荧光原位杂交_FISH_技术检测水体中大肠菌群研究_王建龙

荧光原位杂交_FISH_技术检测水体中大肠菌群研究_王建龙
荧光原位杂交_FISH_技术检测水体中大肠菌群研究_王建龙

间接免疫荧光法检测抗核抗体的结果分析

间接免疫荧光法检测抗核抗体的结果分析 目的探讨间接免疫荧光法(IIFA)检测抗核抗体在自身免疫性疾病(AID)患者中的结果应用分析。方法分别采用IIFA和胶乳法检测50例自身免疫性疾病患者血清样本抗核抗体(ANA)。结果IIFA法检测血清ANA的灵敏度为76%,胶乳法检测血清ANA的灵敏度为58%,差异有统计学意义(P<0.01)。结论IIFA 法检测ANA的敏感度明显高于胶乳法,提高了临床的阳性检出率。IIFA法用于ANA的筛查,阳性标本在进行滴度检测,有助于临床诊断。 标签:抗核抗体;间接免疫荧光法;胶乳法 [Abstract] Objective To discuss the results of indirect immunofluorescence in detecting the antinuclear antibodies in patients with autoimmune diseases. Methods The antinuclear antibodies of serum samples of 50 cases of patients with autoimmune diseases were detected respectively by the IIFA and emulsion method. Results The difference in the sensitivity degree of ANA detected by IIFA method and emulsion method had statistical significance(76% vs 58%)(P<0.01). Conclusion The sensitivity degree of ANA detected by IIFA method is obviously higher than that detected by the emulsion method,which improves the positive detection rate in clinic,the application of IIFA method for ANA screening and the application of positive specimens for titer detection contribute to clinical diagnosis. [Key words] Antinuclear antibodies;Indirect immunofluorescence;Emulsion method 抗核抗体(ANA)包括细胞核的自身抗体和细胞质内的核酸和核蛋白的所有成分的自身抗体,是指哺乳动物的细胞中以细胞核为靶抗原的自身抗体的总称[1]。ANA在系统性红斑狼疮、干燥综合征、硬皮病、慢性活动性肝炎等自身免疫疾病中均呈不同程度的阳性。因此在自身免疫性疾病的临床诊断、鉴别以及评价预后中,ANA检测已成为重要的筛查指标[2]。临床上ANA检测方法较多,现阶段最常用、最有效的检测方法是IIFA法。由于不同检测方法检测灵敏性、准确性不同,往往影响到检测结果,使检测结果存在一定的差异,尤其在ANA 呈弱阳性的标本中,不同检测方法的检测成为争议的焦点。为进一步确认IIFA 法和乳胶法检测ANA的效果,进而客观评价该两种检测方法差异性,该文2015年10—12月间选取该院确诊或疑似为AID的患者50例作为观察对象,同时采用IIFA法和乳胶法检测,报道如下。 1 资料与方法 1.1 一般资料 所有标本均来自2015年10—12月到该院确诊或疑似AID的门诊和住院患者50例,男性15例,女性35例,年龄15~65岁。

免疫组化和免疫荧光的区别[参照材料]

请问你曾经被IHC、ICC和IF所困扰过吗? 作者:北京义翘神州 在实验中,有没有一种感觉,就是对免疫组化(IHC),免疫细胞(ICC),以及免疫荧光(IF)傻傻分不清,那么今天我们就来讨论一下这三者的区别,先贴图上来以便有个大致的区分。 从图中我们可以看出,免疫检测技术可以根据报告标签的不同,分为免疫化学和免疫荧光两类,而根据样品类型不同,可以分为组织和细胞检测技术。因此,才会延伸出三个相近的概念。 为了更好的区分这三个概念,我们还可以根据他们的英文词根来分析一下,他们的英文名分别是免疫组织化学Immunohistochemistry (IHC),免疫细胞化学Immunocytochemistry (ICC),免疫荧光Immunofluorescence (IF)。 词根分析: Immuno-指的是免疫技术(例如,抗体和抗原的结合) Histo-指的是组织(细胞以及它周围的细胞外基质) Cyto-指的是细胞(不包含细胞外的基质) Chemistry-在这里指的是化学检测方法(例如,颜色的变化)

Fluorescence-对被激发的荧光团的检测 通过对词根的解释,相信你在心中不再迷茫了吧。 这三个应用技术都属于免疫技术,都是将抗原与抗体的结合可视化,即通过一定的方法可以直接看到实验结果。而常用的方法就是化学显色和荧光显色。如果报告标签是酶促的,就是免疫化学,如果是荧光的,就是免疫荧光。 其实我们纠结免疫荧光的一个原因还在于免疫荧光的英文名字Immunofluorescence (IF),但若是写成免疫组织荧光(IHF)或是免疫细胞荧光(ICF),那我们是不是就豁然开朗了。虽然这两个词汇在英文文献中应用的还不是很广泛,但绝对不是我自己杜撰的哦,已经有些学者在使用了,规范化应该也只是时间的问题。 可能文字描述还是有些晦涩难懂,那我们就直接上图吧。先不看下面答案,仅从几张图片,你能明白哪张图代表哪种应用吗? A免疫组织化学:兔EGFR单克隆抗体(10001-R043-50)—人胎盘

