石墨烯的制备研究进展

第26卷 第6期 无 机 材 料 学 报

Vol. 26

No. 6

2011年6月

Journal of Inorganic Materials Jun., 2011

收稿日期: 2010-09-27; 收到修改稿日期: 2010-12-02

基金项目: 重庆市教委科技基金(KJ070402); 重庆市科委基金(2007BB4442); 重庆交通大学山区道路建设与技术维护重点

实验室开放基金(CQMRCM-10-5)

Municipal Science Foundation Project of CQ CSTC (2007BB4442) and of CQEC (KJ070402); Open-ended Fund of

Hi-tech Lab for Mountain Road Construction and Maintenance, CQTJU (CQMRCM-10-5)

作者简介: 袁小亚(1979?), 男, 博士, 副教授. E-mail: yuanxy@https://www.360docs.net/doc/a7962818.html,

文章编号: 1000-324X(2011)06-0561-10 DOI: 10.3724/SP.J.1077.2011.00561

石墨烯的制备研究进展

袁小亚

(重庆交通大学 理学院, 重庆 400074)

摘 要: 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势.

关 键 词: 石墨烯; 石墨烯氧化物; 制备; 功能化石墨烯; 综述

中图分类号: O613; TB332 文献标识码: A

Progress in Preparation of Graphene

YUAN Xiao-Ya

(College of Science, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Dif-ferent routes to prepare graphene have been developed and achieved. Preparation methods of graphene used in re-cent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gas- phase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. The preparations of graphene are also prospected.

Key words: graphene; graphene oxide; preparation; functional graphene; review

2004年, 英国曼彻斯特大学的Geim 研究小组首次制备出稳定的石墨烯, 推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论, 震撼了整个物理界[1], 引发了石墨烯的研究热潮[2]. 理想的石墨烯结构可以看作被剥离的单原子层石墨, 基本结构为sp 2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料, 这是目前世界上最薄的材料—单原子厚度的材料. 这种特殊结构蕴含了丰富而新奇的物理现象, 使石墨烯表现出许多优异性质[3-6], 石墨烯不仅有优异的电学性能(室温下电子迁移率可达2×105cm 2/(V·s))[7-8], 突出

的导热性能(5000 W/(m·K))[9-10], 超常的比表面积(2630 m 2/g)[11], 其杨氏模量(1100 GPa)和断裂强度(125 GPa)[12-13]也可与碳纳米管媲美, 而且还具有一些独特的性能, 如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质[14]等. 与碳纳米管相比, 石墨烯的主要性能均与之相当, 甚至更好, 避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题, 而且制备石墨烯的原料价格便宜. 正是由于石墨烯材料具有如此众多奇特的性质, 引起了物理、化学、材料等不同领域科学家的极大研究兴

562 无机材料学报第26卷

趣, 也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景[3-6, 15].

1石墨烯的制备方法概述

目前有关石墨烯的制备方法, 国内外有较多的文献综述[4-6, 16-19], 石墨烯的制备主要有物理方法和化学方法. 物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产. 目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[20]. 2006年Stankovich等[21]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称GO)的含氧基团从而恢复单层石墨的有序结构(氧化?还原法), 在此基础上人们不断加以改进, 使得氧化?还原法(含氧化?修饰?还原法)成为最具有潜力和发展前途的合成石墨烯及其材料的方法[16]. 除此之外, 晶体外延生长、化学气相沉积也可用于大规模制备高纯度的石墨烯. 本文重点总结近三年化学法, 尤其是氧化?还原法制备石墨烯的研究进展, 并对制备石墨烯的各种途径的优缺点加以评述.

2 物理法制备石墨烯

2.1微机械剥离法

微机械剥离法是最早用于制备石墨烯的物理方法. Geim等[1]在1mm厚的高定向热解石墨表面进行干法氧等离子刻蚀, 然后将其粘到玻璃衬底上, 接着在上面贴上1μm 厚湿的光刻胶, 经烘焙、反复粘撕, 撕下来粘在光刻胶上的石墨片放入丙酮溶液中洗去, 最后将剩余在玻璃衬底上的石墨放入丙醇中进行超声处理, 从而得到单层石墨烯. 虽然微机械剥离是一种简单的制备高质量石墨烯的方法, 但是它费时费力, 难以精确控制, 重复性较差, 也难以大规模制备.

2.2液相或气相直接剥离法

通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液. Coleman等参照液相剥离碳纳米管的方式将石墨分散在N-甲基-吡咯烷酮 (NMP) 中, 超声1h后单层石墨烯的产率为1%[22], 而长时间的超声(462h)可使石墨烯浓度高达 1.2mg/mL, 单层石墨烯的产率也提高到4%[23]. 他们的研究表明[22], 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2; Hamilton等[24]把石墨直接分散在邻二氯苯(表面张力: 36.6mJ/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯; Drzal等[25]利用液?液界面自组装在三氯甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯. 为提高石墨烯的产率, 最近Hou等[26]发展了一种称为溶剂热插层(solvothermal-asssisted exfoliation)制备石墨烯的新方法(图1), 该法是以EG为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用(dipole- induced dipole interaction)来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%. 同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集. Coleman 研究小组在水/十二烷基苯磺酸钠( SDBS) 中超声处理石墨30min, 详细研究了石墨初始浓度以及SDBS浓度对石墨烯产率的影响, 发现所得的石墨烯多数在5层以下, 并且具有较高的导电率(~104 S/m)[27], 后来发现柠檬酸钠作为稳定剂也具有较好的剥离分散效果[28]. Englert 等[29]合成一种新型的水溶性含大芳香环的两亲性物质并作为片层石墨的稳定剂(图2), 利用该物质与石墨片层的π?π堆积与疏水作用来制备稳定的石墨烯水溶液. 最近, 为同时提高单层石墨烯的产率及其溶液的稳定性, Li等[30]提出“exfoliation-rein-tercalation-expansion”方法(图3), 以高温处理后

图1 溶剂热剥离法制备石墨烯[26]

