基于小波包能量的脑电信号特征提取方法

基于小波包能量的脑电信号特征提取方法
基于小波包能量的脑电信号特征提取方法

心电信号的计算机分析final

心电信号的计算机分析 【实验目的】: 通过理论结合实际,用C语言编程对MIT心电信号数据进行分析,实现低通滤波、高通滤波、QRS检测、特征提取、心律失常分析,从中了解和掌握数字信号处理的方法和应用。 【实验要求】 1读取数据 2 QRS检测 3 特征参数提取 4 心率失常分析 5 功率谱分析 【实验报告】 一实验介绍 心脏在有节律的活动过程中,能在人体表面产生微弱的电信号,如果我们在人体表面的特定部位安放电极,就能在电极上获得微弱的心电信号,此信号经放大、处理后,描记在记录纸上就是心电图,它能够反映心脏的功能及病情。 在获取心电图的过程中,由于心电信号比较微弱,仅为毫伏(mV)级,所以极易受环境的影响。对心电信号引起干扰得主要因数有:工频干扰、电极接触噪声、运动伪迹、呼吸引起的基线漂移和心电幅度变化、信号记录和处理中电子设备产生的干扰、电外科噪声等。 为了增强心电信号中的有效成分,抑制噪声和伪迹,提高波形检测准确率,除了对心电记录仪的硬件抗干扰能力有较高的要求外,心电信号A/D 变换后的处理也至为重要。 用于心电信号数字处理的方法主要有:消除电源干扰的工频滤波器,消除采样时间段引起信号失真的汉宁平滑滤波器,消除高频肌电的低通滤波器,消除直流偏移和基线漂移等低频噪声的高通滤波器,以及用于QRS 波检测的带通滤波器。本实验利用MIT心电信号数据库,简单设计了对心电信号进行计算机分析的实验,实验主要分成两部分:信号处理和心电参数分析;信号处理的方法有低通滤波、高通滤波、微分(查分运算):,对处理后的信号进行如下分析:QRS检测心率失常分析参数提取功率谱分析。 本实验的整个过程是:先读取文件数据,将数据显示在计算机屏幕上,并可进行翻页显示,然后对所读心电数据进行低通滤波、高通滤波、微分(查分运算)等处理,同时将处理后的数据显示在屏幕上;对心电信号的分析是采用处理后的的数据,先对QRS波进行检测,然后计算特征参数,

小波包能量谱程序

wpt4=wpdec(y4,n,'db30'); %对数据进行小波包分解 for i=1:2^n %wpcoef(wpt4,[n,i-1])是求第n层第i个节点的系数 disp('每个节点的能量E1(i)'); E4(i)=norm(wpcoef(wpt4,[n,i-1]),2)*norm(wpcoef(wpt4,[n,i-1]),2)%求第i个节点的范数平方,其实也就是平方和 end 请教各位,小波包能量如何求? 我的理解 假设信号x,对齐进行n层分解: wpt=wpdec(x,n,wname); 然后各小波包系数重构分量信号: dp(i,: )=(wprcoef(wpt,i)); 小波包能量为: Edp(i)=sum(dp(i,: ).^2); 这样对吗,谢谢大虾指点! 1.小波分析中,原始信号被分解为逼近部分和细节部分。逼近部分再分解为另一层的逼近和细节,这样的过程重复进行,直到设定的分阶层。然而,在小波包分解中,细节部分也进行相同的分解。小波包分解具有任意多尺度特点,避免了小波变换固定时频分解的缺陷(如高频段频率分辨率低),为时频分析提供了极大的选择余地,更能反映信号的本质和特征。你理解也算是对的。 2. s%为已知信号源 for i=1:4 wpt=wpdec(s,i,'db3'); e=wenergy(wpt); E=zeros(1,length(e)); for j=1:2^i E(j)=sum(abs(wprcoef(wpt,[i,j-1])).^2); end figure(5) subplot(4,1,i); bar(e); axis([0 length(e) 0 130]); title(['第',num2str(i), ' 层']); for j=1:length(e) text(j-0.2,e(j)+20,num2str(e(j),'%2.2f')); end end 这段程序也是从网上下载的,一起学习一下吧。