荧光原位杂交FISH操作常规

荧光原位杂交(FISH)操作常规 FISH试剂: 0.075M KCl (2月一次) 固定液(甲醇:冰醋酸=3 :1)(一周一次) 2×SSC (PH=7.0,一周一次) 2×SSC 0.1%NP40 (PH=7.0,一周一次) 0.4*SSC 0.3%NP40 (PH=7.0,一周一次) 70%、85%、100%乙醇(一周一次) 一、标本的采集 1.1 外周血不少于2ml×2(WBC计数大于20×109),EDTA抗凝,4℃保存小于3天 1.2 骨髓不少于1ml×2(BM增生明显活跃),肝素抗凝,保存时间小于3天,4℃保存 二、标本前期处理 2.1 .样本2500R离心8 min,让血细胞沉淀,去上清,留沉淀 2.2 沉淀+ 0.075M KCl混合(1ml样本+8ml KCl),吸管吹匀,水浴箱37℃低渗30 min 2.3 取出按样本:固定液=10:1比例加固定液,固定液不的超过1 ml 2.4 混匀,吹散细胞,1800R 离心8 min 2.5 去上清,留沉淀,加5~10ml 固定液(不得超过10ml),混匀,静置10 min(吸去底部絮状沉淀) 2.6 重复2.4~2.5步骤2次,(外周血2洗3次,骨髓3~4次) 2.7 去上清液,加少许固定液1~2min 4℃保存1~2月(保存样本) 三、标本玻片制备 3.1 保存样本离心,加新鲜固定液,配制适当浓度滴到载玻片上,观察标本质量(10 Cell/HP)3.2 室温(20℃~37℃)2×SSC(Ph 7.0)液中浸泡2 min(老化) 3.3 依次室温(20℃~37℃)70%、85%、100%乙醇中浸泡2 min(脱水)待干, 3.4 适当区域滴加探针液6 ul ,18×18 盖玻片封盖,封片胶密闭封片无气泡、无空隙;待干 四、变性杂交 4.1 杂交仪预订程序75℃变性1~2min,37℃杂交不小于16 h(过程中保持湿度,湿条+润湿纱布块) 五、洗片 5.1 小心去掉盖玻片和封片胶 5.2 在75℃水浴箱中,玻片浸泡在0.4×SSC、0.3%NP40(pH7.0)(72℃+/-1℃)液中2 min 5.3 晾干,在2×SSC、0.1%NP40(pH7.0)室温中浸泡30s(背景信号好坏) 5.4 晾干,加6ul DAPI antifade 到载玻片上,18×18盖玻片 5.5暗环境,荧光显微镜观察 2008-11-16

荧光原位杂交(FISH)实验步骤

仪器设备 1、医用微波炉; 2、水浴锅; 3、OLYMPUS BX51荧光显微镜; 4、OLYMPUS DP11数字显微照相机。 FISH试剂 (1)1×PBS:由10×PBS溶液稀释而成,储存于4℃; (2)20×SSC(); (3)2×SSC,由20×SSC溶液稀释而成; (4)25mg/ml蛋白酶K消化液。 (5)变性液(70%甲酰胺+2×SSC,:4ml 20×SSC;8ml蒸馏水;28ml甲酰胺。每次新鲜配制。 (6)杂交后洗涤液:20×SSC 4ml;蒸馏水16ml;甲酰胺20ml。每次新鲜配制。调节pH 前升至室温。 实验步骤 1、脱蜡: 1)二甲苯脱蜡3次,每次5min; 2)100%酒精两次,每次2min; 3)移出酒精,斜置切片,标记末段向下,空气干燥。 2、蛋白酶处理: 1)每个染色缸40ml蛋白酶K消化溶液,配制方法如下:2×SSC 40ml倒人Facal管,在水浴槽中预热。将消化酶液加入管内,摇动直到酶溶解。 2)37℃水浴槽中预热染色缸和蛋白酶K溶液。37℃孵育20min。 3)×SSC在室温下漂洗切片3次,每次1min。 4)梯度酒精脱水(-20℃预冷)。 3、变性: 1)每一个立式染色缸配制40ml变性溶液; 2)78℃水浴槽中平衡预热混合液染色缸; 3)78℃孵育8min; 4)即移入-20℃预冷70%酒精的染色缸内2min,再依次移入80%、90%和100%的-20℃预冷酒精内,每缸2min; 5)空气干燥。 4、杂交: 1)准备探针; 2)取一个较大的湿盒,交叉放置切片; 3)滴10μl探针在切片的组织上,加盖玻片; 4)盖上湿盒盖,37℃孵育12h~16h。 杂交后的水洗: 5)镊子小心去除盖玻片; 6)43℃预热杂交后水洗溶液40ml水洗切片15min; 7)2×SSC(37℃)洗两次,每次10min; 8)切片放人染色缸的1×PBS内待检测,勿使切片干燥。 检测:

免疫荧光检测

免疫荧光技术(检测抗核抗体(ANA)的实验方案) 荧光免疫技术是以荧光物质标记的特异性抗体或抗原作为标准试剂,用于相应抗原或抗体的分析鉴定和定量测定。荧光免疫技术包括荧光抗体染色技术和荧光免疫测定两大类。荧光抗体染色技术是用荧光抗体对细胞、组织切片或其他标本中的抗原或抗体进行鉴定和定位检测,可在荧光显微镜下直接观察结果,称为荧光免疫显微技术,或是应用流式细胞仪进行自动分析检测,称为流式荧光免疫技术。荧光免疫测定主要有时间分辨荧光免疫测定和荧光偏振免疫测定等。本次实验以荧光免疫显微技术检测抗核抗体(ANA)为例进行实习。 抗核抗体(antinuclear antibody,ANA)又称抗核酸抗原抗体,是一组将自身真核细胞的各种成分脱氧核糖核蛋白(DNP)、DNA、可提取的核抗原(ENA)和RNA等作为靶抗原的自身抗体的总称,能与所有动物的细胞核发生反应,主要存在于血清中,也可存在于胸水、关节滑膜液和尿液中。 抗核抗体实验原理 以小鼠肝细胞或某些培养细胞(如Hep-2)作抗原片,将病人血清加到抗原片上。如果血清中含有ANA,就会与细胞核成分特异性结合。加入荧光素标记的抗人IgG抗体又可与ANA结合,在荧光显微镜下可见细胞核部位呈现荧光。 试剂与器材 1.抗原片现多用商品试剂。如需自行制备,方法如下: (1)肝印片制备:取4-8周龄小鼠,断颈杀死后,剖腹取肝。将肝脏剪成平面块,用生理盐水洗去血细胞,用滤纸吸干渗出的浆液。将切面轻压于载玻片上,使其在载玻片上留下薄层肝细胞。冷风吹干,乙醇固定,冰箱可保存1周。

(2)Hep-2细胞抗原片制备:Hep-2细胞是建株的人喉癌上皮细胞。经适宜培养在载玻片上形成单层细胞抗原片,用洗涤洗去培养基。干燥后,用无水乙醇固定。 (3)肝切片制备:取小鼠肝组织作冰冻切片,厚4μl。-30℃保存备用。 2.异硫氰酸荧光素(FITC)标记的抗人IgG抗体(FITC-抗人IgG抗体)有商品供应,临用时按效价稀释。 3.L PBS 4.缓冲甘油取甘油9份加PBS 1份。 5.待测血清、阳性和阴性对照血清临床标本筛选获得。 6.器材荧光显微镜、孵箱、有盖湿盒、染色缸、吸管、试管等 操作方法 1.准备:检查加样板,生物载片恢复室温,标记。 2.稀释:PBS-Tween缓冲液稀释血清,设阴阳性对照。 3.加样:加样板放于泡沫塑料板上,加25μl稀释后血清,至加样板的每一反应区,避免气泡。加完所有标本后开始温育。 4.温育:将生物薄片盖于加样板的凹槽里,反应开始,室温温育30分钟。 5.冲洗:用烧杯盛PBS-Tween缓冲液流水冲洗生物薄片,然后立即将其浸入盛有PBS-Tween缓冲液的小杯中至少1分钟。不必混摇。 6.加样:滴加20μl荧光素标记的抗人球蛋白(结合物)至一洁净加样板的反应区,完全加完方可继续温育。荧光素标记的抗人球蛋白用前需混匀并以PBS-Tween缓冲液稀释。

荧光原位杂交 综述

荧光原位杂交(FISH)综述 摘要 本文简单介绍了荧光原位杂交(FISH)技术的一些基础理论知识以及常用操作方法和步骤。 关键词:荧光原位杂交; 1.发展 荧光原位杂交(fluorescent in situ hybridization,FISH)是一种细胞遗传学技术,可以用来对核酸进行检测和定位。荧光标记的核酸探针只和具有高度相似性的核酸杂交,可用于染色体上基因的定位,或在分子生态学中用来标记不同分类细菌或古菌中的核糖体RNA[1]。1969年,Pardue等和John两个研究小组发明了原位杂交技术,放射性标记的DNA 或28s RNA 被杂交到细胞制备物上,通过放射自显影技术(m icroautoradiography, MAR)检测杂交位点,这一技术可以在保持细胞形态完整性的条件下,使核酸序列在细胞内被检测[2]。 2.原理 通过特定分子的荧光标记探针在细胞内与染色体上特意的互补核酸序列原位杂交,通过激发杂交探针的荧光来检测信号。由于荧光燃料收到一定波长的(即激发波长)的光激发后会发射荧光(即发射波长),所以就滤光镜选择合适的激发波长的光,即可显示某一特定的荧光染料,于是就可以直接显示特定细胞核中或染色体上的DNA序列间相互位置关系[2]。 原位杂交的处理:染色体上杂交的位点提供了DNA探针序列的定位信息。所以应用该方法时,需打开维持染色体DNA双螺旋结构的碱基配对以使其形成单链分子(这称为DNA变性)。只有这样染色体DNA才能与探针杂交。变性染色体DNA而不破坏其形态的标准方法是将染色体干燥在玻璃载玻片上,再用甲酰胺处理[1]。