Fig. 1 Schematic illustration of solvothermal-assisted exfo-liation and dispersion of graphene sheets in CAN[26]

(a) Pristine EG; (b) EG; (c) Insertion of CAN molecules into the inter-layers of EG; (d) Exfoliated graphene sheets dispersed in ACN; (e) Optical images of graphene solutions

第6期

袁小亚: 石墨烯的制备研究进展 563

图2 合成的水溶性两亲性物质[29]

Fig. 2 Soluble perylene-based bolaamphiphile detergent

[29]

图3 “剥离?再插层?膨胀”法制备石墨烯[30]

Fig. 3 Route of “exfoliation-reintercalation-expansion” to graphene [30]

的部分剥离石墨为原料, 用特丁基氢氧化铵插层后,

再以DSPE-mPEG 为稳定剂, 合成的石墨烯90%为单层, 且透明度较高(83%~93%). 另外, 一些研究人员研究了利用气流的冲击作用来提高剥离石墨片层的效率, Janowska 等[31]以膨胀石墨为原料, 微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%), 深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中, 当气压超过一定数值足以克服石墨片层间的范德华力而使石墨剥离. Pu 等[32]将天然石墨浸入超临界CO 2中30min 以达到气体插层的目的, 经快速减压后将气体充入SDBS 的水溶液中即制得稳定的石墨烯水溶液, 该法操作简便、成本低, 但制备的石墨烯片层较多(~10层).

因以廉价的石墨或膨胀石墨为原料, 制备过程不涉及化学变化, 液相或气相直接剥离法制备石墨烯具有成本低、操作简单、产品质量高等优点, 但也存在单层石墨烯产率不高、片层团聚严重、需进一步脱去稳定剂等缺陷. 为克服这种现象, 最近Knieke 等[33]发展了一种大规模制备石墨烯的方法, 即液相“机械剥离”. 该法采取了一种特殊的设备, 高速剪切含十二烷基磺酸钠的石墨水溶液, 3h 后溶液中单层和多层石墨烯的浓度高达25g/L, 而5h 后50%以上的石墨烯厚度小于3nm, 该法具有成本低、产率高、周期短等优势, 是一种极有诱惑力的大规

模制备石墨烯的途径.

3 化学法制备石墨烯

3.1 化学气相沉积法(CVD)

化学气相沉积(chemical vapor deposition, CVD) 是反应物质在相当高的温度、气态条件下发生化学反应, 生成的固态物质沉积在加热的固态基体表面, 进而制得固体材料的工艺技术. CVD 是工业上应用最广泛的一种大规模制备半导体薄膜材料的方法, 也是目前制备石墨烯的一条有效途径. Srivastava 等制备[34]采用微波增强CVD 在Ni 包裹的Si 衬底上生长出了约20nm 厚的花瓣状石墨片, 形貌并研究了微波功率对石墨片形貌的影响. 研究结果表明: 微波功率越大, 石墨片越小, 但密度更大. 此种方法制备的石墨片含有较多的Ni 元素. Zhu 等[35-36]用电感耦合射频等离子体CVD 在多种衬底上生长出

纳米石墨微片. 这种纳米薄膜垂直生长在衬底上, 形貌类似于Srivastava 等[34]制备的“花瓣状”纳米片, 进一步研究发现这种方法生长出来的纳米石墨片平均厚度仅为1nm, 并且在透射电镜下观察到了垂直于衬底的单层石墨烯薄膜(厚0.335nm). Berger 等[37-38]将SiC 置于高真空(1.33×10?10 Pa)、

1300 ℃下, 使SiC 薄膜中的Si 原子蒸发出来, 制备了厚度仅为1~2个碳原子层的二维石墨烯薄膜. 最近韩国成均馆大学研究人员[39]在硅衬底上添加一层非常薄的镍(厚度< 300nm), 然后在甲烷、氢气与氩气混合气流中加热至1000℃, 再将其快速冷却至室温, 即能在镍层上沉积出6~10层石墨烯, 通过此法制备的石墨烯电导率高、透明性好、电子迁移率高(~3700 cm 2 /(V·s)),

并且具有室温半整数量子Hall 效应, 而且经图案化后的石墨烯薄膜可转移到不同的柔性衬底, 可用于制备大面积的电子器件(如电极、显示器等), 为石墨烯的商业化应用提供了一条有效的途径. CVD 法可满足规模化制备高质量、大面积石墨烯的要求, 但现阶段较高的成本、复杂的工艺以及精确的控制加工条件制约了CVD 法制备石墨烯的发展, 因此该法仍有待进一步研究[40-42].

3.2 晶体外延生长法(SiC 高温退火)[43-44]

通过加热单晶6H-SiC 脱除Si, 从而得到在SiC 表面外延的石墨烯. 将表面经过氧化或H 2刻蚀后的SiC 在高真空下通过电子轰击加热到1000℃以除掉表面的氧化物, 升温至1250~1450, ℃恒温1~20min, 可得到厚度由温度控制的石墨烯薄片. 这种方法得到的石墨烯有两种, 均受SiC 衬底的影响很大: 一

564 无机材料学报第26卷

种是生长在Si层上的石墨烯, 由于和Si层接触, 这种石墨烯的导电性受到较大影响, 一种生长在C层上的石墨烯则有着极为优良的导电能力. 这种方法条件苛刻(高温、高真空)、且制造的石墨烯不易以从衬底上分离出来, 难以能成为大量制造石墨烯的方法.

3.3氧化?还原法(含氧化?修饰?还原法)

这是目前最常用的制备石墨烯的方法, 国内外科学家已经对这方面做了大量的研究[16, 45-46]. 石墨本身是一种憎水性物质, 与其相比, GO表面和边缘拥有大量的羟基、羧基、环氧等基团, 是一种亲水性物质, 正是由于这些官能团使GO容易与其它试剂发生反应, 得到改性的氧化石墨烯; 同时GO层间距(0.7~1.2nm)[47]也较原始石墨的层间距(0.335nm)大, 有利于其它物质分子的插层. 制备GO的办法一般有3种: Standenmaier法[48]、Brodie法[49]、Hummers法[50]. 制备的基本原理均为先用强质子酸处理石墨, 形成石墨层间化合物, 然后加入强氧化剂对其进行氧化. 因这些方法中均使用了对化工设备有强腐蚀性、强氧化性的物质, 故现今有不少GO 的改进合成方法[51-52]. GO的结构比较复杂, 目前还没有公认的结构式, 比较常用的一种如图4所示[53] (关于GO化学结构的讨论可参阅[46, 54]).

