能表和控制断路器实现这两个功能。 目前全系列交流电表均达到0.5s级有功电能的计量等级,符合GB/T28569-2012国家标准,为用户提供高精度的计量方案。同时,根据充电桩功率大小、交直流应用,新宏博丰富的计量产品线,单相或三相,1P到4P的尺寸,满足各类安装环境要求,为用户提高最佳计量方案。

直流充电桩应用方案 直流充电桩,也称快速充电桩,小型直流充电桩一般功率在12kW左右,往往安装在公共场合,其目的是让待充电车辆在较短时间,补充50-60%以上的电能。不同于交流充电桩,直流充电桩需要将部计量设备更换成直流电表。 直流电能表可达到1级计量精度,并支持最大4路直流线路用电计量,能够直接测量显示系统的用电量和历史用电量,并带有RS485接口,与微机进行数据交换。 产品选型表 用电种类型号产品图片主要功能

电动汽车蓄电池的充电方案

电动汽车蓄电池的充电方案 装备20 kWh蓄电池的电动汽车每行驶100 km耗电15 kWh的情况下,理论上每行驶133 km就要充一次电。若保险系数为25%的话,其最大行程只有100 km。 根据电动汽车蓄电池的不同电容量,不久的将来,市场上将会出现功率范围在3~50 kW的充电设备。基于充电速度的快慢,人们设想将充电功率提升至200kW。电动汽车的电压一般为300~700 V,而蓄电池也可以减轻电网系统的负担,改善电网供电重量。例如,利用合适的控制软件避开用电高峰时的充电,以便使电网负荷更加均衡。若停车场有很多车辆同时充电,电动汽车的蓄电池还可以用作“电网缓冲器”。必要时还可以把蓄电池中存储的电力回馈到电网中。在这种V2G(车辆到电网)的应用中,电网管理将会更加有效,可以更好地平衡用电高峰。 从电网方面来讲,目前给电动汽车充电的能源通常为230 V 16 A、3 kW的直流低压电和400 V 32 A/ 64 A、22 kW/ 44 kW的三相交流电。采用直流电充电可实现很高的充电功率。AC直流充电时,充电站中配备了把交流电转换为电动汽车所需直流电的转换装置。为提高充电性能而研发的充电设备避免了电动汽车只能在固定充电站充电的限制,使得转换成直流电的电动汽车动力能够经过充电电缆方便地把直流驱动动力传输到电动汽车的蓄电池中,而车辆只需配备充电保护和充电监控装置即可。 性能可靠的16 A家用充电设施的充电功率已经达到了大约3 kW的水

平。容量为30 kWh蓄电池的充电时间只需8 h,充满电后可连续行驶200km。这一最大行驶里程对于通常市内驾驶基本足够。若长途行驶,则应及时再次充电,可使用的充电设备包括家用充电设备和专用充电电缆等。电缆中有用于传送数据的导线,也有用于传送电力的导线和电缆识别的导线。根据充电时是否有通信需求,可以规定不同的充电工作方式。 在22/44 kW的柱式充电站中,电动汽车可在90/45 min内完成充电,但快速充电给蓄电池带来的负担较重,如蓄电池中的功率损耗增大、发热以及使用寿命缩短等。各个充电站都是按照IEC标准提出的不同要求进行建造的。这些要求都是根据充电站运用管理者的经营模式提出来的。这一基于有利于用户使用、有着很高的日常使用可靠性的解决方案还应在实践中接受检验。 另一种电动汽车电力能源补充的方法是更换蓄电池,即用已经充满电的蓄电池换下需要充电的整块蓄电池。Better Place公司提供的这一解决方案有着很短的蓄电池更换时间,可保持原有的燃油加油站,但这需要型号规格统一的标准化蓄电池,对车辆的个性化设计也有很大的限制。另外,原来的加油站也要投资购置蓄电池更换时所需的操作仪器和设备。而把电动汽车的充电和蓄电池更换两种方式结合在一起的电力补充方式,将是一种不错的电力能源补充模式:它既可满足每天行驶100km左右的市内行驶,也可满足长途行驶。 与使用电缆充电技术相比,感应充电技术的最大优点是有利于用户的使用。在充电时无需电缆,蓄电池无需接触即可完成充电。这就省略