3.关于探针的发展 早期原位杂交技术中探针是放射性标记的,但这个方法并不令人满意,因为放射性标记很验证同时满足灵敏度和分辨率这两个原位杂交成功的必要条件。灵敏度要求放射性标记具有高中辐射能(例如用32P标记),当标记物能量过高时,会因为信号散射导致分辨率过低。如果使用低辐射能的放射性标记物,如 3H可以得到较高的分辨率,但由于灵敏度低而需要长时间曝光,并由此导致背景过高,难以分辨出真正的信号。20世纪80年代后期,非放射性DNA荧光标记技术的发展解决了上述问题,这些标记将高灵敏度与高分辨率结合起来,适用于原位杂交。 现已设计出具有不同发光特性的荧光标记物,因此有可能将一组不同的探针与单个染色体杂交,并分辨出每种杂交信号,从而测定出各探针序列的相对位置。为了得到最高的灵敏度,探针的标记需要尽可能大一些。在过去这就意味着探针必须是相当长的DNA分子,通常是至少40kb的克隆片段。现在已发展出将较短的DNA分子进行标记的技术,对长度的要求已不那么重要。 构建物理学图谱时,克隆的DNA片段可被简单地看作另一种类型的标记物,但在实际应用,由于克隆的DNA片段确定了DNA序列,将其作为标记应用则具有另一层含义。因此,克隆间位置关系的确定提供了基因组图谱与其DNA序列间的直接联系。如果探针是长的DNA片段,至少对于高等真核生物,就可能产生这样一个问题:探针中可能含有一些重复的DNA序列,因此探针可能与染色体上多个位点杂交,探针在使用前要与来自被研究组织的未标记DNA混合。这种DNA可以是总的核DNA(即代表了全基因组),但如果使用富集重复序列的片段更好。加入未标记DNA的目的在于与探针中的重复序列结合并将其封闭,使随后的原位杂交完全由单一序列驱动(Lichter et al.,1990)。这样非特异性杂交即可被减少或完全消除[1]。 4.荧光染料 常用的荧光染料的DAPI(在UV 光激发下发出蓝色荧光)、FITC和荧光素(蓝光 下发出绿色荧光)以及罗丹明和德克萨斯红(绿光激发下产生红色荧光)。由于FISH 的信号空间分辨率高。不同的DNA 探针可以用不同的半抗原标。再用不

水质微生物的检测

设为首页 加入收藏 联系站长首页食品资讯政策法规生产技术质量管理检验技术仪器设备食品标准资料中心食品图库食品人才食品安全食品课堂专业英语食品专题食品网刊食品网址食品百科个人空间食品论坛 水质微生物 一、水质微生物及指示菌 在各种水体,特别是污染水体中存在有大量的有机物质,适于各种微生物的生长,因此水体是仅次于土壤的第二种微生物天然培养基。水体中的微生物主要来源于土壤,以及人类的动物的排泄物及污染。水体中微生物的数量和种类受各种环境条件的制约。 一般认为,水中微生物以革兰氏阴性杆菌占有较大优势。与其他水体相比,河水及溪水中革兰氏阳性菌相对较多,这是因为陆地微生物冲洗污染的缘故。 水体中的致病性微生物一般并不是水中原有微生物,大部分是从外界环境污染而来,特别是人和其它温血动物的粪便污染。水中常见的致病性细菌主要包括:志贺氏菌、沙门氏菌、大肠杆菌、小肠结炎耶尔森氏菌、霍乱弧菌、副溶血性弧菌等。 在实际控制中,对水质卫生质量的评价和控制,是无法对各种可能存在的致病微生物一一进行检测,而一般利用对指示菌的检测和控制,来了解水体是否受到过人畜粪便的污染,是否有肠道病原微生物存在的可能,从而评价水的质量,以保证水质的卫生安全。 目前,世界各国一般认为大肠菌群是指示水质受粪便污染较好的指示菌。 我国水质控制也采用大肠菌群作为指示菌,GB5749-85《中华人民共和国国家标准生活饮用水卫生标准》规定,生活饮用水中大肠菌群每升不得超过3个。 在某些情况下,水体中的细菌总数也可指示水体受粪便等污染物污染的情况。这里的细菌总数其实是指营养琼脂培养后形成的菌落总数。目前世界各国对于控制饮用水的卫生质量,除采用大肠菌群等指标外,一般还采用细菌总数这个指标。我国GB5749-85《中华人民共和国国家标准生活饮用水卫生标准》中规定生活饮用水细菌总数每毫升不得超过100个。 二、水质微生物检验方法 GB5750-85《中华人民共和国国家标准生活饮用水标准检验法》提供了水质中细菌总数和总大肠菌群的检测方法。 (一)细菌总数的检测:

荧光原位杂交仪实验报告

荧光原位杂交仪实验报告 实验者:魏兰兰 实验时间:2016/10/18—2016/10/19 一、实验目的 1.探针试剂吸液量定量—10ul; 2.观察探针试剂滴液时是否有残留; 3.观察探针试剂滴液后盖板是否能压紧,是否均匀摊开,石蜡是否能完全浸裹; 4.观察上一步试剂对探针试剂有无影响; 5.观察探针试剂对下一步试剂有无影响; 6.观察37℃恒温16小时后,探针试剂是否挥发; 二、实验器材 1.荧光原位杂交仪 2.10ul取样器 3.一次性枪头 4.探针试剂(墨水稀释液) 三、实验步骤 1.10ul定量:利用10ul取样器确定一次性枪头吸液10ul液面所在的刻度位置,经过多次调整杂交仪柱塞泵电机的吸液步数,最终确定电机的吸液步数为1920时,吸液量恰好是10ul。 2.对反应池1运行以下程序步骤以确定实验目的的2.3.4.6项: 3.对反应池2、5运行以下程序步骤以确定实验目的的2.3.5.6项: 四、实验结果 1.本实验3次吸探针试剂量均在10ul刻度线处; 2.本实验3次滴探针试剂时基本没有残留; 3.本实验3次滴探针试剂后盖板均能压紧,目测无缝隙,石蜡完全

浸裹; 4.反应池1、5的上一步试剂均排液排尽,对探针没有其他影响; 5.反应池2因上一步(二甲苯试剂)排液时恰在中间位置残留大约50ul试剂,导致探针试剂压紧后溢出到盖板外1/4-1/3的液量; 6.由于探针试剂用到石蜡覆盖,排液时石蜡不能完成排尽,故而下一步试剂上还会有部分石蜡覆盖,除此之外无其他影响; 7.反应池1、5经过37℃恒温16小时后,探针试剂基本无挥发且成均匀摊开状;反应池2经过37℃恒温16小时后,探针试剂挥发1/2左右(因有溢出)基本成均匀摊开状。 8.盖板掀开后探针试剂表面有石蜡油,一种可能是实验中扩散到盖板内覆盖探针试剂,另一种可能是盖板掀开后扩散探针试剂表面。