GO还原的方法包括化学液相还原[21]、热还原[55-56]、等离子体法还原[57]、氢电弧放电剥离[58]、超临界水还原[59]、光照还原[60-62]、溶剂热还原[63-64]、微波还原[65-68]等, 其中又以化学液相还原研究的最多, 常见的还原剂有水合肼[21, 69-72]、H2[73-74]、二甲肼[75]、对苯二酚[76]、NaBH4[77]、强碱[78]、MeReO3/ PPh3[51] 、纯肼[79]、Al粉[80]、维生素C[81-82]、乙二胺[83]、Na/CH3OH[84], Ruoff与Loh等对此作了很好的综述[46, 85]. 结构完整的二维石墨烯晶体表面呈惰性状态, 化学稳定性高, 与其它介质的相互作用较

图4 石墨烯氧化物的结构式[53]

Fig. 4 The structure of graphene oxide[53] 弱, 并且石墨烯片之间有较强的范德华力, 容易产生聚集, 使其难溶于水及常用的有机溶剂, 这给石墨烯的进一步研究和应用造成了很多困难. 为了充分发挥其优良性质、改善其可成型加工性(如提高溶解性、在基体中的分散性等), 必须对石墨烯表面进行有效的修饰, 通过引入特定的官能团, 还可以赋予石墨烯新的性质, 进一步拓展其应用领域. 修饰是实现石墨烯分散、溶解和成型加工的最重要手段[18]. 目前人们常采用先对GO进行修饰然后再进行还原(即氧化-修饰-还原). 其中, 石墨烯的修饰主要有共价键修饰和非共价键修饰[46, 85].

3.3.1共价键修饰

由于GO表面及边缘上有大量的羧基、羟基和环氧等活性基团, 可以充分利用这些官能团的活性进行多种化学反应(图5)在石墨烯片上引入各种分子即可达到石墨烯的共价键修饰.

酰胺化反应是石墨烯共价修饰较常用的一个途径. 为增强COOH的反应活性, 通常先将其活化, 常用的活化试剂有二氯亚砜[86-90]、1-乙基-3-(3-二甲基胺丙基)?碳化二亚胺(EDC)[91]、N, N`-二环己基碳化二亚胺(DCC)[92-93]等. Niyogi等[86]先将GO上的羧基转变为酰氯(用SOCl2活化)然后与十八胺的胺基反应, 还原后制得长链烷基修饰的石墨烯在四氢呋喃(THF)的溶解度达0.5mg/mL, 且在四氯化碳、二

氯甲烷等常用有机溶剂中也均有较好的溶解性. Bourlinos等也考察了各种伯胺、氨基酸与胺基硅氧烷共价修饰的石墨烯, 发现经修饰的石墨烯在水或有机溶液有极好的稳定性[94]. 除酰胺化反应外, COOH的酯化反应或其它反应也可用于修饰石墨烯. Shen等[95]将羧酸转变成其钠盐后然后利用亲核取

代反应将正丁基引入石墨烯片上, 还原后发现经共价修饰的石墨烯在一些有机溶剂如氯仿、甲苯均有较好的稳定性, 且溶液的紫外?可见吸收光谱非常吻合朗伯?比尔定律. Salavagione等[90]采用核磁共振、红外光谱法等多种手段证实了聚乙烯醇(PV A)可成功通过酯化反应键合到石墨烯表面, 而Veca 等[92]则利用PV A侧链的羟基在GO表面的接枝制备PV A与石墨烯的复合物, 用作高分子合金的相容剂. Stankovich等[96]利用异氰酸酯与GO上的羧基和羟基反应, 制备了一系列异氰酸酯基修饰的石墨烯, 该功能化石墨烯可以在DMF、NMP、DMSO、HMPA、THF 等非质子溶剂中形成稳定的胶束体系, 并能够长时间保持稳定, 该方法过程简单、条件温和、功能化程度高.

除羧基可作为共价修饰的位点外, GO表面的环

第6期

袁小亚: 石墨烯的制备研究进展 565

图5 石墨烯氧化物的共价修饰[85]

Fig. 5 Schematic illustration of covalent functionalization of graphene [85]

氧基团与羟基也可作为反应的活性点[97-99]. Yang 等[99]利用环氧基团与胺基的亲核取代反应制备表面硅功能化的石墨烯片(图6), 在硅树脂中加入少量该物质能大大改善树脂的力学性能. Satti [93]和Ruoff [100]等利用聚丙烯胺侧链的胺基与GO 表面的环氧基团的反应制备交联的石墨烯, 使得石墨烯薄膜的韧性与强度均有大幅度的提高. 利用高分子化合物主链或侧链的基团与GO 表面或边缘基团的化学反应不仅能改善石墨烯的各种性能, 而且也能制备种类繁多的高性能聚合物?石墨烯纳米复合材 料[101-105]. 石墨烯边缘一些活性双键或缺陷也能发生化学反应如自由基反应[106]、重氮化反应[107-108]、1, 3-偶极加成反应[109], 因此这些部位也能作为石墨烯共价修饰的活性位点.

