2.1CAN基本通信实验

2.1CAN基本通信实验
2.1CAN基本通信实验

2.1 CAN 基本通信实验

2.1.1 实验目的

了解CAN-bus通信原理,实现基本的CAN-bus双节点通信。掌握CANE-E接口卡和CANalyst-Ⅱ分析仪的基本使用方法。

2.1.2 实验设备及器件

PC机一台

iCAN教学实验开发平台一台

2.1.3 实验内容

利用实验平台上的CANET-E及CANalyst-Ⅱ分析仪构成两个CAN节点,实现单节点自发自收,双方数据的收发。

2.1.4 实验要求

实现CAN-bus网络上两个节点的双向对发实验。

2.1.5 实验预习要求

了解CAN-bus通信原理,CAN-bus网络拓扑结构,CAN-bus传输介质等相关内容。

2.1.6 实验步骤

CAN节点的连接;

CAN节点初始化;

单节点收发;

双节点收发。

2.1.7 实验测试示例

图2.1 简单CAN网络

如图2.1所示为两个CAN节点的连接示意图,两个CAN节点要进行正常的CAN通信,必需保证两节点的通信波特率一致。该实验中的CAN-bus通信波特率为500kbps(默认用户不需另行设置)。

1.CANalyst-Ⅱ分析仪的自接收实验

ZLGCANTest 的设置

将CANalyst-II分析仪通过USB线缆连接到PC机的USB端口。打开ZLGCANTest软件,点击主菜单中的类型,从下拉列表中选择USBCAN2,如 2.2 所示:

图2.2 在ZLGCANtest选择USBCAN2

在“设备操作”菜单中选择“打开设备”项。出现图2.3所示的属性对话框。

图2.3 设置CANalyst

设置验收码为0x00000000,屏蔽码为0xffffffff,实验平台的CAN 网络的波特率为 500kbps,据此设置定时器0:0x00,定时器1:0x1c,滤波方式为双滤波,模式为正常工作模式。点击“确定”按钮,完成设置,出现如图 2.4 所示的收发界面。

图2.4 ZLGCANtest 收发界面

选择发送方式为:自收自发,每次发送5 帧,帧类型为:标准帧,帧ID为:00000000,数据为:00 01 02 03 04 05 06 07,帧格式为:数据帧。发送次数:1次,每次发送间隔为10ms。设置完成之后,点击“启动 CAN”按钮,激活CAN 通道,然后点击“发送”按钮。软件的显示区自己中显示CANalyst-II的收发数据。如下图2.5所示:

图2.5 CANalyst-II收发数据显示

从图中可以看出,CANalyst-II发送5帧数据,接收5帧数据,发送和接收的数据相同,且与设置的收据一致,自收发成功。

2.双节点通信

在设置好CANET-E接口卡和CANalyst-Ⅱ分析仪后,即可进行双方的对发实验。请确保双方的波特率一致。

打开ZLGCANTest软件,在“类型”下拉列表中选择“CANET-E”

图2.10 选择设备

在“设备操作”下拉列表中点击“打开设备”出现如此下图所示的界面。

图2.11 打开设备

根据CANET-E的设置属性,填入相应的参数,如上图所示。然后点击“确定”按钮。设置完后不要关闭ZLGCANTest。

打开 CANPro软件,如下图所示,CAN路索引选择CAN1并选择CAN。如下图2.12所示。

在“操作”下拉列表中选择“启动系统”出现图2.13界面。

图2.13 打开设备

按图上的数据设置好各个参数,点击“确定”按钮。在点击“数据发送”图

标,如下图所示。

图2.14 数据发送

出现数据发送对话框,如下图所示:

图2.15 数据发送对话框

按照图示的数据进行设置。发送格式为:正常发送。帧类型为:扩展帧。帧格为:数据帧。帧ID为:00000000。DLC=0x08,每次发送帧数为:10。时间间隔为:100ms。点击“添加到发送列表”,则发送列表中出现相应的帧数据,点击“发送”按钮。CANPro的收发窗口显示发送的数据,如下图所示:

图2.16 CANPro收发窗口

观察 ZLGCANTest软件窗口中,接收到10帧报文,报文类型为扩展帧,帧ID为0x00,帧数据长度为8个字节,帧数据为11 22 33 44 55 66 77 88 ,与CANalyst分析仪所发送的数据是一致的,如下图2.17所示。

图2.17 ZLGCANTest收发窗口

在ZLGCANTest软件中修改发送次数为10,并点击“发送”按钮如下图2.18 所

示:

图2.18 ZLGCANTest收发窗口

可以观察到 CANPro软件收发窗口中接收到了10帧报文,报文ID为0x00,报文数

据为:00 01 02 03 04 05 06 07,与CANET-E接口卡发送的数据是一致的。

图2.19 CANPro收发窗口

3.思考

(1)如何安排CAN-bus网络布线,一般采哪种拓扑结构?