荧光原位杂交技术FISH

荧光原位杂交技术FISH 1 目的 通过FISH实验检测两条Brd2基因cRNA探针的效价。 2材料与仪器 2.1材料 件为:95℃预变性3 min;95℃变性30 s;50℃退火45 s;72℃延伸45 s;循环30次; 72℃再延伸8 min。 2) 将所有PCR产物经1%琼脂糖凝胶电泳检测,采用凝胶回收试剂盒回收并纯化PCR产 物,并用微量分光光度计测定其浓度。 3) 进行体外转录反应合成Brd2 cRNA探针,20 μL体外转录反应体系如下:RNase

inhibitor 1μL,10×NTP dig labeling mixture 2μL,10×transcription buffer 2μL,Template DNA 13μL,RNA polymerase 2μL。 4) 37℃水浴孵育2 h,取0.5μL于1%琼脂糖凝胶电泳检测。 5) 加入2μL无RNase污染的Dnase I 37℃水浴孵育15 min来消化模板DNA。 6) 加入EDTA 0.8μL,加入5.6μL NH4Oac终止反应,再加入56μL无水乙醇并混匀,于 -80℃放置20 min。 7) 15000 r/min,4℃离心15 min,弃上清,加入700μL 80%的无水乙醇混匀,15000 r/min,4℃ 离心10 min沉淀RNA。 8) 干燥后用DEPC处理的水50μL溶解RNA。合成的两条探针经1%琼脂糖凝胶电泳鉴 定并用微量分光光度计测定探针浓度,于-80℃保存备用。 3.2荧光原位杂交实验检测探针的效果 1) 正常C57BL/6小鼠用1%戊巴比妥钠深麻后,依次以30 mL 0.01 mol/L DEPC-PBS和 100 mL含4%多聚甲醛的磷酸缓冲液(PB)行左心室灌注,小心剥离脑组织,于4℃环境下用上述相同固定液进行后固定过夜,后将组织转移浸没于含30%蔗糖的PB溶液中脱水至沉底。 2) 最后取出组织用OTC包埋,冰冻切片机连续切片至需要的层面,切片厚度30 μm。 3) 选取上述脑组织切片于室温条件下经含有2%H2O2的0.1 mol/L DEPC-PB处理10 min 以阻断内源性过氧化物酶,再用0.1mol/L DEPC-PB室温漂洗10 min,接着用含 0.3%Triton X-100的0.1 mol/L DEPC-PB处理20 min,在用乙酰化液处理10 min,后 于0.1mol/L DEPC-PB中清洗2次,每次10 min,后加入预杂交液,60℃预杂交1 h 以封闭非特异结合位点。 4) 分别于两组切片中加入探针并使探针终浓度为1 μg/mL。于60℃杂交炉中恒温孵育 16-20 h,同时设立省略探针的空白对照,以上操作严格在无RNA酶环境下进行。 5) 杂交后组织切片置于wash buffer中60℃浸洗2次,每次20 min,接着切片在RNase buffer中室温孵育5 min,后加入终浓度为20 μg/mL的RNase,37℃作用30 min以消化未结合的cRNA探针。 6) 接下来恒温37℃条件下依次用2×SSC,0. 2×SSC溶液各浸洗切片2次,每次20 min, 再在TS7.5溶液中室温孵育5 min,后置于TBS溶液中室温封闭1 h,加入地高辛抗体(POD-anti-DIG,1:100)室温孵育过夜。