经共价修饰的石墨烯衍生物具有较好的溶解性和可加工性, 但由于杂原子官能团的引入, 破坏了石墨烯的大π共轭结构, 使其导电性与其它性能显著降低, 因此共价修饰的同时如何尽量保持石墨烯的本征性质是一个不容忽视的问题, 为更好地解决此问题, Samulski 与Li 等各自发展了新的共价修饰途径. Samulski 等[110]首先采用硼氢化钠预还原GO, 然后磺化, 最后再用肼还原的方法, 得到了磺酸基功能化的石墨烯. 该方法通过预还原除去了GO 中

的多数含氧官能团, 很大程度上恢复了石墨烯的共轭结构, 其导电性显著提高, 而且由于在石墨烯表面引入磺酸基, 使其可溶于水, 便于进一步的研究及应用. Li 等用氨水调节GO 水溶液pH 等于10, 然后用肼还原同样得到导电性高(~7200 S /m)、力学性能好(拉伸模量: 35GPa)、透明性优异(透光率>96%)的石墨烯材料[111], 该法关键之处是控制溶液pH, 在碱性环境(pH=10)中石墨烯表面羧基变成羧酸负离子, 使得石墨烯片与片之间产生较强的静电排斥力(图7), 因此制备的石墨烯水溶液也具有非常好的稳定性.

3.3.2 非共价键修饰

除了通过在GO 表面上键合一些特定的化学基团来避免还原GO 时石墨烯片层间的重新堆集, 也能利用一些分子与石墨烯之间较强的相互作用力(如π?π堆积力、van der waals 作用力、氢键)来达到稳定单层石墨烯片的效果[85]. 通常这类分子含有较大的芳香环或较强的共轭体系, 能够与大π共轭结构的石墨烯发生较强的相互吸引而被吸附到石墨烯片层上从而得到稳定的胶体分散系统. 芘及其衍生物是一类常用于非共价修饰碳纳米管的共轭结构的分子[112-113], 利用它与石墨烯之间的π?π相互作用, Xu 等研究了芘丁酸对石墨烯的非共价修饰, 使

566 无机材料学报第26卷

图6 通过环氧位点表面硅功能化的石墨烯片[99]

Fig. 6 Silane-functional graphene via chemical reaction on epoxy site[99]

图7 化学法制备高分散水溶性石墨烯溶液[111]

Fig. 7 Chemical route to the synthesis of aqueous graphene dispersions[111]

其在水中形成稳定的分散, 并通过抽滤得到高性能柔性石墨烯薄膜[112]. Stankovich等在还原过程中使用高分子量聚苯乙烯磺酸钠(PSS)对GO表面进行吸附包裹, 避免了团聚, 成功制备了PSS包裹的改性单层石墨烯水溶液[114]. 这是由于PSS 与石墨烯之间有较强的非共价键作用(π?π堆积力), 阻止了石墨烯片的聚集, 使该复合物在水中具有较好的溶解性(1 mg/mL). Hao等[115]用四氰基苯醌作为石墨烯的稳定化剂, 同样获得了能溶于水及有机溶剂(DMSO、DMF) 的非共价修饰的石墨烯. 除利用小分子作为石墨烯的稳定剂外, 一些高分子也能通过非共价作用来修饰石墨烯[73, 116-120]. Li等利用具有大π共轭结构聚苯乙炔类高分子PmPV 与石墨烯之间的相互吸引作用, 制备了PmPV 非共价键修饰的石墨烯带[73].

3.4其它方法

除上述常用的几种制备石墨烯路线外, 国内外仍不断探索石墨烯新的制备途径. Chakraborty等[121]在成熟的石墨?钾金属复合物基础上制备了聚乙二醇修饰的石墨纳米片, 在有机溶剂及水中均溶解性较好. Wang等[122]利用Fe2+在聚丙烯酸阳离子交换树脂中的配位?掺碳作用, 发展了一种新型的、大规模制备石墨烯的方法: 原位自生模板法(in situ self-generating template), 该法具有产率高、产品晶型好的特点, 制备的石墨烯能作为甲醇燃料电池Pt 催化剂的优良载体. 最近, 复旦大学Feng首先采用Li方法[111]制备石墨烯溶液后, 然后通过高真空(P≈20Pa)低温冷冻干燥制备了高度疏松的粉体石墨烯, 该粉状物只需经简单的超声就能在DMF等有机溶剂中重新形成稳定的胶体分散体系[123], 该法提供了快速简便地大规模制备固态单层石墨烯的途径, 克服了传统方法只能制备分散、稳定石墨烯溶液的缺点, 为石墨烯商业化应用打下了良好基础.

4 展望

在短短的几年间, 石墨烯以其具有的优异性能及各种潜在的应用前景, 得到快速发掘和开发. 与此同时, 人们需要大量高质量、结构完整的石墨烯材料. 这就要求提高或进一步完善现有制备工艺的水平, 探索新的制备路径. 微机械法显然不能满足未来工业化的要求, 直接剥离法能制备高质量的石墨烯, 但产率太低、耗时太长; 化学气相沉积法可以制备出大面积且性能优异的石墨烯薄膜材料, 但现

第6期袁小亚: 石墨烯的制备研究进展 567

有的工艺不成熟以及成本较高都限制了其大规模应用, 因此还需进一步探索、完善. 氧化?还原法虽然能够以相对较低的成本制备出大量的石墨烯, 但即使被强还原剂还原后, 石墨烯的原始结构也并不能完全恢复(特别是经过共价修饰后的石墨烯), 而使其电子结构及晶体的完整性均受到严重的破坏,一定程度上限制了其在某些领域(如精密的微电子领域)中的应用. 因此, 如何大量、低成本制备出高质量的石墨烯材料仍是未来研究的一个重点. 此外, 由于表面修饰能改善或丰富石墨烯的各种性能, 也应该关注如何更好的修饰, 特别是非共价修饰,进一步提高石墨烯各方面性能, 促进其器件化、工业化、商品化的进程.

参考文献:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect

in atomically thin carbon films. Science, 2004, 306(5696): 666?669.

[2] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007,

6(3): 183?191.

[3] Geim A K. Graphene: status and prospects. Science,2009,

324(5934): 1530?1534.

[4] Wu J S, Pisula W, Mullen K. Graphenes as potential material for

electronics. Chem. Rev., 2007, 107(3): 718?747.