共享充电桩方案介绍

共享充电桩方案怎么做的 共享充电桩方案怎么做的?共享产品的出现极大的改变了我的生活,特别是现在新能源汽车,电动车的出现。为我们的出行带来了极大的方便,但是电动车的续航和共享电动车的管理,比如乱停乱放等问题,也是很困扰人的。共享充电桩在政府大力推广新能源汽车下有很大的市场,目前的新能源汽车主要是电动汽车,而目前充电桩的数量少对新能源汽车的使用造成很多的阻碍。 目前的情况是一个拥有私家桩的车主每日对于充电桩的需求仅几个小时,一周的充电次数在两到三次,如果只是在市内上下班使用,一次充电开一个星期都可以。那么其余时间充电桩处于空置状态。共享充电桩模式就是把闲置的资源对外开放,让更多人能够共享。此外,针对出远门,走长途或者做滴滴曹操的的电动车,不可能每一次充电都回家。那么共享充电桩就很好的起到加油站的作用。 共享充电桩的基本模式是充电桩+物联网模块+手机端(微信和支付宝)+后台管理系统。 互联网的发展推动和促进了共享经济的发展。基于互联网+和手机端软件(微信,支付宝,APP)的运营平台的充电桩功能如搜索桩点、智能车锁避免汽油车占位、支付宝微信在线支付等完整易用的消费环节都提供了良好的用户体验。 充电桩整体系统由四部分组成:电动汽车充电桩、集中器、电池管理系统(BMS)、充电管理服务平台。 电动汽车充电桩(栓)的控制电路主要由嵌入式ARM处理器完成,用户可自助刷卡进行用户鉴权、余额查询、计费查询等功能,也可提供语音输出接口,实现语音交互。用户可根据液晶显示屏指示选择4种充电模式:包括按时计费充电、按电量充电、自动充满、按里程充电等。 电动汽车充电机控制器与集中器利用CAN总线进行数据交互,集中器与服务器平台利用有线互联网或无线GPRS网络进行数据交互,为了安全起见,电量计费和金额数据实现安全加密。 电池管理系统系统(BMS)的主要功能是监控电池的工作状态(电池的电压、电流和温度)、预测动力电池的电池容量(SOC)和相应的剩余行驶里程,进行电池管理以避免出现过放电、过充、过热和单体电池之间电压严重不平衡现象,最大限度地利用电池存储能力和循环寿命。 充电服务管理平台主要有三个功能:充电管理、充电运营、综合查询。充电管理对系统涉及到的基础数据进行集中式管理,如电动汽车信息、电池信息、用户卡信息、充电桩(栓)

1 《电动汽车无线充电系统 第1部分 通用要求》 编制说明

广东省地方标准 电动汽车无线充电系统第1部分通用 要求 Electric vehicle wireless power transfer system Part1:General requirements (征求意见稿) 编制说明 2015年10月

一、任务来源 本标准由广东省质量技术监督局于2015年7月14日批准立项(粤质监标函〔2015〕402号),立项名称为《电动汽车无线充电系统第1部分:通用要求》,由中兴通讯股份有限公司、深圳市标准技术研究院、深圳奥特迅电力设备股份有限公司、比亚迪汽车工业有限公司、广州汽车集团股份有限公司汽车工程研究院、广州能源检测研究院、深圳市科陆电子科技股份有限公司、深圳市佳华利道新技术开发有限公司、广东省中山市质量技术监督标准与编码所、华南理工大学、普天新能源(北京)联合起草。 本标准由广东省电动汽车标准化技术委员会提出并归口。 二、编制背景、目的和意义 我国处于电动汽车无线充电技术研究、产品开发、应用推广3个方面的国际领先地位,但标准化落后,有必要尽快实现“有标准可依”。我国已经进行电动汽车传导式充电和换电的标准化工作,无线充电作为向电动汽车提供能量的第三种方式,其标准化工作在还没有开展,这与我国的技术和产业领先地位不匹配。 电动汽车无线充电应用具有特殊优势,标准化是其推广发展的前提条件。无线充电系统可用于电动汽车在车库、停车场、充电站等场所的无人值守自动充电,大幅提升土地使用效率,构建电动汽车充电公共服务设施建设和运营的新模式,加速实施我国新能源汽车发展战略。 对于已经投身于汽车无线充电系统开发和应用的车企、设备商、电力企业、运营企业、用户来说,无标准可依的状态阻碍了无线充电技术在电动汽车领域的应用推广。 本标准的编写有助于创新型城市在标准创新层面有所成就。助力相关产业规模化发展、产业集群协同进步,创造更好的经济效益。 本标准规定了电动汽车无线充电系统的总体要求,并规定了标准体系架构。 三、编制思路和原则 (一)编制思路