水中微生物的检测

综合实验二:水中细菌总数和大肠菌群的测定 一、实验目的 1学习并掌握水样采集的方法、规则及注意事项; 2了解检查水中细菌总数和总大肠菌群的测定方法及检测意义; 3学习对所检测的水样作综合分析。 二、实验原理 1.水体的微生物污染问题日趋严重: 在各种水体,特别是污染水体中存在有大量有机物质,适于各种微生物的生长; 水中的微生物污染来源:土壤,以及人类、动物的排泄物污染; 水体中少数致病微生物(主要来自人或动物的粪便污染)可导致某些肠道传染病传播。 2.水微生物检测可用于评价水质情况,预报水质的污染趋势,以保证水质的卫生安全。 在实际工作中,对水质卫生质量的评价和控制,是无法对水体中各种可能存在的致病性微生物一一进行检测。一般选择有代表性的一种或一类微生物作为指示菌,通过对指示菌的检测,来了解水体是否受到过的微生物污染,是否有肠道病原微生物存在的可能。 3.水微生物的监测指标: ⑴菌落总数 ①是指1ml水样在营养琼脂培养基中,于37℃经24h培养后,所生长的细菌菌落的总数。 ②检测意义:作为一般性污染的指标,即评价被检样品的微生物污染程度和安全性。水样菌落总数越多,说明水被微生物污染程度越严重,病原微生物存在的可能性越大,但不能说明污染的来源。 ⑵总大肠菌群 ①是指一群需氧及兼性厌氧的,37℃生长时能使乳糖发酵,在24h内产酸产气的革兰氏阴性无芽胞杆菌。 ②检测意义:作为粪便污染的指标。水样总大肠菌群数的含量,表明水被粪便污染的程度,而且间接地表明有肠道致病菌存在的可能。 4.多管发酵法测定总大肠杆菌群 ⑴初发酵试验:采用乳糖蛋白胨培养液37℃培养24h,观察产酸产气情况,产酸产气说明水中存在大肠菌群,为阳性结果。但是,有个别其他类型细菌在此条件下可能产气,而不属于大肠菌群;产酸不产气的发酵管,也不一定是非大肠菌群,因其量少,可能延迟48 h后产气,这两种视为可疑结果,需进行下面的实验,才能确定是否是大肠菌群。 ⑵平板分离:对阳性管培养物及假阳性管培养物,接种于伊红美蓝培养基,观察菌落特征,将符合大肠菌群菌落特征的菌落并进行革兰氏染色和镜检,只有染色为革兰式阴性、无芽孢杆菌的菌落才是大肠菌群菌落。 ⑶复发酵证实试验:将以上两次实验已证实为大肠菌群阳性的菌群,接种于乳糖蛋白胨培养液,进行复发酵证实试验,经24 h培养产酸又产气的,最终确定为大肠菌群阳性结果。 最后,根据确定有大肠菌群存在的初发酵管(瓶数目),查阅专用统计表,得出总大肠菌指数。 三、实验用品 1.溶液及试剂: 蛋白胨、Nacl、20%乳糖、2%伊红水溶液、0.5%美兰水溶液、牛肉膏、1.6%溴甲酚紫乙醇溶液、草酸铵结晶紫染液、卢戈氏碘液、95%乙醇、番红复染液、蒸馏水、NaOH溶液、HCl 溶液等 2.仪器和其他用品: 试管、德汉式小管、三角瓶、注射器、搪瓷缸、培养皿、载玻片、电磁炉、玻璃棒、移液管、酒精灯、接种环、试管架、恒温培养箱、灭菌锅、显微镜等 四、实验内容及步骤 1.培养基配制

免疫荧光技术的实验方法及其分类

免疫荧光技术的实验方法及其分类 一、免疫标记法及其分类 1.荧光免疫法 原理是应用一对单克隆抗体的夹心法。底物用磷酸-4-甲基伞形酮,检测产物发出的荧光,荧光强度与Mb浓度呈正比,可在8min 内得出结果。结果以Mb每小时释放的速率表示(△Mb)表示。该法重复性好,线性范围宽,具有快速、敏感、准确的特点。 以双抗夹心法为例,首先将特异性抗体与固相载体连接,形成固相抗体。除去未结合抗体,然后加受检标本,使其中的蛋白抗原与固相抗体形成抗原抗体复合物。洗涤除去未结合物,接着加入荧光标记的抗体,使之与抗原特异性结合,形成抗体—抗原—抗体复合物。最后根据荧光强度,即可对蛋白抗原进行定量。 传统的荧光免疫法受本底荧光的干扰较大,时间分辨荧光免疫测定法是以具有特长寿命的稀土金属如铕,作为标记物,加入正常液后激发测定,能有效去除短寿命本底荧光的干扰。

2.放射免疫法 放射免疫法是以过量的未标记抗原与放射性物质标记的抗原,竞争性地与抗体结合,形成有放射性的抗原—抗体复合物与无放射性的抗原—抗体复合物,并有过剩的标记抗原与未标记的抗原。然后通过离心沉淀等方法,将抗原—抗体复合物与游离抗原分离,分别测定其放射性强度与标准曲线比较,即可对未标记的待测抗原进行定量。 RIA法测定血清蛋白灵敏度高、特异性强,可准确定量到ng/ml 水平。但早期的方法操作麻烦,耗时长,且有放射性污染。近年来,随着单克隆抗体的应用,RIA的灵敏度又有了较大提高,且操作大为简化,并已有商品试剂盒供应,使用方便。 3.酶联免疫法(ELISA) ELISA法有竞争法和夹心法两种。竞争法是基于标准或血清Mb 和微孑L板上包被的Mb竞争性地与单克隆抗体相结合的原理而建立,该法的最低检测限为10μg/L,线性范围达1 000ug/L。夹心ELISA 法与EIA具有良好的相关性(r=0.92)。ELISA法具有灵敏度高,特异性强,精密度好,操作简单,适用于多份标本的检测,不需特殊仪器设备等优点,易于推广普及。但不适合急诊的快速检测。

荧光原位杂交(FISH)探针的制备及其应用

荧光原位杂交(FISH)探针的制备及其应用 概述 1、克隆性染色体异常是肿瘤的特征 2、染色体异常常见的类型 3、染色体异常的检测方法 二、荧光原位杂交及其探针 1、荧光原位杂交的原理 2、荧光原位杂交的探针 三、荧光原位杂交探针的制备和荧光原位杂交(按试验流程介绍) 一、概述 1、克隆性染色体异常是肿瘤的特征 1914年德国遗传学家Boveri就提出染色体畸变与肿瘤起源相关,然而这还仅仅只是一个假说;1960年Nowell和Hungerford在7例慢性髓系白血病(chronic myeloid leukemia,CML)的患者中发现后来被称为费城染色体(Philadelphia chromosome)的微小染色体;1973年Rowley证实了Ph染色体是9号和22号染色体易位所致,这是人们在肿瘤中认识到的第一个染色体易位;目前,已经有11,500篇文献报道了55,600多种克隆性细胞遗传学异常。这些染色体畸变,尤其是染色体易位及其相应的融合基因在肿瘤致病的起始阶段有着重要的作用,无不说明克隆性细胞遗传学异常是肿瘤的特征,在肿瘤起源中起重要作用。