[5] Rao C N R, Sood A k, Voggu R, et al. Some novel attributes of

graphene. J. Phys. Chem. Lett., 2010, 1(2): 572?580.

[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of

Graphene. Chem. Rev., 2010, 110(1): 132?145.

[7] Zhang Y, Tan J W, Stormer H L, et al. Experimental observation

of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201?204.

[8] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility

in suspended graphene. Solid State Commun., 2008, 146(9/10): 351?355.

[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conduc-

tivity of single-layer graphene. Nano Lett., 2008, 8(3): 902?907. [10] Schadler L S, Giannris S C, Ajayan P M. Load transfer in carbon

nanotube epoxy composites. Appl. Phys. Lett., 1998, 73(26): 3842?3847.

[11] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface

area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523?527.

[12] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic proper-

ties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385?388.

[13] Van den Brink J. Graphene-from strength to strength. Nat.

Nanotechnol., 2007, 2(4): 199?201.

[14] Weitz R T, Yacoby A. Graphene rests easy. Nat. Nanotechnol.,

2010, 5(10): 699?700.

[15] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Materials

today, 2010, 13(3): 28?38.

[16] Park R, Ruoff R S. Chemical methods for the production of gra-

phenes. Nat. Nanotechnol., 2009, 4(4): 217?224.

[17] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展. 化学进展, 2009,

21(12): 2559?2567.

[18] 黄毅, 陈永胜. 石墨烯的功能化及其相关应用. 中国科学B辑,

2009, 39(9): 887?896.

[19] 李旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究. 材料导报,

2008, 22(8): 48-52.

[20] Müllen M, Kübel C, Müllen K. Giant polycyclic aromatic hydro-

carbons. Chem. Eur. J., 1998, 4(11): 2099?2109.

[21] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-

based nanosheets via chemical reduction of exfoliated graphite ox-ide. Carbon, 2007, 45(7): 1558?1565.

[22] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of

graphene by liquid-phase exfoliation of graphite. Nat. Nanotech-nol., 2008, 3(9): 563?568.

[23] Khan U, O'Neill A, Lotya M, et al. High-concentration solvent ex-

foliation of graphene. Small, 2010, 6(7): 864?871.

[24] Hamilton C E, Lomeda J R, Sun Z, et al. High-yield organic dis-

persions of unfunctionalized graphene. Nano Lett., 2009, 9(10): 3460?3462.

[25] Biswas S, Drzal L T. A novel approach to create a highly ordered

monolayer film of graphene nanosheets at the liquid?liquid inter-face. Nano Lett., 2009, 9(1): 167?172.

[26] Qian W, Hao R, Hou Y, et al. Solvothermal-assisted exfoliation

process to produce graphene with high yield and high quality.

Nano Res., 2009, 2: 706?712.

[27] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of

graphene by exfoliation of graphite in surfactant/water solutions.J.

Am. Chem. Soc., 2009, 131(10): 3611?3620.

[28] De S, King P J, Lotya M, et al. Flexible, transparent, conducting

films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458?464. [29] Englert J M, R?hrl J, Schmidt C D, et al. Soluble graphene: genera-

tion of aqueous graphene solutions aided by a perylenebisimide- based bolaamphiphile.Adv. Mater., 2009, 21(42): 4265?4269. [30] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets

and Langmuir–Blodgett films. Nat. Nanotechnol., 2008, 3(9): 538?542.

[31] Janowska I, Chizari K, Ersen O, et al. Microwave synthesis of

large few-layer graphene sheets in aqueous solution of ammonia.

Nano Res., 2010, 3(2): 126?137.

[32] Pu N W, Wang C, Sung Y, et al. Production of few-layer graphene

by supercritical CO2 exfoliation of graphite. Mater. Lett., 2009, 63(23): 1987?1989.

[33] Knieke C, Berger A, Voigt M, et al. Scalable production of gra-

phene sheets by mechanical delamination. Carbon, 2010, 48(11):

568 无机材料学报第26卷

3196?3204.

[34] Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure

and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films, 2005, 492(1/2): 124?130.

[35] Zhu M, Wang J, Outlaw R A, et al. Synthesis of carbon nanosheets

and carbon nanotubes by radio frequency plasma enhanced chemi-

cal vapor deposition. Diam. Relat. Mater., 2007, 16(2): 196?201. [36] Wang J, Zhu M, Outlaw R A, et al . Synthesis of carbon nanosheets

by inductively coupled radio-frequency plasma enhanced chemical

vapor deposition. Carbon, 2004, 42(14): 2867?2872.

[37] Berger C, Song Z, Li X, et al. Electronic confinement and coher-

ence in patterned epitaxial graphene.Science, 2006, 312(5777):

1191?1196.

[38] Berger C, Song Z, Li T, et al.Ultrathin epitaxial graphite:2D elec-

tron gas properties and a route toward graphene-based nanoelec-

tronics. J. Phys. Chem. B, 2004, 108(52): 19912?19916.

[39] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of

graphene films for stretchable transparent electrodes. Nature, 2009,

457(7230): 706?710.

[40] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of

graphene films. Nano Lett., 2010, 10(2): 490?493.

[41] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on

arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1): 30?35.

[42] Faugeras C, Faugeras B, Orlita M, et al. Thermal conductivity of

graphene in corbino membrane geometry. ACS Nano, 2010, 4(4):

1889?1892.

[43] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium.

Nat. Mater., 2008, 7(5): 406?411.

[44] 刘忠良. 碳化硅薄膜的外延生长、结构表征与石墨烯的制备. 合

肥: 中国科学技术大学博士论文, 2009.

[45] Compton O C, Nguyen S T. Graphene oxide, highly reduced gra-

phene oxide and graphene: versatile building blocks for carbon- based materials. Small, 2010, 6(6): 711?723.

[46] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of gra-

phene oxide. Chem. Soc. Rev., 2010, 39(1): 228?240.

[47] Tsuyoshi N, Yoshiaki M. Formation process and structure of

graphite oxide. Carbon, 1994, 32 (3): 469?475.