答:一般采用综合布线网络拓扑结构:有星型网、树型网、环型网、分布式网络、总线型网。

(2)通信网络终端为什么要加一个120?终端电阻?

主要是TTL电平与CMOS电平之间不能很好地兼容,TTL高电平才0.3-3.6伏,而CMOS高电平则需要6-12伏,所以直接把TTL电平加入CMOS电路中是不行的,需要上拉电阻拉高电平。但是CMOS电平直接加入TTL电路中是可以的,不需拉低电平。上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流。弱强只是上拉电阻的阻值不同,没有什么严格区分。对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

(3)实验心得。

初步的了解到了学习本门功课的实际应用方面,以及认识和了解到了一些新实

物、软件应用等。

北邮 通信网实验报告

北京邮电大学实验报告通信网理论基础实验报告 学院:信息与通信工程学院 班级:2013211124 学号: 姓名:

实验一 ErlangB公式计算器 一实验内容 编写Erlang B公式的图形界面计算器,实现给定任意两个变量求解第三个变量的功能: 1)给定到达的呼叫量a和中继线的数目s,求解系统的时间阻塞率B; 2)给定系统的时间阻塞率的要求B和到达的呼叫量a,求解中继线的数目s,以实现网络规划; 3)给定系统的时间阻塞率要求B以及中继线的数目s,判断该系统能支持的最大的呼叫量a。 二实验描述 1 实验思路 使用MA TLAB GUITOOL设计图形界面,通过单选按钮确定计算的变量,同时通过可编辑文本框输入其他两个已知变量的值,对于不同的变量,通过调用相应的函数进行求解并显示最终的结果。 2程序界面 3流程图 4主要的函数 符号规定如下: b(Blocking):阻塞率; a(BHT):到达呼叫量;

s(Lines):中继线数量。 1)已知到达呼叫量a及中继线数量s求阻塞率b 使用迭代算法提高程序效率 B s,a= a?B s?1,a s+a?B(s?1,a) 代码如下: function b = ErlangB_b(a,s) b =1; for i =1:s b = a * b /(i + a * b); end end 2)已知到达呼叫量a及阻塞率b求中继线数量s 考虑到s为正整数,因此采用数值逼近的方法。采用循环的方式,在每次循环中增加s的值,同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于上次误差时,结束循环,得到s值。 代码如下: function s = ErlangB_s(a,b) s =1; Bs = ErlangB_b(a,s); err = abs(b-Bs); err_s = err; while(err_s <= err) err = err_s; s = s +1; Bs = ErlangB_b(a,s); err_s = abs(b - Bs); end s = s -1; end 3)已知阻塞率b及中继线数量s求到达呼叫量a 考虑到a为有理数,因此采用变步长逼近的方法。采用循环的方式,在每次循环中增加a的值(步长为s/2),同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于预设阈值时,结束循环,得到a值。 代码如下: function a = ErlangB_a(b,s)

通信网络基础-(李建东-盛敏-)课后习题答案

1.1答:通信网络由子网和终端构成(物理传输链路和链路的汇聚点),常用的通信网络有A TM 网络,X.25分组数据网络,PSTN ,ISDN ,移动通信网等。 1.2答:通信链路包括接入链路和网络链路。 接入链路有:(1)Modem 链路,利用PSTN 电话线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s 和56kb/s ;(2)xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进行改造而成的数字用户线DSL ,x 表示不同的传输方案;(3)ISDN ,利用PSTN 实现数据传输,提供两个基本信道:B 信道(64kb/s ),D 信道(16kb/s 或64kb/s );(4)数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;(5)以太网,双绞线峰值速率10Mb/s,100Mb/s 。 网络链路有:(1)X.25提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;(2) 帧中继,吞吐量大,速率为64kb/s ,2.048Mb/s ;(3)SDH (同步数字系列),具有标准化的结构等级STM-N ;(4)光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。 1.3答:分组交换网中,将消息分成许多较短的,格式化的分组进行传输和交换,每一个分组由若干比特组成一个比特串,每个分组 都包括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。每个网络节点采用存储转发的方式来实现分组的交换。 1.4答:虚电路是分组传输中两种基本的选择路由的方式之一。在一个会话过程开始时,确定一条源节点到目的节点的逻辑通路,在 实际分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。会话过程中的所有分组都沿此逻辑通道进行。而传统电话交换网PSTN 中物理链路始终存在,无论有无数据传输。 1.5答:差别:ATM 信元采用全网统一的固定长度的信元进行传输和交换,长度和格式固定,可用硬件电路处理,缩短了处理时间。为 支持不同类型的业务,ATM 网络提供四种类别的服务:A,B,C,D 类,采用五种适配方法:AAL1~AAL5,形成协议数据单元CS-PDU ,再将CS-PDU 分成信元,再传输。 1.7答:OSI 模型七个层次为:应用层,表示层,会话层,运输层,网络层,数据链路层,物理层。TCP/IP 五个相对独立的层次为: 应用层,运输层,互联网层,网络接入层,物理层。 它们的对应关系如下: OSI 模型 TCP/IP 参考模型 1.10解:()()Y t t X +=π2cos 2