下图是各种疾病报告的克隆性染色体异常病例数

2、染色体异常的常见类型 染色体异常指数目异常和结构异常两类:前者包括整条染色体数目的扩增和缺失;后者包括染色体易位、插入、倒置、区带的缺失或扩增等。 下图是染色体数目异常

染色体结构异常 3、染色体异常的检测方法 染色体异常的识别得益于二十世纪六十年代后发展起来的胰蛋白酶-姬姆萨染色和常规显带技术,使得常规筛查全基因组染色体异常和检测染色体核型改变成为可能。染色体显带是细胞遗传学分析技术中标准和常用的方法,但耗时且依赖于获得良好的分裂相,还难于分析复杂和隐匿的异常。

第八章荧光免疫技术

第八章荧光免疫技术 FluoreSCenCe ImmunoaSsay 第一部分目的要求和教学内容 一、目的要求 掌握:荧光免疫技术原理、类型及临床应用,常用的荧光物质;熟悉:荧光免疫技术 的技术要点;了解:荧光标记物的制备与保存,镧系稀土元素标记物的制备,荧光免疫技术主要类型的技术要点。 二、教学内容 1.荧光标记物的制备:荧光和荧光物质,荧光标记物的制备。 2.荧光免疫显微技术:基本原理,技术类型,技术要点,方法评价,临床应用。 3.荧光免疫测定技术:时间分辨荧光免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用);荧光偏振免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用)。 第二部分测试题 一、选择题 (一)单项选择题(A型题) 1.如下有关荧光免疫技术正确的提法 A.直观性检测抗原和抗体 B.直观性检测抗原 C.直观性检测抗体 D.间接检测抗原或抗体 E.间接检测抗原和抗体 2.荧光素易受温度影响,操作时通常选择较佳的温度 A.10~15℃ B.15~20℃ C.20~25℃ D.25~30℃ E.30~35℃ 3.荧光抗体保存3~4年,应选择 A.小量分装、4℃ B.瓶分装、4℃ C.瓶分装、-10℃ D.瓶分装,-20℃ E.小量分装、-20℃ 4.下列组成荧光显微镜的结构中,与普通光学显微镜相同的是 A.光源 B.聚光器 C.目镜 D.物镜 E.滤光片

5.下列哪项方法不属于荧光免疫显微技术类型 A.直接法 B.夹心法 C.间接法 D.补体法 E.双标记法 6.荧光抗体染色标本的观察时间 A.当天 B.第二天 C.第三天 D.1周内 E.5天 7.荧光抗体闭接法应标记 A.抗原 B.抗体 C.补体 D.抗抗体 E.抗体及补体 8.荧光显微技术常用于检验血清中各种自身抗体和多种病原体抗体的方法是 A.直接法 B.间接法 C.双抗体夹心法 D.补体法 E.双标记法 9.荧光抗体间接法可检测 A.抗原 B.抗体 C.补体 D.蛋白质 E.抗原和抗体 lO.在荧光显微镜检查中直接影响检测结果的是 A.抗原荧光染色 B.抗体荧光染色 C.补体荧光染色 D.特异性荧光染色 E.非特异性荧光染色 11.主要用于测定各种激素、蛋白质、酶、药物及病毒抗原的技术 A.荧光偏振免疫测定 B.荧光免疫显微技术 C.时间分辨荧光免疫测定 D.底物标记荧光免疫测定 E.流式荧光免疫技术 12.临床药物浓度检测的首选方法

荧光原位杂交(FISH)范文

FISH-荧光原位杂交实验(原位杂交) 1.实验目的 通过实验了解荧光原位杂交技术的基本原理和在生物学、医学领域的应用。掌握原位杂交技术的操作方法,熟练掌握荧光显微镜的使用方法。 2. 实验原理 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究等许多领域。FISH的基本原理是用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行特异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以将探针直接与染色体进行杂交从而将特定的基因在染色体上定位。与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特性高和可以多重染色等特点,因此在分子细胞遗传学领域受到普遍关注。 杂交所用的探针大致可以分为三类:1)染色体特异重复序列探针,例如a卫星、卫星III类的探针,其杂交靶位常大于1Mb,不含散在重复序列,与靶位结合紧密,杂交信号强,易于检测;2)全染色体或染色体区域特异性探针,其由一条染色体或染色体上某一区段上极端不同的核苷酸片段所组成,可由克隆到噬菌体和质粒中的染色体特异大片段获得;3)特异性位置探针,由一个或几个克隆序列组成。探针的荧光素标记可以采用直接和间接标记的方法。间接标记是采用生物系标记的dUTP(biotin-dUTP)经过缺口平移法进行标记,杂交之后用藕联的荧光素的抗生物系的抗体进行检测,同时还可以利用几轮抗生物素蛋白—荧光素、生物素化的抗—抗生物素蛋白、抗生物素蛋白—荧光素的处理,将荧光信号进行放大,从而可以检测500bp的片段。而直接标记法是将荧光素直接与探针核苷酸蔌磷酸戊糖骨架共价结合,或在缺口平移法标记探针时将荧光素核苷三磷酸掺入。直接标记法在检测时步骤简单,但由于不能进行信号放大,因此灵敏度不如间接标记的方法。 3. 实验用具及材料