小波包及能量频谱的MATLab算法

一根断条: >> %采样频率 fs=10000; nfft=10240; %定子电流信号 fid=fopen('duantiao.m','r');%故障 N=2048; xdata=fread(fid,N,'int16'); fclose(fid); xdata=(xdata-mean(xdata))/std(xdata,1); %功率谱 figure(1); Y=abs(fft(xdata,nfft)); plot((0:nfft/2-1)/nfft*fs,Y(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); %3层小波包分解 T=wpdec(xdata,3,'db4'); %重构低频信号 y1=wprcoef(T,[3,1]); %y1的波形

figure(2); subplot(2,2,1); plot(1:N,y1); xlabel('时间t/n'); ylabel('电流I/A'); %y1的功率谱 Y1=abs(fft(y1,nfft)); subplot(2,2,2); plot((0:nfft/2-1)/nfft*fs,Y1(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因

05 基于小波包能量谱分析的电机故障诊断要点

应用天地 2008年 2月第 27卷第 2期 基于小波包能量谱分析的电机故障诊断 唐友怀张海涛罗珊姜喆 (工程兵工程学院南京 210007 摘要 :小波包是继小波分析后提出的一种新型的多尺度分析方法 [1], 解决了小波分析在高频部分分辨率差的缺点 , 体现了比小波分析更好的处理效果。文章描述了小波包分析方法的基本原理及其实现算法 , 并从能量分布的角度出发 , 阐述了在电机故障诊断中 , 利用小波包分析方法将模糊故障信号进行量化、分解 , 从而便于用单片机进行处理、判断的一种新的应用途径 , 在实验室中模拟各种电机故障进行了实验验证 , 实验进一步表明基于小波包能量谱分析的电机故障诊断方法是一种方便灵活并且准确度很高的故障诊断方法。关键词 :小波包 ; 故障诊断 ; 能量谱 ; 电机中图分类号 :TP182文献标识码 :A B ased on w avelet p acked energy motor fau lt diagnosis Haitao L uo Shan Jiang Zhe (College of Engineering Corps , Nanjing 210007 Abstract :The wavelet packed is presented as a new kind of multiscale analysis technique followed Wavelet analysis. it re 2solved t he wavelet analysis disadvantage on t he part of high frequency resolution lower , showed better treat ment effect t han wavelet analysis. The f undamental and it s realization arit hmetic of t he wavelet packed analysis met hod are described in t his paper. A new application approach of t he wavelet packed met hod on t he motor fault diagnosis from energy distrib 2uting angle is expatiated. And given t he experimental met hod and t he conclusion. and a new application approach which is convenient for t he microchip to process and judge by using t he wavelet packed analysis met hod to make the f uzzy motor fault diagnosis signals quantized and analyzed

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

基于matlab的脑电信号处理

航空航天大学基于Matlab的脑电信号处理 陆想想 专业领域生物医学工程 课程名称数字信号处理

二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为

根据MATLAB的心电信号分析

计算机信息处理课程设计说明书题目:基于MATLAB的心电信号分析 学院(系): 年级专业: 学号: 学生姓名: 指导教师:

燕山大学课程设计(论文)任务书 院(系):基层教学单位: 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年12月 01日

摘要 心电信号是人们认识最早、研究最早的人体生理电信号之一。目前心电检测已经成为重要的医疗检测手段,但是心电信号的相关试验及研究依然是医学工作者和生物医学工程人员的重要议题。 信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心电信号是人类最早研究并应用于医学临床的生物电信号之一,它比其他生物电信号便易于检测,并具有较直观的规律性,对某些疾病尤其是心血管疾病的诊断具有重要意义。它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 本课题基于matlab对心电信号做了简单的初步分析。直接采用Matlab 语言编程的静态仿真方式、对输入的原始心电信号,进行线性插值处理,并通过matlab语言编程设计对其进行时域和频域的波形频谱分析,根据具体设计要求完成程序编写、调试及功能测试,得出一定的结论。 关键词: matlab 心电信号线性插值频谱分析