电动汽车充电系统技术规范第1部分通用要求

电动汽车充电系统技术规范第1部分:通用要求 深圳市标准化指导性技术文件(SZDB/Z 29.1—2010) 1范围 SZDB/Z 29-2010的本部分规定了电动汽车配套充电设施、设备有关设计、功能、技术和电气安全防护等方面的通用要求。 本部分适用于深圳市电动汽车配套充电设施建设与改造。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 16895.21-2004建筑物电气装置 GB/T 17215.211-2006交流电测量设备 通用要求、试验和试验条件 GB 50057建筑物防雷设计规范 DL/T 620交流电器装置的过电保护和绝缘配合 DL/T 645-2007多功能电能表通信规约 DL 5027电力设备典型消防规程 JJG 842直流电能表检定规程 JB/T 9288外附分流器 3术语和定义 下列术语和定义适用于本规范。 3.1 电动汽车Electric Vehicle (EV) 用于在道路上使用,由电动机驱动的汽车,电动机的动力电源源于可充电电池或其他易携带能量存储的设备。不包括室内电动车、有轨及无轨电车和工业载重电动车等车辆。 3.2 充电 Charge 从外部电源供给蓄电池直流电,将电能以化学能的方式贮存起来的过程。 3.3 充电站EV Charging Station 具有特定控制功能和通信功能,将直流电能量传送到电动汽车上的设施总称。

车载充电机On-Board Charger 固定安装在电动汽车上的充电机。 3.5 非车载充电机Off-Board Charger 固定安装在电动汽车外,与交流电网连接,并为电动汽车动力电池提供直流电能的充电机。若无特别说明,本标准所指充电机为电动汽车非车载充电机。 3.6 充电站监控系统Charging Station Supervisor System 将充电站的充电机、配电设备、谐波监测、视频监视、火灾报警及站内其他设备的状态信息、参数配置信息、充电过程实时信息等进行集成,实现站内设备监视、保护、控制和管理的系统。 3.7 交流充电桩AC Charging Point 固定安装在电动汽车外、与交流电网连接,为电动汽车车载充电机提供交流电源的供电装置。 3.8 直流充电桩DC Charging Point 固定安装在电动汽车外、与交流电网连接,为电动汽车动力电池提供小功率直流电源的供电装置。 3.9 充电桩Charging Point 交流充电桩与直流充电桩的统称。 3.10 充电机效率Charging Efficiency 充电机的直流输出功率与交流输入有功功率之比。 3.11 充电区Charging Area 充电站内为电动汽车进行充电的停车区域。 3.12 配电站Distribution Station 在中低压配电网中,用于接受并分配电力、并将10(20)kV变换为380 V电压的供电设施的总称。

电动汽车无线充电系统 快速充电要求

电动汽车无线充电系统快速充电技术规范 1范围 本标准规定了电动汽车无线充电系统的电能传输要求、接口要求、安全要求。 本标准适用于交流输入标称电压最大值为1000 V,直流标称电压最大值为1500 V的静态磁耦合电动汽车无线充电快速充电设备。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 156 标准电压 GB 4208 外壳防护等级(IP代码) GB 4943.1 信息技术设备 安全 第1部分:通用要求 GB/T 7251.7 低压成套开关设备和控制设备 第7部分:特定应用的成套设备--如码头、露营地、市集广场、电动车辆充电站 GB 16895.3 建筑物电气装置 第5-54部分:电气设备的选择和安装 接地配置、保护导体和保护联结导体 GB 16895.21 低压电气装置 第4-41部分: 安全防护 电击防护 GB-T 27930电动汽车非车载传导式充电机与电池管理系统之间的通信协议 ICNIRP 2010 限制时变电场和磁场曝露的导则(1Hz—100kHz)(For limiting exposure to time-varying electric and magnetic fields(1Hz—100kHz)) T/CSAE XXXX-XXXX 电动汽车无线充电系统慢速充电技术规范 3术语、定义 3.1术语和定义 3.1.1 原边设备 primary device 能量的发射端,产生交变磁场与副边设备耦合的设备,包括封装和保护材料。 3.1.2 副边设备 secondary device 能量的接收端,安装在电动汽车上与原边设备发生耦合的设备,包括封装和保护材料。 3.1.3 无线电能传输 Wireless Power Transfer (WPT) 调整具有标准电压和频率的交流电源的电流,将电能以交变磁场的方式从原边设备传输至副边设备。 3.1.4 电动汽车无线充电 Electric Vehicle Wireless Power Transfer (WPT)