[48] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber. Dt.

Sch. Chem. Ges., 1898, 31(2): 1481?1487.

[49] Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys.,

1860, 59: 466?472.

[50] Hummers W, Offeman R. Preparation of graphitic oxide. J. Am.

Chem. Soc., 1958, 80(6): 1339.

[51] Chattopadhyay J, Mukherjee A, Billups W E, et al. Graphite ep-

oxide. J. Am. Chem. Soc., 2008, 130(16): 5414?5415.

[52] Wissler M. Graphite and carbon powders for electrochemical ap-

plications. J. Power Sources, 2006, 156(2): 142?150.

[53] Lerf A, He H, Forster M, et al.Structure of graphite oxide revisited.

J. Phys. Chem. B, 1998, 102(23): 4477?4482.

[54] Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional

groups in a series of progressively oxidized graphite oxides. Chem.

Mater., 2006, 18(11): 2740?2749.

[55] Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of

graphene oxide after heat and chemical treatments by X-ray photo-electron and micro-Raman spectroscopy. Carbon, 2009, 47(1): 145?152.

[56] Ju H M, Huh S H, Choi S H, et al. Structures of thermally and

chemically reduced graphene. Mater. Lett., 2010, 64(3): 357?360.

[57] Gomez-Navarro C, Weitz R T, Bittner A M, et al. Electronic trans-

port properties of individual chemically reduced graphene oxide sheets. Nano Lett., 2007, 7(11): 3499?3503.

[58] Wu Z S, Ren W, Gao L, et al. Synthesis of graphene sheets with

high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2): 411?417. [59] Zhou Y, Bao Q, Tang L A L, et al. Hydrothermal dehydration for

the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater., 2009, 21(13): 2950?2956.

[60] Williams G, Serger B, Kamat P V. TiO2-graphene nanocomposites.

UV2-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7): 1487?1491.

[61] Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of

graphite oxide and its polymer composite. J. Am. Chem. Soc., 2009, 131(31): 11027?11032.

[62] Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide

nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C, 2009, 113 (47): 20214?20220.

[63] Choucair M, Thordarson P, Stride J A. Gram-scale production of

graphene based on solvothermal synthesis and sonication. Nat.

Nanotechnol., 2009, 4(1): 30?33.

[64] Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of

chemically exfoliated graphene sheets. J. Am. Chem. Soc., 2009, 131(29): 9910?9911.

[65] Gu W, Zhang W, Li X, et al. Graphene sheets from worm-like ex-

foliated graphite. Mater. Chem., 2009, 19(21): 3367?3369. [66] Zhu Y, Murali S, Stoller M D, et al. Microwave assisted exfoliation

and reduction of graphite oxide for ultracapacitors. Carbon, 2010, 48(7): 2118?2122.

[67] Wei T, Fan Z J, Luo G L, et al. A rapid and efficient method to

prepare exfoliated graphite by microwave irradiation. Carbon, 2009, 47(1): 337?339.

[68] Hassan H M A, Abdelsayed V, Khder A E R S, et al. Microwave

synthesis of graphene sheets supporting metal nanocrystals in aque-ous and organic media. J. Mater. Chem., 2009, 19(23): 3832?3837. [69] Park S, An J, Piner R D, et al. Aqueous suspension and characteri-

zation of chemically modified graphene sheets. Chem. Mater., 2008, 20(21): 6592?6594.

第6期袁小亚: 石墨烯的制备研究进展 569

[70] Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced

graphene oxide in a wide variety of organic solvents. Nano Lett.,

2009, 9(4): 1593?1597.

[71] Paredes J I, Villar-Rodil S, Solís-Fernández P, et al. Atomic force

and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009, 25(10):

5957?5968.

[72] Cuong T V, Pham V H, Tran Q T, et al. Photoluminescence and

Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett., 2010, 64(3): 399?401.

[73] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth

graphene nanoribbon semiconductors. Science, 2008, 319(5867):

1229?1232.

[74] Wu Z S, Ren W, Gao L, et al. Synthesis of high-quality graphene

with a pre-determined number of layers. Carbon, 2009, 47(2):

493?499.

[75] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based

composite materials. Nature, 2006, 442: 282?286.

[76] Wang G, Yang J, Park J, et al. Facile synthesis and characteriza-

tion of graphene nanosheets. J. Phys. Chem. C, 2008, 112(22): 8192?8195.

[77] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graph-

ite oxide by sodium borohydride and its effect on electrical con-

ductance. Adv. Funct. Mater., 2009, 19(12): 1987?1992.

[78] Fan X B, Peng W C, Li Y, et al. Deoxygenation of exfoliated

graphite oxide under alkaline conditions: a green route to graphene

preparation. Adv. Mater., 2008, 20(23): 4490?4493.

[79] Tung V C, Allen M J, Yang Y, et al. High-throughput solution

processing of large-scale graphene. Nat. Nanotechnol., 2009, 4(1):

25?29.

[80] Fan Z, Wang K, Wei T, et al. An environmentally friendly and ef-

ficient route for the reduction of graphene oxide by aluminum powder. Carbon, 2010, 48(5): 1686?1689.

[81] Fernndez-Merino M J, Guardia L, Paredes J I, et al. Vitamin C is

an ideal substitute for hydrazine in the reduction of graphene oxide

suspensions. J. Phys. Chem. C, 2010, 114(14): 6426?6432.

[82] Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce

graphene that employs vitamin C and amino acid. Chem. Mater.,

2010, 22(7): 2213?2218.

[83] 沈丽英. 乙二胺还原法制备纳米石墨烯. 南京: 南京理工大学

硕士论文, 2009.

[84] Mohanty N, Nagaraja A, Armesto J, et al. High-throughput, ul-

trafast synthesis of solution-dispersed graphene via a facile hydride

chemistry. Small, 2010, 6(2): 226?231.

[85] Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J.

Mater. Chem., 2010, 20(12): 2272?2289.

[86] Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of

graphite and graphene. J. Am. Chem. Soc., 2006, 128(24):

7720?7721.