目录 一:课题的目的及意义 (1) 二:设计内容与步骤 (1) 1.心电信号的读取 (1) 2.对原始心电信号做线形插值 (3) 3.设计滤波器 (5) 4.对心电信号做频谱分析 (6) 三:总结 (7) 四:附录 (8) 五:参考文献 (12)

小波包分解

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%小波包分解程序%% m=load('300_30.txt'); 导入文件名为300_30的txt文件N=length(m); for i=1:N-1 ; q(i,1)=m(i,1); end; d=q'; s1=d; change=1000; [c,l] = wavedec(d,3,'db4'); %提取小波分解后的低频系数 ca3=appcoef(c,l,'db4',3); %提取各层小波分解后的高频系数cd3=detcoef(c,l,3); cd2=detcoef(c,l,2); cd1=detcoef(c,l,1); %对信号强制消噪 cdd3=zeros(1,length(cd3));%第三层高频系数cd3全置0 cdd2=zeros(1,length(cd2));%第二层高频系数cd2全置0 cdd1=zeros(1,length(cd1));%第一层高频系数cd1全置0 c1=[ca3,cdd3,cdd2,cdd1];%建立新的系数矩阵 s2=waverec(c1,l,'db4')%为新的分解结构 %[thr,sorh,keepapp]=ddencmp('den','wv',d); %s2=wdencmp('gbl',c,l,'db4',4,thr,sorh,keepapp); %subplot(413) %plot(1:change,s2(1:change)); %title('默认软阈值消噪后信号') figure(1) subplot(9,2,1) plot(1:change,s1(1:change)) title('原始信号') ylabel('S1') subplot(9,2,2) plot(1:change,s2(1:change)) title('强制消噪后信号') ylabel('S2') wpt=wpdec(s1,3,'db1','shannon'); %plot(wpt); %重构第三层个节点小波系数 s130=wprcoef(wpt,[3,0]);

基于matlab的脑电信号处理

南京航空航天大学基于Matlab的脑电信号处理 姓名陆想想 专业领域生物医学工程 课程名称数字信号处理 二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为“α波阻断”。一

小波包变换 matlab

小波包分解与重构 function wpt= wavelet_packetdecomposition_reconstruct( x,n,wpname ) %% 对信号进行小波包分解,得到节点的小波包系数。然后对每个节点系数进行重构。% Decompose x at depth n with wpname wavelet https://www.360docs.net/doc/a01159443.html,ing Shannon entropy. % % x-input signal,列向量。 % n-the number of decomposition layers % wpname-a particular wavelet.type:string. % %Author hubery_zhang %Date 20170714 %% wpt=wpdec(x,n,wpname); % Plot wavelet packet tree (binary tree) plot(wpt) %% wavelet packet coefficients.default:use the front 4. cfs0=wpcoef(wpt,[n 0]); cfs1=wpcoef(wpt,[n 1]); cfs2=wpcoef(wpt,[n 2]); cfs3=wpcoef(wpt,[n 3]); figure; subplot(5,1,1); plot(x); title('原始信号'); subplot(5,1,2); plot(cfs0); title(['结点',num2str(n) ' 1',' 系数']) subplot(5,1,3); plot(cfs1); title(['结点',num2str(n) ' 2',' 系数']) subplot(5,1,4); plot(cfs2); title(['结点',num2str(n) ' 3',' 系数']) subplot(5,1,5); plot(cfs3); title(['结点',num2str(n) ' 4',' 系数']) %% reconstruct wavelet packet coefficients. rex0=wprcoef(wpt,[n 0]); rex1=wprcoef(wpt,[n 1]); rex2=wprcoef(wpt,[n 2]); rex3=wprcoef(wpt,[n 3]); figure; subplot(5,1,1);