无线充电技术简介

无线充电技术 无线充电技术(Wireless charging technology;Wireless charge technology )。无线充电技术,源于无线电力输送技术。无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(充电器)将能量传送至用电的装置,该装置使用接收到的能量对电池充电,并同时供其本身运作之用。由于充电器与用电装置之间以电感耦合传送能量,两者之间不用电线连接,因此充电器及用电的装置都可以做到无导电接点外露。[1] 概述 麻省理工学院的研究团队在2007年6月7日美国《科学》杂志的网站上发表了他们的研究成果。研究小组把共振运用到电磁波的传输上而成功“抓住”了电磁波。他们利用铜制线圈作为电磁共振器,一团线圈附在传送电力方,另一团在接受电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无线传导。这项被他们称为“无线电力”的技术经过多次试验,已经能成功为一个两米外的60瓦灯泡供电。这项技术的最远输电距离还只能达到2.7米,

但研究者相信,电源已经可以在这范围内为电池充电。而且只需要安装一个电源,就可以为整个屋里的电器供电。 共振原理 麻省理工学院的科研组不是第一个提出无线能量转换的组织。科学家早在19世纪就发现了电磁转换现象,从理论上说,电力可转化为通过无形的介质传播的电磁波,实现电力的无线输送。但是电磁波向四面八方辐射,能量大量散失,因此“无线输电”的研究始终进展不大,19世纪的物理学家和工程师尼古拉·特斯拉进行了远程无线能量转换系统实验,但是当他的财力用尽后,这项最有野心的尝试(29米高的瓦登克莱弗塔)宣告失败。其他尝试包括激光等定向能量转换机制。然而,它们与麻省理工学院的工作不同,这些都需要连续的可视线路,这对住宅周围的电力设施不好。 无线充电技术给两个手机无线充电[2] 研究组成员,助理教授马林·索亚克教授和他的科研组正在改进这个设备。“这是一项还未得到发展的系统,它证明能量转换行得通。但

电动自行车充电桩建设方案

电动自行车充电桩建设 电动自行车充电桩主要适用于企业员工宿舍区域,居住出租房集中的村(居)、社区以及其他公共聚集场所周边。涉及充电桩建设的主体主要有:企业负责人、出租房房东、公共聚集场所的物业管理单位或者场所负责人。 电动自行车充电桩建设方案主要分为三类: 一、商业运营模式 1.由第三方运营商负责经营:运营商在适用区域内免费建设充电桩,向建设主体支付 使用的电费。便捷性:建设主体在自属区域内划分好电动自行车停放区块,该区块由运营商负责充电桩的运行维护与管理,确保充电桩能够正常使用。不便利性:运营商为确保收支平衡需要与建设主体签订用电合同以及安装的设备使用时限。 2.由建设主体自主运营:建设主体选择充电计费装备(投币或者网络支付),提供给 用户充电。其中设备采购、安装以及用电成本由建设主体负责,日常管理、维护由建设主体负责。便捷性:建设主体在自属区域建设充电桩向广大用户开放,具有较强的灵活性。不便利性:产品的日常运行维护以及充电管理需要建设主体负责,存在维护不专业,运行不稳定等情况。

二、免费提供充电模式 1.部分企业为确保员工上下班,针对企业员工电动自行车较多的情况,设置电动自行车停放区域,在停放区域内设置电动自行车充电插座。便捷性:企业在集中停放电 动自行车区域设置集中充电插座,该插座的充电线路设置漏电保护开关,设置成本 较低,日常维护简单,员工使用方便。不便利性:企业提供充电区域电动自行车充 电使用的电量,日常管理中容易被用作其他使用,需要加强管理。(建议:使用定 时开放开关,在固定时间段内企业无偿提供充电用电)。 2.部分居住出租房房东为便于租户统一管理,在出租房安全区域自行设置充电装置,电源处使用时控开关,定时向租户开放充电,充电所使用的电费由租户平摊或者每 月定额缴费或在房租中包含。 三、物业、单位负责人规划设置电动自行车充电桩 1.物业小区内按照建设规划合理选择区域,设立电动自行车停放电点并安装充电桩。 物业自行采购充电桩设备,电动自行车充电收费方式可采取多样性(投币、扫码 等)。不便利性;划分停放区域需要小区统一规划,涉及部分业主可能有不同意见。 2.公众聚集场所的单位在单位周边划分电动自行车停放点,并安装充电桩。单位负责人自行采购充电桩设备,在场所合适的区域集中设立充电桩,电动自行车充电 收费方式可采取多样性(投币、扫码等)。不便利性;划分停放区域可能需要城市 管理介入,在建筑内部设置需要安装有效的火灾预防设施。