[87] Xu Y, Liu Z, Zhang X, et al. A graphene hybrid material cova-

lently functionalized with porphyrin: synthesis and optical limiting

property. Adv. Mater., 2009, 21(12): 1275?1279.

[88] Liu Z B, Xu Y F, Zhang X Y, et al. Porphyrin and fullerene cova-

lently functionalized graphene hybrid materials with large nonlin-

ear optical properties. J.Phys. Chem. B, 2009, 113(29):

9681?9686.

[89] Zhang X, Huang Y, Wang Y, et al. Synthesis and characterization

of a graphene-C60 hybrid material. Carbon, 2009, 47(1): 334?337. [90] Salavagione H J, Gómez M A, Martínez G. Polymeric modification

of graphene through esterification of graphite oxide and poly(vinyl

alcohol). Macromolecules, 2009, 42(17): 6331?6334.

[91] Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide

for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.,

2008, 130(33): 10876?10877.

[92] Veca L M, Lu F, Meziani M J, et al. Polymer functionalization and

solubilization of carbon nanosheets. Chem. Commun., 2009(18):

2565?2567.

[93] Satti A, Larpent P, Gun’ko Y. Improvement of mechanical proper-

ties of graphene oxide/poly(allylamine) composites by chemical

crosslinking. Carbon, 2010, 48(12): 3376?3381.

[94] Bourlinos A B, Gournis D, Petridis D, et al. Graphite oxide:

chemical reduction to graphite and surface modification with pri-

mary aliphatic amines and amino acids. Langmuir, 2003, 19(15):

6050?6055.

[95] Shen J, Li N, Shi M, et al. Covalent synthesis of organophilic

chemically functionalized graphene sheets. J. Colloid Interface Sci.,

2010, 348(2): 377?383.

[96] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfolia-

tion of isocyanate-treated graphene oxide nanoplatelets. Carbon,

2006, 44(15): 3342?3347.

[97] Wang S, Chia P J, Chua L L, et al. Band-like transport in sur-

face-functionalized highly solution-processable graphene Nanosheets. Adv. Mater., 2008, 20(18): 3440?3446.

[98] Yang H, Shan C, Li F, et al. Covalent functionalization of

polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun., 2009, (26):

3880?3882.

[99] Yang H, Li F, Shan C, et al. Covalent functionalization of chemi-

cally converted graphene sheets via silane and its reinforcement.J.

Mater. Chem., 2009, 19(26): 4632?4638.

[100] Park S, Dikin D A, Nguyen S T, et al. Graphene oxide sheets chemically cross-linked by polyallylamine. J. Phys. Chem. C, 2009,

113(36): 15801?15804.

[101] Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.,2008, 1(3): 203?212. [102] Liang J, Xu Y, Huang Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C, 2009, 113(22):

9921?9927.

[103] Ansari S, Giannelis E P. Functionalized graphene sheet-poly (vi-nylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part

570 无机材料学报第26卷

B: Polym. Phys., 2009, 47(9): 888?897.

[104] Zhang B, Chen Y, Zhuang X, et al. Poly(N-vinylcarbazole) chemically modified graphene oxide. J. Polym. Sci. Part A: Polym.

Chem., 2010, 48(12): 2642?2649.

[105] Zhuang X, Chen Y, Liu G, et al. Conjugated-polymer- functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv. Mater., 2010, 22(15): 1731?1735. [106] Hamilton C E, Lomeda J R, Sun Z, et al. Radical addition of per-fluorinated alkyl iodides to multi- layered graphene and sin-

gle-walled carbon nanotubes. Nano Res., 2010, 3(2): 138?145. [107] Choi J, Kim K, Kim B, et al. Covalent functionalization of epi-taxial graphene by azidotrimethylsilane. J. Phys. Chem. C, 2009,

113(22): 9433?9435.

[108] Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium func-tionalization of surfactant-wrapped chemically converted graphene

sheets. J. Am. Chem. Soc., 2008, 130(48): 16201?16206.

[109] Quintana M, Spyrou K, Grzelczak M, et al. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano, 2010, 4(6):

3527?3533.

[110] Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Lett., 2008, 8(6): 1679?1682.

[111] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 2008, 3(2): 101?105. [112] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the fil-tration of water-soluble noncovalent functionalized graphene

sheets. J. Am. Chem. Soc., 2008, 130(18): 5856?5857.

[113] Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules. Adv. Mater., 2009, 21(31): 3191?3195. [114] Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite

oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater.

Chem., 2006, 16(2): 155?158.

[115] Hao R, Qian W, Zhang L, et al.Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun., 2008,

(48): 6576?6578.

[116] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, et al.

Functionalized graphene sheet filled silicone foam nanocomposites.

J. Mater. Chem., 2008, 18(19): 2221?2226.

[117] Bai H, Xu Y, Zhao L, et al. Non-covalent functionalization of gra-phene sheets by sulfonated polyaniline. Chem. Commun., 2009(13):

1667?1669.

[118] Gudarzi M M, Sharif F. Characteristics of polymers that stabilize colloids for the production of graphene from graphene oxide. J.

Colloid Interface Sci., 2010, 349(1): 63?69.

[119] Choi E, Han T H, Hong J, et al. Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem., 2010,

20(10): 1907?1912.

[120] Bao Q, Zhang H, Wang Y, et al. Atomic-Layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater.,

2009, 19(19): 3077?3083.

[121] Chakraborty S, Chattopadhyay J, Guo W H, et al. Functionaliza-tion of potassium graphite. Angew. Chem. Int. Ed., 2007, 46(24):

4486?4488.

[122] Wang L, Tian C, Wang H, et al. Mass production of graphene via an in situ self-generating template route and its promoted activity

as electrocatalytic support for methanol electroxidization. J. Phys.

Chem. C, 2010, 114(19): 8727?8733.

[123] Cao Y, Feng J, Wu P. Preparation of organically dispersible gra-phene nanosheet powders through a lyophilization method and their

poly(lactic acid) composites. Carbon, 2010, 48(13): 3834?3839.