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信网络基础实验报告基于MATLABSIMULINK设计ASKPSKFSK通信仿真系统以及Simulink编程的优点和不足

通信网络基础实验 实验报告 姓名: 学号:

班级: 实验名称: 通信网络系统仿真设计与实现 实验目的: 1、学习MATLAB软件,掌握MATLAB-SIMULINK模块化编程。 2、理解并掌握通信网络与通信系统的基本组成及其工作方式。 实验环境: 1、软件环境:Windows2000/XP 2、硬件环境:IBM-PC或兼容机 实验学时: 4学时、必做、综合实验 实验内容: 1、ASK调制解调的通信仿真系统; 2、PSK调制解调的通信仿真系统: 3、FSK调制解调的通信仿真系统。 实验要求: 1、基于MATLAB-SIMULINK分别设计一套ASK、PSK、FSK通信系统。 2、比较各种调制的误码率情况,讨论其调制效果。 实验步骤: 独立自主完成

分析思考: 通信系统中滤波器的参数你是如何设计选择的,为什么?Simulink编程的优点和不足是什么? 实验结论: 1、对于ASK调制解调的通信系统 调制: 仿真结果显示如下:

上图中CH1表示的是调制前的信号频谱,CH2表示的是ASK调制后的信号波形。

上图中第一张图是幅度调制前原始基带信号的波形,第二张图是幅度调制后通带信号的波形,第三张是解调信号的波形图。有图可看出信道有一定的延迟。 由于在解调过程中没有信道和噪声,所以误码率相对较小,一般是由于码间串扰或是参数设置的问题,此系统的误码率为0.3636。 2、对于FSK调制解调的通信系统 调制:

仿真结果如下: 2FSK基带调制信号频谱图 CH1表示的是基带信号的功率谱,而CH2表示2FSK调制后通带信号的功率谱。

宽带通信网综合实验报告

《宽带通信网综合实验报告》 组员:XX 组员:XX 学院:通信工程学院

FTTx实验 【实验步骤和结果】 1、根据图13所示,搭建系统,其中三台ONU接计算机终端,还有一台ONU 接IPTV机顶盒。用ping命令检查接入系统是否可以连通?如果不能连通,请分析原因。如果可以连通,使用tracert命令检查路由,并给出HTTx的路由信息。 图1(ping) 图2(tracert) 2、用ipconfig检查接入终端的IP地址和网关,记录下来,并与LAN接入的地 址相比较,它们有什么不同?原因是什么? 经比较发现,两个地址的网段不同。

图3为ipconfig命令 图4为LAN接入地址 3、用telnet远程登录R4101路由器,记录有关光接口的配置信息。 ESR实验 【实验步骤和结果】 1、搭建系统,将三台S2016交换机组成一个ESR环,确定主节点为S2016(1),从节点 为S2016(2)和S2016(3)。

(1)先配置主交换机: (2)进入ESR配置模式,并将该交换机配置成主站: (3)置ESR环所用接口和VLAN,并使能该ESR: (4)配置从交换机: 先对S2016(2)进行配置:

步骤同上,对S2016(3)进行相同配置。 (5)使用ping 192.168.6.254命令查看网络,网络连通成功。 3、人为切断ESR环路,由于前面对主、从交换机的成功配置,使得ESR域的master node 控制其第二接口的阻塞实现了保护倒换功能。系统正常运行。