电动汽车无线充电方案

电动汽车无线充电技术 方案 北京中诺电力工程有限公司 年月日

目录 一、背景概述 (3) 1、研发背景 (3) 2、产品定位 (3) 二、产品方案功能介绍 (3) 1、设计理念 (3) 2、系统拓扑图 (4) 3、系统构架描述 (4) 4、系统功能介绍 (4) 5、产品方案规格 (5) 三、产品方案应用介绍 (5) 1、应用模式 (5) 2、应用流程 (5) 3、应用环境 (6) 四、产品方案特性介绍 (6) 1、技术特性 (6) 2、应用特性 (6) 3、系统特性 (6) 五、产品方案技术介绍 (7) 1、相关技术 (7) 2、技术指标 (7) 六、实施运维方式说明 (7)

一、背景概述 1、研发背景 随着地球环境越来越恶劣,资源越来越匮乏,世界各国都在不断地为日益严重的环境问题大规模投资着,节能环保问题就这样被世界所提倡,使用清洁再生能源和环保材料是节能环保主题下的主要方式,针对目前汽车尾气造成的大气污染,资源短缺问题,各大汽车公司厂商都在积极推动新的技术变革,电动汽车就应运而生了。再给人民提供生活出行方便的同时,倡导低碳环保,节能减排,可持续性发展的道路。那么給电动汽车的供电产品就必不可少,大力发展汽车充电桩普及充电桩网络和新技术的运用就成为发展和推广电动汽车非常重要的环节。 2、产品定位 产品的主要供电方式为太阳能及并网市电,通过无线发射线圈給电动汽车供电,能够快速的给电动汽车充电,首次采用低压高功率动态充电技术,在提高电压快速充电安全上提供了绝对的安全保障,同时汽车的磁感应接收端植入了一颗通信芯片,利用手机接收信号app 可以连接汽车,以此来追踪汽车的安全和防盗 二、产品方案功能介绍 1、设计理念 针对国内已有的电动汽车充电桩的不足和安全考虑,还有节能环保问题,综合来看:目前电动汽车迫切需要一个高效安全节能又环保使用更方便的充电桩,无线充电正好具备以上多个功能要求,在多个技术问题解决后,整体工程在能效上将达到预期效果。