对心电信号的认识

对心电信号的认识 .......................................... 电气医信41班陈富琴(1043032053) 1.人体心电信号的产生:心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。 2.人体心电信号的特点:心电信号属生物医学信号,具有如下特点: (1)信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号; (2)心电信号通常比较微弱,至多为mV量级; (3)属低频信号,且能量主要在几百赫兹以下; (4)干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等; (5)干扰信号与心电信号本身频带重叠(如工频干扰等)。 3.心电信号的研究:心电信号是人类最早研究并应用于医学临床的生物信号之一,它比其它生物电信号更易于检测,并且具有较直观的规律性,因而心电图分析技术促进了医学的发展。心电图检查是临床上诊断心血管疾病的重要方法。心电图的准确自动分析与诊断对于心血管疾病起着关键的作用,也是国内外学者所热衷的课题。以前的心电图大多采用临床医生手动分析的方法,这一过程无疑是费时费力且可靠性不高。在计算机技术迅速发展的情况下,心电图自动分析得以迅速发展,将医生从繁重的手工劳动中解脱出来,大大提高了工作效率。七十年代后,心电图自动分析技术已有很大发展,并进入实用化和商业化阶段。然而,心电图自动诊断还未广泛应用于临床,从国内外的心电图机检测分析来看,自动分析精度还达不到可以替代医生的水平,仅可以为临床医生提供辅助信息。其主要原因是心电波形的识别不准,并且心电图诊断标准不统一。因此,探索新的方法以提高波形识别的准确率,寻找适合计算机实现又具诊断价值的诊断标准,是改进心电图自动诊断效果,扩大其应用范围的根本途径。如何把心电信号的特征更加精确的提取出来进行自动分析,判断出其异常的类型成了鱼待解决的焦点问题。 4.心电信号的检查意义:用于对各种心率失常、心室心房肥大、心肌梗死、心律失常、 心肌缺血等病症检查。心电图是反映心脏兴奋的电活动过程,它对心脏基本功能及其病理研究方面,具有重要的参考价值。心电图的检查必须结合多种指标和临床资料,进行全面综合分析,才能对心脏的功能结构做出正确的判断。 5.心电信号基本构成:心电信号由P、QRS、T波和静息期组成,如图1,各波具有不同的频率特性,是一种典型的具有明显时频特称与时间—尺度特征的生物医学信号。 P.QRS.T波以及PR,ST,QT间期都不同程度地反应了心脏的功能的变化,因此通过算法实现对心脏功能的自动分析判别已成为一个比较热门的研究方向。

P300脑电信号的特征提取及分类研究

龙源期刊网 https://www.360docs.net/doc/a01159443.html, P300脑电信号的特征提取及分类研究 作者:马也姜光萍 来源:《山东工业技术》2017年第10期 摘要:针对P300脑电信号信噪比低,分类困难的特点,本文研究了一种基于独立分量分析和支持向量机相结合的脑电信号处理方法。首先对P300脑电信号进行叠加平均,根据ICA 算法的要求,对叠加平均的信号进行去均值及白化处理。然后使用快速定点的FastICA算法提取P300脑电信号的特征向量,最后送入支持向量机进行分类。采用国际BCI 竞赛III中的DataSetII数据进行验证,算法的最高分类正确率达90.12%。本算法原理简单,能有效提取 P300脑电信号的特征,对P300脑电信号特征提取及分类的任务提供参考方法。 关键词:P300脑电信号;特征提取;独立分量分析;支持向量机 DOI:10.16640/https://www.360docs.net/doc/a01159443.html,ki.37-1222/t.2017.10.180 0 引言 近年来随着世界人口的不断增多和老龄化加剧的现象,肌肉萎缩性侧索硬化症,瘫痪,老年痴呆症等患者的基数也相应增长,给社会及病人家属带来了沉重的负担。而近年来出现的涉及神经科学、认知科学、计算机科学、控制工程、医学等多学科、多领域的脑机接口方式应运而生[1]。脑机接口(brain computer interface,BCI)是建立一种大脑与计算机或其他装置联系的技术,该联系可以不通过通常的大脑输出通路(大脑的外周神经和肌肉组织)[2]。这种人 机交互形式可以代替语言和肢体动作,使得恢复和增强人类身体与心理机能、思维意念控制变成为可能。因此在军事目标搜索[3]、飞行模拟器控制[4]、汽车驾驶[5]、新型游戏娱乐[6]以及帮助运动或感觉机能出现问题的残障人士重新恢复信息通信功能[7]等方面均有应用并有巨大 潜能。 脑机接口系统的性能主要由脑电信号处理模块决定。脑电信号处理模块的核心由特征提取和分类识别两部分组成。常见的脑电信号特征提取方法很多,针对不同的脑电信号有不同的方法。例如时域分析方法有功率谱分析及快速傅里叶变换(FFT)等,适用于P300、N400等潜伏期与波形恒定,与刺激有严格锁时关系的诱发脑电信号;频域分析方法有自回归模型及数字滤波器等,适用于频率特征明显的运动想象脑电信号;时频域分析方法有小波变换,适用于时频特性随时间不断改变的脑电信号。上述方法实时性较好,使用较为广泛,但不能直接表达EEG各导联之间的关系。空间域特征提取方法有共空间模式法(CSP)、独立分量分析法(ICA)等,该类方法可以利用各导联脑电信号之间的空间分布及相关性信息,一般用于多通道的脑电信号特征提取。 [8-10]