WLAN实验 【实验步骤和结果】 1、按照上面介绍的无线AP和连接计算机的配置方法进行配置,配置完成后, 用无线网卡接入(注意输入密钥),连接后,使用ping 192.168.0.1命令查看网络是否连通?如果网络连通,使用ipconfig命令查看连接计算机的IP地址、网关以及DNS,记录相关信息。使用tracert 192.168.0.1命令查看路由,并分析该路由。 图1 (配置界面图)

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信网络基础(李建东盛敏)课后习题答案

答:通信网络由子网和终端构成(物理传输链路和链路的汇聚点),常用的通信网络有ATM 网络,分组数据网络,PSTN ,ISDN ,移动通信网等。 答:通信链路包括接入链路和网络链路。 接入链路有:(1)Modem 链路,利用PSTN 电话线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s 和56kb/s ;(2)xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进行改造而成的数字用户线DSL ,x 表示不同的传输方案;(3)ISDN ,利用PSTN 实现数据传输,提供两个基本信道:B 信道(64kb/s ),D 信道(16kb/s 或64kb/s );(4)数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;(5)以太网,双绞线峰值速率10Mb/s,100Mb/s 。 网络链路有:(1)提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;(2)帧中 继,吞吐量大,速率为64kb/s ,s ;(3)SDH (同步数字系列),具有标准化的结构等级STM-N ;(4)光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。 答:分组交换网中,将消息分成许多较短的,格式化的分组进行传输和交换,每一个分组由若干比特组成一个比特串,每个分组都包 括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。每个网络节点采用存储转发的方式来实现分组的交换。 答:虚电路是分组传输中两种基本的选择路由的方式之一。在一个会话过程开始时,确定一条源节点到目的节点的逻辑通路,在实际 分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。会话过程中的所有分组都沿此逻辑通道进行。而传统电话交换网PSTN 中物理链路始终存在,无论有无数据传输。 答:差别:ATM 信元采用全网统一的固定长度的信元进行传输和交换,长度和格式固定,可用硬件电路处理,缩短了处理时间。为支 持不同类型的业务,ATM 网络提供四种类别的服务:A,B,C,D 类,采用五种适配方法:AAL1~AAL5,形成协议数据单元CS-PDU ,再将CS-PDU 分成信元,再传输。 答:OSI 模型七个层次为:应用层,表示层,会话层,运输层,网络层,数据链路层,物理层。TCP/IP 五个相对独立的层次为:应用层, 运输层,互联网层,网络接入层,物理层。 它们的对应关系如下: OSI 模型 TCP/IP 参考模型 解: ()()Y t t X +=π2cos 2 ()()Y Y X cos 22cos 21=+=π

通信网络实验报告

实验一隐终端和暴露终端问题分析 一、实验目的 结合仿真实验分析载波检测无线网络中的隐终端问题和暴露终端问题。 二、实验设定与结果 基本参数配置:仿真时长100s;随机数种子1;仿真区域2000x2000;节点数4。 节点位置配置:本实验用[1] 、[2]、[3] 、[4]共两对节点验证隐终端问题。节点[1]、[2]距离为200m,节点[3]、[4]距离为200m,节点[2]、[3]距离为370m。 1234 业务流配置:业务类型为恒定比特流CBR。[1]给[2]发,发包间隔为0.01s,发包大小为512bytes;[3]给[4]发,发包间隔为0.01s,发包大小为512bytes。 实验结果: Node: 1, Layer: AppCbrClient, (0) Server address: 2 Node: 1, Layer: AppCbrClient, (0) Total number of bytes sent: 5120000 Node: 1, Layer: AppCbrClient, (0) Total number of packets sent: 10000 Node: 2, Layer: AppCbrServer, (0) Client address: 1 Node: 2, Layer: AppCbrServer, (0) Total number of bytes received: 4975616 Node: 2, Layer: AppCbrServer, (0) Total number of packets received: 9718 Node: 3, Layer: AppCbrClient, (0) Server address: 4 Node: 3, Layer: AppCbrClient, (0) Total number of bytes sent: 5120000 Node: 3, Layer: AppCbrClient, (0) Total number of packets sent: 10000 Node: 4, Layer: AppCbrServer, (0) Client address: 3 Node: 4, Layer: AppCbrServer, (0) Total number of bytes received: 5120000 Node: 4, Layer: AppCbrServer, (0) Total number of packets received: 10000 结果分析 通过仿真结果可以看出,节点[2]无法收到数据。由于节点[3]是节点[1]的一个隐终端,节点[1]无法通过物理载波检测侦听到节点[3]的发送,且节点[3]在节点[2]的传输范围外,节点[3]无法通过虚拟载波检测延迟发送,所以在节点[1]传输数据的过程中,节点[3]完成退避发送时将引起冲突。 三、课后思考 1、RTS/CTS能完全解决隐终端问题吗?如果不能,请说明理由。 答:能。对于隐发送终端问题,[2]和[3]使用控制报文进行握手(RTS-CTS),听到回应握手信号的[3]知道自己是隐终端,便能延迟发送;对于隐接受终端问题,在多信道的情况下,[3]给[4]回送CTS告诉[4]它是隐终端,现在不能发送报文,以避免[4]收不到[3]的应答而超时重发浪费带宽。