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

石墨烯复合材料应用最新研究进展

2019年3月第46卷第3期 云南化工 Yunnan Chemical Technology Mar.2019 Vol.46,No.3 doi:10.3969/j.issn.1004-275X.2019.03.062 石墨烯复合材料应用最新研究进展 程扬帆 (湖北科技学院,湖北咸宁,437000) 摘要:介绍了石墨烯复合材料在国内外的应用前景及应用进展,着重介绍了利用石墨烯特性应用于电容储能、环境治理、导热散热性能和导电等多领域的研究。石墨烯复合材料的应用潜力巨大,具有非常广阔的市场前景。 关键词:石墨烯;复合材料;应用前景 中图分类号:TQ04文献标志码:A文章编号:1004-275X(2019)03-157-02 Recent Research Progress in the Application of Graphene Composites at Home and Abroad Cheng Yangfan (Hubei Institute of Science and Technology,Xianning,Hubei,437000) Abstract:This paper introduces the application p rospects and progress of graphene composites at home and abroad.It focuses on the application of graphene characteristics in capacitance energy storage, environmental management,thermal conductivity and heat dissipation,conductivity and other fields. Graphene composites have great potential and broad market prospects. Key words:Graphene;Compound material;Application prospect 1石墨烯复合材料及其应用前景 1.1定义与特性 石墨烯被称为“单层石墨片”。它是一种二维的结构,密集的碳原子与石墨的单原子层十分类似,是一种新型碳材料。石墨烯的多种优点造就它多种用途,比如它的比表面积大,可以用于吸附和环境治理;机械强度高可以用于航空航天等;载流子迁移率高可以用于半导体与电容等设备。应用的环境非常广泛,随着石墨烯新型材料国内外发展,石墨烯不但可以显著提升传统产业,还可以为高端制造业的发展提供推力。1.2国内外石墨烯复合材料发展趋势及应用前景 目前,世界上有很多关于石墨烯的讨论。2012年,有近2万篇关于石墨烯研究的论文被纳 入科学研究。中国和美国是前两个国家。与此同时,其他国家也积极参与石墨烯相关专利申请的布局。截至2013年6月,它已申请了3,000多项相关发明专利。从2006-2017年,国内和国际研究呈上升趋势。在“十一五”期间,石墨烯复合技术的发展还处于起步阶段,国内外研究的数量相对较少。在“十二五”期间,国外开展了研究,主要集中在石墨烯的制备和化合物的研究上。随后,石墨烯复合材料的研究进入了快速发展阶段。在过去两年中,研究数量已超过以前的总数。其中,国外研究数量急剧增加,工业化进程不断推进,国内则在重点领域不断扩展提升。 由于石墨烯的重要特性和巨大应用价值,全球多个国家将其定义到发展战略高度。比如亚太地区的日本和中国,美国、以及欧洲欧盟等区域国家。这其中不少国家投入的研究和开发金额达到十亿美元,专门用来研究用于石墨烯材料。美国科技发展战略同样包括石墨烯技术。各国企业也积极进行石墨烯产业的布局,相关开发和研究涉及多家公司,像比如洛克希德·马丁、波音、三星、IBM、杜邦、陶氏化学、索尼等巨头均在公司名单中[1]。 2石墨烯复合材料国内外应用进展 由于石墨烯具有多种独特的优点,将它作为复合材料的填充相,就可以增强材料的相应性能,这就为它的应用提供了多种方向。比如国内外相关研究应用于能量储存、液晶器件、电子器件,而在其他领域比如生物材料、传感材料和催化剂载体等也有较多的报道。随着对石墨烯复合材料研究的不断深入,它应用也越来越受到人们的重视。 2.1石墨烯储能复合材料应用 锂电池是当前用途最广泛的电池能源,锂电池整体性能提升的关键是开发新的电极材料。石墨烯作为一种新型碳质材料,加入到锂离子电池中能够大幅提高其导电性,因为它为锂离子电池解决了两个问题,大幅度提高能量密度与大幅度提高功率密度。相对应的,石墨烯就可以作为电池导电的添加剂了。国内也有报道将它作为复合电极材料的正负极[2]。 157--

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯的结构、制备、性能及应用研究进展

石墨烯的结构、制备、性能及应用研究进展

姓名:学号: 20150700 密封线 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准

姓名:学号: 20150700 密封线

姓名:学号: 20150700 密封线 2. 报告结构合理,表述清晰 20分 3. 石墨烯的结构、性能、制备方法概述正确、 新(查阅5篇以上的文献) 20分 4. 石墨烯的应用研究进展概述(文献)全、新 (查阅5篇以上的文献) 20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象 20分 三、教师评语 请根据写作内容给定成绩,填入“成绩”部分。

密封线 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。注3:不符合规范试卷需修改规范后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元 素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的 三维晶体结构,属于天然矿石。除石墨和金刚石外,碳材料还包括活性炭、 碳黑、煤炭和碳纤维等非晶形式。煤是重要的燃料。碳纤维在复合材料领域 有重要的应用。20 世纪80 年代,纳米材料与技术获得了极大的发展。纳米 碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原子构成 的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继 出现,为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构, 它们的出现开启了富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学 奖。1991 年,由石墨层片卷曲而成的一维管状纳米结构:碳纳米管被发现。 如今,碳纳米管已经成为一维纳米材料的典型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨烯,出现在碳材料的“家 谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理 学奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯在锂电池中的应用研究

LUOYANG NORMAL UNIVERSITY 2015届本科毕业论文 石墨烯在锂离子电池材料中的应用研究 院(系)名称化学化工学院 专业名称化学工程与工艺 学生姓名雷丙丽 学号110644058 指导教师刘丰讲师 完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 The application of graphene in lithium-ion battery materials research Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected. Keywords:graphene; the modification of graphene; lithium—ion battery material 1 引言 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

石墨烯的研究进展概述

龙源期刊网 https://www.360docs.net/doc/a7962818.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

相关文档
最新文档