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴

心电信号采集及系统设计

微弱信号检测课题报告 心电信号采集 —噪声分析及抑制 指导老师:宋俊磊 院系:机电学院测控系 班级: 学号: 姓名:

【目录】 【摘要】 (4) 第一章 (5) 1.1人体生物信息的基本特点[1} (5) 1.2 体表心电图及心电信号的特征分析[4] (6) 1.3心电信号的噪声来源[7] (8) 1.4 心电电极和导联体系分析 (10) 1.4.1系统电极选择[8] (10) 第二章硬件电路设计 (10) 2.1 心电信号采集电路的设计要求 (10) 2.2 心电采集电路总体框架 (11) 2.3采集电路模块 (13) 2.4 AD620引入的误差 (14) 2.4.1 电子元件内部噪声 (14) 2.4.2 集成运放的噪声模型: (16) 2.4.3 AD620的噪声计算 (17) 2.4.4 前置放大电路改进措施 (18) 2.5 滤波电路设计 (22)

2.6电平抬升电路[14] (24) 2.7心电信号的50Hz带阻滤波器(50Hz陷波)设计[15] (25) 结论 (26) 附录:参考文献 (28)

【摘要】 心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。 针对心电信号的特点进行心电信号的采集、数据转换模块的设计与开发。设计一种用于心电信号采集的电路,然后进行A/D转换,使得心电信号的频率达到采样要求。人体的心电信号是一种低频率的微弱信号,由于心电信号直接取自人体,所以在心电采集的过程中不可避免会混入各种干扰信号。为获得含有较小噪声的心电信号,需要对采集到的心电信号做降噪处理。运用一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,对心电信号进行测量。 关键词:心电信号采集,降噪,A/D转换放大,噪声分析

脑电信号特征分析

脑电信号特征分析 一脑电信号的概念已经研究意义 脑电信号(Electroencephalograph, EEG)中包含了大量的生理与病理信息,是进行神经系统疾病和症状,特别是癫痫病诊断的主要依据。从20世纪初,人们就开始研究人的脑电信号,多年以来,人们已经积累了一系列脑电信号处理的理论和方法,但是进展不是很快。这主要是因为人们目前对脑电信号产生的机理认识还不够,另外脑电信号的非平稳性和背景噪声等都很强,因此脑电信号的分析与处理一直是非常吸引人但又极其困难的研究课题。近年来,电子技术以及非线形分析理论的快速发展为我们提供了脑电信号处理的新手段。本文将利用快速傅立叶变换(F F T)理论来分析脑电序列信号的频谱和功率谱。 脑电图是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映。临床实践表明,脑电信号中包含了大量生理与疾病信息,所以我们通过对脑电信号的处理,不仅可以为医生提供临床诊断依据,而且可以为某些脑疾病(比如癫痫、脑肿瘤、智力状况等)提供有效的治疗手段。 二脑电信号特征提取的内容 研究脑电图信号(EEG)在时域、频域方面所具有的特征,计算出人的大脑在不同状态下的功率频特征。就是利用快速傅立叶变换(FFT)来研究脑电序列信号的谱值。脑电信号可以视作为一组时间序列,时间序列的时域是指是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。若考虑离散时间,时域中的函数或信号,在各个离散时间点的数值均为已知。若考虑连续时间,则函数或信号在任意时间的数值均为已知。而其对应的频谱是是描述信号在频率方面特性时用到的一种坐标系。对任何一个事物的描述都需要从多个方面进行,每一方面的描述仅为我们认识这个事物提供部分的信息。功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。 三特征分析的软件实现及结果分析 通过信号的时域波形,可以得出信号的幅值变换范围,信号的波动情况以及可以求出信号的均值方程等特征值。基于MATLAB实现数据的提取,采样load函数提取采集后的脑电信号数据,绘制脑电信号时域波形如图1所示:

心电信号

生物医学信号分析课程设计论文论述心电信号

摘要:近年来,心脏病有年轻化的趋势,心脏发病率越来越高,不健康的生活方式正在威胁着广大儿童,因此,对于心脏病的研究急需得到进一步的推动。本文将从心电信号概述、心电信号处理、心电监护系统、心电信号的应用几点对心电信号进行论述。 关键词:心电信号,产生机理,特征分析,信号检测,监护系统 1 引言: 心血管疾病是威胁人类生命的主要疾病之一,而心电信号(electrocardiogram,ECG)是心脏电活动在体表的综合反映,因此,临床心电图检查对于检测和诊断心脏疾病具有重要意义,并且从生命信息科学的角度也具有重要的研究价值。为了学习了解心电信号,为掌握心脏器官临床诊断和学习生物医学工程奠定基础,本文将从心电信号的概述、心电信号处理、心电信号的监护系统、心电信号的应用几点对心电信号作一个介绍。 2 心电信号概述 2.1 心电信号产生机理 人体中存在大量正负离子,而细胞膜对于离子的通透性不同,很容易造成膜两侧带电离子分布不均匀,所以细胞膜部位是产生生物电的结构基础。心脏是由大量的心肌细胞构成的,每个心肌细胞都是起电单位。心肌细胞在安静状态下,存在于细胞膜内外两侧的电位差,称为心肌细胞的静息电位。通常情况下,膜外电位为正、膜内电位为负,大约有90mv的电位差,这种“外正内负”的状态称为极化状态。当心肌细胞受到刺激而发生兴奋时,兴奋部位的膜电位发生突然变化,由原来的“外正内负”状态变为“外负内正”状态,这种变化过程称为去极化。但这种电位变化是过渡性的,经过短暂的时间,膜电位又自动向“外正内负”的静息电位方向恢复,这种恢复过程称为复极化。心肌细胞反复的去极化、复极化过程,就构成了心电信号[1]。 2.2 心电信号特征分析 心电信号的特征主要是心电的电特征和时域特征,时域特征以下主要在心电图组成上进行叙述。 2.2.1 心电信号的电特征[2]: 心电信号比较微弱,仅为毫伏级,极易受到环境的影响。与其他生物医学信号一样,心电信号具有以下几个特点: 1)微弱性:心电信号是一种在人体体表的特定点处采集到的十分微弱的生物电 信号,其正常幅度通常为0.05~5mv。 2)低频性:频率范围一般为0.05~l00Hz,并且能量主要集中在0.25~35Hz。 3)高阻抗性:人体的阻抗较大,因此心电信号的阻抗一般为几十到几十万欧姆。 4)随机性和不稳定性:心电信号会因人体环境的改变、个体之间的差异表现出 随机性和不稳定性。 2.2.2 常规心电图组成 心脏机械性收缩之前,心肌先产生激动。这种电激动能通过组织和体液传导至体表,在身体不同部分的表面形成电位差,将这种变动着的电位差记录下来,即为心电图。常规心电图是由一系列波组构成的曲线图,如图1所示。