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

CAN基本通信实验

CAN 基本通信实验 实验目的 了解CAN-bus通信原理,实现基本的CAN-bus双节点通信。掌握CANE-E接口卡和CANalyst-Ⅱ分析仪的基本使用方法。 2.1.2 实验设备及器件 PC机一台 iCAN教学实验开发平台一台 2.1.3 实验内容 利用实验平台上的CANET-E及CANalyst-Ⅱ分析仪构成两个CAN节点,实现单节点自发自收,双方数据的收发。 2.1.4 实验要求 实现CAN-bus网络上两个节点的双向对发实验。 2.1.5 实验预习要求 了解CAN-bus通信原理,CAN-bus网络拓扑结构,CAN-bus传输介质等相关内容。 2.1.6 实验步骤 CAN节点的连接; CAN节点初始化; 单节点收发; 双节点收发。 2.1.7 实验测试示例 图简单CAN网络 如图所示为两个CAN节点的连接示意图,两个CAN节点要进行正常的CAN通信,必需保证两节点的通信波特率一致。该实验中的CAN-bus通信波特率为500kbps(默认用户不需另行设置)。 1.CANalyst-Ⅱ分析仪的自接收实验 ZLGCANTest 的设置 将CANalyst-II分析仪通过USB线缆连接到PC机的USB端口。打开ZLGCANTest软件,

点击主菜单中的类型,从下拉列表中选择USBCAN2,如所示: 图在ZLGCANtest选择USBCAN2 在“设备操作”菜单中选择“打开设备”项。出现图所示的属性对话框。 图设置CANalyst 设置验收码为0x00000000,屏蔽码为0xffffffff,实验平台的CAN 网络的波特率为500kbps,据此设置定时器0:0x00,定时器1:0x1c,滤波方式为双滤波,模式为正常工作模式。点击“确定”按钮,完成设置,出现如图所示的收发界面。

通信原理实验指导书161702

通 信 原 理 实 验 指 导 书 (2017版) 编者 张水英 汪泓 浙 江 理 工 大 学 2017年3月

目 录 实验一 常规双边带幅度调制系统设计及性能分析 (1) 实验二 模拟信号数字化传输系统的建模与分析 (6) 实验三 BPSK调制、解调实验 (9)

实验一 常规双边带幅度调制系统设计及性能分析 一、实验目的 1、熟悉常规双边带幅度调制系统各模块的设计; 2、研究常规双边带幅度调制系统的信号波形、信号频谱、信号带宽、输入信噪比、输出信噪比及两者之间的关系; 3、掌握 MATLAB 和SIMULINK 开发平台的使用方法; 4、熟悉 Matlab 与Simulink 的交互使用。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 AM 信号产生的原理图如图1所示。AM 信号调制器由加法器、乘法器和带通滤波器(BPF )组成。图中带通滤波器的作用是让处在该频带范围内的调幅信号顺利通过,同时抑制带外噪声和各次谐波分量进入下级系统。 图1 AM 信号的产生 3.1 AM 信号时域表达式及时域波形图 AM 信号时域表达式为 0()[()]cos AM c s t A m t t ω=+ 式中0A 为外加的直流分量;为输入调制信号,它的最高频率为 ()m t

m f ,无直流分量;c ω为载波的频率。为了实现线性调幅,必须要求 0max ()m t A ≤ 否则将会出现过调幅现象,在接收端采用包络检波法解调时,会产生严重的失真。如调制信号为单频信号时,常定义0(/)AM m A A β1=≤为调幅指数。 AM 信号的波形如图2所示,图中认为调制信号是单频正弦信号,可以清楚地看出AM 信号的包络完全反应了调制信号的变化规律。 t t t t ()m t 0(A m t +cos c t ω s ()AM t 图2 AM 信号波形 3.2 AM 信号频域表达式及频域波形图 对AM 信号进行傅里叶变换,就可以得到AM 信号的频域表达式 ()ω如下: AM S 0()[(AM ()] 1 [)()][()()]2 AM c c c c S s t M M A ωωωωωπδωωδωω==++?+++?F 式中,()M ω是调制信号的频谱。 ()m t