电动汽车充电站建站实施方案

电动汽车充电站建站方案(省级电力系统) 一、背景分析 (一)、国情分析 1、现有能源结构危及国家安全 我国水、煤资源丰富,石油贫乏。近年来随着我国经济的发展,汽车正高速进入普通百姓家,每年进入我国的绝大部分石油都被汽车烧掉了,石油燃料不仅成为国内头号污染源,而且也成为威及我国国家安全的战略要害所在。尽快推行已电动汽车为主的新能源车辆,在节能减排和能源安全方面具有极为重要的意义。就世界范围来看,石油的开采也只能维持40年时间,发展新能源也是各国面临的紧迫任务。继以煤炭为能源的蒸汽机时代、石油为能源的内燃机时代之后,新能源(主要表现为电能)时代正在到来。 2、能源革命为工业转型提供绝佳机会 改革开放30多年,我国产品出口基本是以出卖劳动力为主,基本上在做着8亿件衬衫换一架飞机的进出口生意。举国上下无不希望像日本那样出口机电和汽车。然而传统汽车中外差距巨大,非短时间更够赶超。但电动汽车工业,大家基本处于同一个起跑线上,欧美日本传统汽车工业的优势逐渐变成包袱,而我们本就基础薄弱,船小掉头快!发展电动汽车工业不仅损失小,而且通过市场的调节,会迅速在电动汽车工业建设方面超越西方国家。并通过电动汽车工业带动整个国民经济快速向前发展。 3、节能减排是我国今后首要任务之一 中国大陆几乎没有一条干净的河流,地下水多已被污染,污染的大气更是让人无处可逃。温室效应导致地球变暖,人类的未来将面临高温酷暑的煎熬。其中燃油汽车的废气占据了大气污染的首要因素。中国政府承诺减排45%的目标在保工业增长的前提下,发展电动汽车,减少燃油汽车就显得格外重要。 4、 (二)、电动汽车市场需要基础建设的支持 就像飞机离不开飞机场一样,电动汽车也离不开充电站,中国家庭的车位和供电电力只能起到部分补充电动汽车电力,电动汽车要想自由的行驶,必须要依靠能够进行快速充电且星罗棋布的专用充电站。 电力比汽油要便于储运和使用的多,几乎可以进入到任何需要的地方,这就为充电站的建设提供了极大的方便:不一定需要专用的场地,任何能够停车的地方几乎都能够建设充电站,充电站的方式也极为灵活,可以是简易充电桩,也可以是大中型充电站,既可以在有条件的专用及公共车库(位)充电站,又可以在停车场、购物中心、有车位的路边和便道等。 由于电动汽车的行驶里程比较短,充电时间也比较长,因而必须建有更多的充电站,充电桩才能满足电动汽车的出行需要。 (三)、国家近期大力安排充电站基础建设 随着中国汽车工业2011年底完成50万辆生产任务的临近,目前国家已安排布置多个省份开始批量建设充电站(充电桩)工作。其中上海、深圳、江苏等地已建成并投入使用。 二、电动汽车对充电站的需求 (一)、电动汽车的充电与运行特点 1、储存电能多,充电功率大 一台普通电动轿车的存电能力约为40KWh(度)。约相当于普通家庭半个月的用电量。为能够在短时间内将电动汽车的蓄电池充满,需要充电机的充电功率较大,一般车载充电机(慢充)的充电功率为2-3KW,专用直流充电桩的充电功率在10-100KW。用20KW的直流充电桩为电动汽车充电需要1-2个小时左右。 电动大巴的存电约为250-300KWh。车载充电机的充电功率约为5-20KW,专用直流充电桩的充电功率在 20-200KW。用40KW的直流充电桩为电动汽车充电需要4-6个小时左右。 对电动汽车的充电时间越短,对充电桩的输出功率要求则越大。

电动汽车无线充电原理及应用分析

电动汽车无线充电原理及应用分析 【摘要】随着经济的快速发展,节能、低碳和环保经济成了社会发展的需要,电动汽车受到了广泛的关注,而无线充电技术是未来电动汽车供电技术的发展趋势。本文介绍了三种常用的无线充电技术:电磁感应、微波、磁耦合共振,并分析了三种无线充电的工作原理、存在的问题及实用化前景。 【关键词】电动汽车;无线充电;电磁感应;微波;磁耦合共振 一、引言 自电动汽车产生以来,为了让车主感觉更加方便、安全,高新技术和便捷服务已经被广泛应用,很多知名的汽车制造商和能源企业建造了跟传统加油站类似的充电桩和换电站。在日本、美国、德国,包括中国在内等地区都开始配置充电设备的充电桩和换电设备的换电站。无论是充电桩还是换电站都属于接触式充电范畴,它们都需要充电插头和电线来进行电能的传递。但无线充电则不需要这些连接装置,它是利用交变电磁场和无线电波来传递电能,因此不需人来插拔插头,同时节省电线材料,无触电危险,在恶劣天气环境下使用性强,很便于在停车场和车库大面积推广。因此,电动汽车无线充电受到很多汽车制造商的青睐,相关技术的研究和应用在世界发达国家已经开始开展。 二、无线充电技术 无线充电技术应用在电动汽车上主要有三种:电磁感应法、微波法、磁耦合共振法。其中电磁感应法利用线圈间产生的电磁感应现象进行电能传输;微波法利用天线发射和接收微波进行电能传输;磁耦合共振法利用共振电路之间的共振现象进行电能传输,下面分别进行分析介绍。 (一)电磁感应法 此原理与电力系统中常用的电力变压器原理类同。在变压器的一次线圈通入交变电流,二次线圈会由于电磁感应原理感应出电动势,如果二次线圈电路闭合,即可有感应电流出现,电流方向的确定遵从楞次定律,其大小可由麦克斯韦电磁理论解出。相对于无线输电而言,变压器的一次线圈相当于电能发射线圈,二次线圈相当于电能接收线圈,这样就可以把电能从发射线圈无线传输到接收线圈。工作原理如图1所示。 该电能传输系统是将发射电能的一次线圈埋藏在地下,接收电能的二次线圈安装于车底部,两线圈之间空隙的大小会影响充电系统的效率。 (二)微波法 要想实现电能长距离的无线传输,则可使用微波的传输方式。由于微波的波

相关文档
最新文档