心电信号的提取和matlab编程

MIT-BIH ECG 信号的数据读取方法和Matlab程序收藏 最近在写一篇基于小波变换的ECG信号压缩算法的论文,遇到了怎样获取ECG信号测试数据的问题,在百度和专业论坛里搜索了一番,发现也有很多朋友为此发愁。现在论文写好了,投稿中,顺便也把怎样获取和处理ECG信号数据的方法写出来,供有需要的朋友参考,省却在百度和论坛里苦苦求索的麻烦,呵呵 ^_^ 一、首先,如果是对ECG心电信号进行观察、分析和诊断使用的话,有两个方法: (1)从MIT-BIH数据库下载 请参考我前些天发布的文章《MIT-BIH ECG 心电数据的下载和读取图解》,里面有详尽介绍。 https://www.360docs.net/doc/a01159443.html,/chenyusiyuan/archive/2008 /01/06/2027887.aspx (2)用专门的Matlab心电数据读取程序 我10日在浩惠电子论坛 (https://www.360docs.net/doc/a01159443.html,/bbs/)的“医疗器械”版块找到了读取ECG心电数据的Matlab程序(rddata.m),如获至宝啊!这个程序是由外国人写的,能够读取

MIT-BIH数据库 .atr、.dat、.hea三种文件的数据,根据这些数据计算出实际的心电信号值,并绘制出信号波形。程序不大,注释也算齐全,不过是英文的,需要这个程序的朋友请按以下链接下载。 匿名提取文件连接 https://www.360docs.net/doc/a01159443.html,/3497080791233097 或登录Mofile,使用提取码3497080791233097 提取文件 PS: 关于rddata.m的下载,在打开 https://www.360docs.net/doc/a01159443.html,/3497080791233097后,下载链接是在“文件标签”和“文件介绍”之后的地方,夹在两块广告图片之间,共有3个链接:“推荐快车(flashget)高速下载文件下载文件(IE浏览器) 下载文件(非IE浏览器)”,非常隐蔽,一般点击中间的那个链接“下载文件(IE浏览器)”就会弹出保存 对话框了。 二、如果是要对ECG信号进行压缩、编码等信号处理操作 上面程序获得的数据就不便于使用了,因为那是转换为具有实际意义的心电数据,信号数据值一般在-2~2之间,单位是mV。那么,要找新的ECG读取程序来获

使用LabVIEW进行心电信号处理

使用LabVIEW进行心电信号处理 心电图是一种记录心脏产生的生物电流的技术。临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。ECG记录是通过对若干电极(导联)感知到的生物电流进行采样获得的。图1中显示了典型的单周期心电图波形。 图1 典型的单周期心电图波形 通常说来,记录的心电信号会被噪声和人为引入的伪影所污染,这些噪声和伪影在我们感兴趣的频段内,并且与心电信号本身有着相似的特性。为了从带有噪声的心电信号中提取出有用的信息,我们需要对原始的心电信号进行处理。 从功能上来说,心电信号的处理可以大致分为两个阶段:预处理和特征提取(如图2所示)。预处理阶段消除和减少原始心电信号中的噪声,而特征提取阶段则从心电信号中提取诊断信息。

图2 典型的心电信号处理流程图 使用LabVIEW和相关工具箱,如高级信号处理工具箱(ASPT)和数字滤波器设计工具箱(DFDT)等,用户可以方便地创建针对两个阶段的信号处理应用,包括消除基线漂移、清除噪声、QRS综合波检测、胎儿心率检测等。本文着重讨论使用LabVIEW进行典型的心电信号处理的方法。 1. 心电信号预处理 心电信号预处理可以帮助用户去除心电信号中的污染。广义上讲,心电信号污染可以分为如下几类: ?电源线干扰 ?电极分离或接触噪声 ?病人电极移动过程中人为引入的伪影 ?肌电(EMG)噪声 ?基准漂移 在这些噪声中,电源线干扰和基准漂移是最为重要的,可以强烈地影响心电信号分析。除了这两种噪声,其它噪声由于可能是宽频带的且复杂的随机过程,也会使心电信号失真。电源线干扰是以60 Hz (或50 Hz)为中心的窄带噪声,带宽小于1Hz。通常,心电信号的采集硬件可以消除电源线干扰。但是,基准漂移和其它宽带噪声通过硬件设备很难抑制。而软件设计则成为更为强大而可行的离线式心电信号处理方法。用户可以使用以下方法来消除基准漂移和其它宽带噪声。 消除基准漂移 基准漂移的产生通常源于呼吸,频率在0.15 到0.3 Hz之间,可以通过使用高通数字滤波器进行抑制。用户还可以使用小波变换通过消除心电信号的趋势来消除基准漂移。

相关文档
最新文档