网络与数据通信实验报告

网络与数据通信实验报告 指导老师:李艳 姓名:胡嘉懿(1110200302) 周敏(1110200311)

实验1 网络协议分析Ethereal 1.ARP帧解析 ·帧1(线路上传输60字节,俘获60字节) 到达时间:2004年5月7日00:35:13.802398000 与上一帧的时间差:0.000000000秒 与第一帧的时间差:0.000000000秒 帧序号:1 数据包长度:60字节 俘获长度:60字节 ·以太网Ⅱ,源地址:00:0d:87:f8:4c:f9,目的地址:ff:ff:ff:ff:ff:ff(MAC地址) 目的地址:ff:ff:ff:ff:ff:ff(广播) 源地址:00:0d:87:f8:4c:f9(192.168.0.44) 类型:地址转换协议ARP(Ox0806) 尾部:000000000

·地址转换协议 ·硬件类型(Hardware type):16位,定义ARP实现在何种类型的网络上,以太网的硬件类型值为Ox0001,图中为以太网Ox0001 ·协议类型(Protocol type):16位,定义使用ARP/RARP的协议类型,IPv4类型值为Ox0800,图中为IP Ox0800 ·硬件地址长度(Hardware size):1字节,以字节为单位定义物理地址的长度,图中为6 ·协议地址长度(Protocol size):1字节,以字节为单位定义协议地址的长度,图中为4 ·操作类型(Opcode):16位,定义报文类型,1为ARP请求,2为ARP应答,3为RARP 请求,4为RARP应答,图中为请求(Ox0001) ·发送方MAC地址(Sender MAC address):6字节,发送方的MAC地址,图中为00:0d:87:f8:4c:f9 ·发送方IP地址(Sender IP address):4字节,发送方的IP地址,RARP请求中不填此字段图中为192.168.0.44 ·目的MAC地址(Target MAC address):6字节,ARP请求中不填此字段(待解析),图中为00:00:00:00:00:00 ·目的协议地址(Target IP address):4字节,长度取决于协议地址长度,长度一共28字节,图中为192.168.80.1

2018通信原理实验指导书

实验1 CMI码型变换实验 一、实验目的 1、了解CMI码的编码规则。 2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。 3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。 4、熟练掌握CMI与输入信号的关系。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 CMI/BPH编译码实验原理框图 2、实验框图说明 CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤 概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。 3、此时系统初始状态为:PN为256K。 4、实验操作及波形观测。 (1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。 (2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。 (3)断开电源,更改连线及设置。 开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。 将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

《通信网理论基础》实验教学大纲

《通信网理论基础》实验教学大纲 课程编号:课程类别:专业基础课适用专业:通信工程 课程属性:课内实验课程总学时:36总学分:2实验学时:6学分 执笔人:审定人:审批人: 一、实验性质及教学目标 《通信网理论基础》实验是通信工程专业基础课程的课内实验,主要针对网络规划设计理论中的路由选择算法和网络流量分配算法进行实验,通过实验加深学生掌握和理解通信网和规划、设计中的图论思想,熟悉最短路径和最大流等常用计算方法。 三、实验概述 1、路径选择算法--D算法 实验目的:熟悉最短路径计算方法的D算法。 内容及要求:利用Matlab软件编写D算法的程序。 实验结果:利用所编写的程序求解图中某两点之间的最短路径。 2、路径选择算法--F算法 实验目的:熟悉最短路径计算方法的F算法。 内容及要求:利用Matlab软件编写F算法的程序。 实验结果:利用所编写的程序求解图中某两点之间的最短路径。 3、网络最大流算法 实验目的:熟悉最大流计算方法。 内容及要求:利用Matlab软件编写最大流算法的程序。 结果和数据:利用所编写的程序求解网络的最大流量。 四、主要仪器设备 PC机、Matlab软件。 五、教学形式 课程实验在通信工程专业实验室进行,教师在实验室首先集中讲解,然后指导学生进行编程操作,注重学生对编程思维的培养。 六、考核方式与成绩评定方法 实验报告成绩采用单个满分5分制,实验总成绩满分为15分。每个实验的成绩档次有A、B、C、D、E、F六个档次;实验成绩由实验操作情况、实验完成情况、实验报告质量等综合评定;实验总成绩为各实验项目成绩之和。实验总成绩占理论课程期末成绩15%。 七、教材及主要参考资料 1、教材:MATLAB教程.北京航空航天大学出版社.2015。 2、参考书:

通信网实验报告

实验一:路径选择实验 一、实验目的 在进行通信网选择路由时,首选路由和各个迂回路由通常都是按照路径最短的原则进行的,目的是为了使网络费用达到最小。在求解最短径的算法中常用的有D算法和F算法。D算法用于求指定节点到其他各节点的最短路径;F算法用于求任意端间最短径。在实际中都是由计算机实现这两种算法来帮助设计人员进行路由设计。本次实验目的就是要使学生深入理解这两种算法并能用计算机实现这两种算法。 二、实验内容 用编程语言实现F算法。 F算法M文件内容如下: function [w,r]=fsuanfa(m) % F算法的函数文件 v_num=size(m); v_num=v_num(1); w=zeros(v_num); r=zeros(v_num); for i=1:v_num for j=1:v_num if i~=j if(m(i,j)==0) w(i,j)=inf; else w(i,j)=m(i,j); r(i,j)=j; end end end end disp W0= disp(w) disp R0= disp(r) for k=1:v_num pause;

for i=1:v_num if(i~=k) for j=1:v_num if(w(i,k)+w(k,j)

通信网络基础实验

通信网络基础实验 姓名: 学号: 班级:

一. 实验名称 通信网络系统仿真设计与实现 二. 实验目的 1、学习MATLAB软件,掌握MATLAB-SIMULINK模块化编程; 2、理解并掌握通信网络与通信系统的基本组成及其工作方式。 三. 实验环境 1、软件环境:Windows2000/XP,MATLAB7.0 2、硬件环境:IBM-PC或兼容机 四.实验学时 4学时,必做,综合实验; 2012年4月17日 7号楼219 五.实验要求 1、基于MATLAB-SIMULINK分别仿真设计一套ASK,FSK,PSK通信系统; 2、比较各种调制的误码率情况,讨论其调制效果。 六.实验内容 1、ASK调制解调的通信仿真系统 (1)调制仿真 (a)建立模型 2ASK信号调制的模型方框图由DSP模块中的sinwave信号源、方波信号源、相乘器等模块组成,其中sinwave信号作为载波信号,方波信号作为调制信号,用示波器观察输出波形,Simulink 模型图如下:

(b)参数设置 其中sin函数是幅度为2频率为1Hz采样周期为0.001的双精度DSP信号

方波信号是基于采样的,其幅度设置为2,周期为4,占空比为1/2 (c)输出波形 正弦波载波波形 方波波形

(2)解调仿真(相干解调) (a)建立模型 相干解调也叫同步解调,就是用已调信号恢复出载波——既同步载波。再用载波和已调信号相乘,经过低通滤波器和抽样判决器恢复出S(t)信号,simulink模型图如下:

(b)参数设置 由于低通滤波器是滤去高频的载波,才能恢复出原始信号,所以为了使已调信号的频谱有明显的搬移,就要使载波和信息源的频率有明显的差别,所以载波的频率设置为100Hz.为了更好的恢复出信源信号,所以在此直接使用原载波信号作为同步载波信号。 下面是低通滤波器的参数设置 (c)输出波形 通过低通滤波器后波形

计算机与通信网络实验报告

计算机与通信网络实验报告 041220111 戴妍 实验一隐终端与暴露终端问题分析 一、实验设定: 基本参数配置:仿真时长100s;随机数种子1;仿真区域2000x2000;节点数4。 节点位置配置:本实验用[1]、[2]、[3] 、[4]共两对节点验证隐终端问题。节点[1]、[2]距离为200m,节点[3]、[4]距离为200m,节点[2]、[3]距离为370m。 业务流配置:业务类型为恒定比特流CBR。[1]给[2]发,发包间隔为0、01s,发包大小为512bytes;[3]给[4]发,发包间隔为0、01s,发包大小为512bytes。 二、实验结果: Node: 1, Layer:AppCbrClient,(0)Server address:2 Node:1,Layer: AppCbrClient,(0)Firstpacket sent a t[s]:0、000000000 Node: 1,Layer:AppCbrClient,(0)Lastpacket sent at [s]:99、990000000 Node:1,Layer:AppCbrClient,(0) Session status:Not closed Node:1, Layer: AppCbrClient,(0)Totalnumber of bytess ent: 5120000 Node: 1,Layer:AppCbrClient,(0) Total number of packets se nt: 10000 Node:1, Layer: AppCbrClient,(0) Throughput (bits per second):409600 Node:2, Layer:AppCbrServer, (0)Clientaddress: 1 Node: 2, Layer:AppCbrServer,(0) Firstpacket received at [s]:0、007438001 Node:2, Layer:AppCbrServer,(0)Last packetreceiveda t[s]:99、999922073

通信原理实验指导书(学生)

通信原理实验指导书西南大学电子信息工程学院实验教学中心

目录 前言 .............................................. 错误!未定义书签。目录 (1) 拨码器开关设置一览表 (2) 第一部分通信原理预备性实验 (5) 实验1 平台介绍及实验注意事项 (5) 实验2 DDS信号源实验 (8) 第二部分通信原理重要部件实验 (11) 实验1 抽样定理及其应用实验 (11) 实验2 PCM编译码系统实验 (16) 实验3 FSK(ASK)调制解调实验 (20) 实验4 PSK DPSK调制解调实验 (25) 实验5 位同步提取实验 (33) 实验6 眼图观察测量实验 (38) 实验7 基带信号的常见码型变换实验 (43) 实验8 AMI/HDB3编译码实验 (50) 实验9 幅度调制(AM)实验* (54) 实验10 幅度解调(AM)实验* (61) 实验11 频率调制(PM)实验* (64) 实验12 频率解调(PM)实验* (68) 第三部分信道复用技术和均衡技术实验 (72) 实验1 频分复用/解复用实验 (72) 实验2 时分复用/解复用(TDM)实验 (76)

拨码器开关设置一览表 在本实验平台上,我们采用了红色的拨码器,设置各种实验的项目、信号类型、功能和参数。拨码器的白色开关上位为1;下位为0。现将各主要拨码开关功能列表说明如下:

注:1. 时钟与基带数据产生模块中各铆孔与测量点说明: 4P01为原始基带数据输出铆孔; 4P02为码元时钟输出铆孔; 4P03为相对码输出铆孔。 4TP01为码型变换后输出数据测量点; 4TP02为编码时钟测量点。 2.以上实验设置的功能和各种参数也可根据学校要求定制。 表0-2“信道编码与ASK。FSK。PSK。QPSK调制”拨码开关SW03状态设置与功能一览表 表0-3“基带同步与信道译码模块”拨码开关25SW01状态设置与功能一览表 注:译码模块25SW01第一位X为空位待用。

通信网络基础模拟试题一

通信网络基础模拟试题一 一、填空题(共10空,每空2分,共20分) 1. 所谓数据传输链路是指在________上利用一定的________形成的传输规定速率(和格式)的________。 答案:物理传输媒介传输标准数据比特通道 解析:所谓数据传输链路是指在物理传输媒介(如双绞线、同轴电缆、光纤、微波传输系统、卫星传输电路等)上利用一定的传输标准(它通常规定了电气接口、调制解调的方式、数据编码的方式、比特同步、帧格式和复分接的方式等)形成的传输规定速率(和格式)的数据比特通道。 2. 路由器区别于交换机的关键特征是它可连接使用不同________、具有不同________的数据链路。 答案:物理传输媒介传输协议 解析:路由器区别于交换机的关键特征是它可连接使用不同物理传输媒介、具有不同传输协议的数据链路。在一个典型的网络中,通常会有一种以上的局域网(LAN)和广域网(WAN)技术,而每个子网都有独立的数据链路传输协议和寻址方式。 3. 链路层常用的检错方法有两类:________和________。 答案:奇偶校验循环冗余校验 解析:链路层常用的检错方法有两类:一类是奇偶校验,另一类是循环冗余校验(CRC)。其基本思路是发端按照给定的规则,在K个信息比特后面增加L个按照某种规则计算的校验比特;在接收端对收到的信息比特重新计算L个校验比特。比较接收到的校验比较和本地重新计算的校验比特,如果相同则认为传输无误,否则认为传输有错。 4. 目前单播的Ad Hoc路由算法为分________、________和地理位置辅助的路由算法。 答案:平面式路由算法分层路由算法 解析:消息只能沿一个方向传送的通信方式称为单工通信,消息可以双向传送但不能同时进行的通信方式称为半双工通信,消息可以同时实现双向传送的通信方式称为全双工通信。 5. 对于一个方向图G,若G的每一对节点之间都有一条方向性路径,则称图G是的方向图。 答案:强连通 解析:对于有向图,若边去掉方向后是连通的,则称该图为连通的有向图。若对于有向图的

相关文档
最新文档