自来水水质的微生物学检测实验设计

自来水水质的细菌学检查 一、文献综述 1.(1)水质细菌学检验的意义 生活自来水及其水源水等水体受到生活污水、工农业废水或人和动物粪便的污染后,水中的细菌数可大量增加,其中病原菌也随之增加引发传染危害人类健康因而水中细菌总数和大肠菌数量可反映水体受微生物污染的程度水中细菌总数往往同水体受有机物污染的程度呈正相关。故水的细菌学检验对了解水体受污染程度在流行病学和提供水质标准中有重要意义和价值它是评价水质污染程度的重要指标之一。 (2)总大肠菌群的检测意义 大肠菌群系:指一群在37°C、24小时能发酵乳糖产酸产气,需氧或兼性厌氧的革兰氏阴性无芽孢杆菌。 测定的意义:大肠菌群分布较广,在温血动物粪便和自然界广泛存在。调查研究表明,大肠菌群细菌多存在于温血动物粪便、人类经常活动的场所以及有粪便污染的地方,人、畜粪便对外界环境的污染是大肠菌群在自然界存在的主要原因。粪便中多以典型大肠杆菌为主,而外界环境中则以大肠菌群其他型别较多。大肠菌群是作为粪便污染指标菌提出来的,主要是以该菌群的检出情况来表示食品中有否粪便污染。大肠菌群数的高低,表明了粪便污染的程度,也反映了对人体健康危害性的大小。粪便是人类肠道排泄物,其中有健康人粪便,也有肠道患者或带菌者的粪便,所以粪便内除--般正常细菌外,同时也会有一些肠道致病菌存在(如沙门氏菌、志贺氏菌等),因而食品中有粪便污染,则可以推测该食品中存在着肠道致病菌污染的可能性,潜伏着食物中毒和流行病的威胁,必须看作对人体健康具有潜在的危险性。该菌主要来源于人畜粪便,故以此作为粪便污染指标来评价食品的卫生质量,具有广泛的卫生学意义。它反映了水源是否被粪便污染,同时间接地指出水源是否有肠道致病菌污染的可能性。大肠菌群数系以每1g (或mL)检样内大肠菌群近似可能数MPN (the most probable number-简称MPN)表示 (3)耐热大肠菌群的检测意义 作为一种卫生指标菌,耐热大肠菌群中很可能含有粪源微生物,因此耐热大肠菌群的存在表明可能受到了粪便污染,可能存在大肠杆菌。但是,耐热大肠菌群的存在并不代表对人有什么直接的危害。作为粪便污染指标菌,耐热大肠菌群与大肠菌群、大肠杆菌相似,主要以其检出情况来判断食品是否受到了粪便污染。粪便是肠道排泄物,有健康者,也有肠道病患者或带菌者粪便,所以粪便中既有正常肠道菌,也可能有肠道致病菌(如沙门氏菌、志贺式菌、霍乱弧菌、副溶血弧菌等)和食物中毒者。因此,食品既然受到粪便污染就有可能对食用者造成潜在的危害。通常情况下,耐热大肠菌与大肠菌群相比,在人和动物粪便中所占的比例较大,而且由于在自然界容易死亡等原因,耐热大肠菌群的存在可认为食品直接或间接的受到了比较近期的粪便污染。因而,耐热大肠菌群在食品中的检出,与大肠菌群相比,说明食品受到了更为不清洁的加工,肠道致病菌和食物中毒菌的可能性更大。 耐热大肠菌群比大肠菌群能更贴切地反应食品受人和动物粪便污染的程度,且检测方法比大肠杆菌简单地多,而受到重视。 2.(1)细菌总数测定的原理与方法 原理:水中细菌总数往往同水体受有机物污染的程度呈正相关。由于重金属及其他有毒物质对细菌有杀灭或抑制作用,因此总细菌数少的水样,并不能排除已被这些物质所污染。细菌总数主要作为判定被检水样污染程度的标志在水质卫生学检验中,细菌菌落总数(CFU)是 指lmL水样在营养琼脂培养基(LB培养基)中,于37C培养24h后所生长的腐生性细菌菌落总

荧光原位杂交实验(FISH)

荧光原位杂交实验(FISH) 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究待许多领域。 1实验方法原理: 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究待许多领域。FISH 的基本原理是用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上定位。与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特异性高和可以多重染色等特点,因此在分子细胞遗传学领域受到普遍关注。 杂交所用的探针大致可以分类三类:1)染色体特异重复序列探针,例如α卫星、卫星III 类的探针,其杂交靶位常大于1Mb,不含散在重复序列,与靶位结合紧密,杂交信号强,易于检测;2)全染色体或染色体区域特异性探针,其由一条染色体或染色体上某一区段上极端不同的核苷酸片段所组成,可由克隆到噬菌体和质粒中的染色体特异大片段获得;3)特异性位置探针,由一个或几个克隆序列组成。 探针的荧光素标记可以采用直接和间接标记的方法。间接标记是采用生物素标记DNA探针,杂交之后用藕联有荧光素亲和素或者链霉亲和素进行检测,同时还可以利用亲和素-生物素-

荧光原位杂交(FISH)和用引物介导的原位标记(PRINS)sop

名称:荧光原位杂交(FISH)和用引物介导的原位标记(PRINS)操作规程 关键词:荧光原位杂交、引物介导的原位标记 目的:熟悉荧光原位杂交和用引物介导的原位标记的实验方法 背景知识:选填项目 原理:选填项目 主体内容: 仪器设备 1、医用微波炉; 2、水浴锅; 3、OLYMPUS BX51荧光显微镜; 4、OLYMPUS DP11数字显微照相机。 FISH试剂 (1)1×PBS:由10×PBS溶液稀释而成,储存于4℃; (2)20×SSC(pH7.0); (3)2×SSC,由20×SSC溶液稀释而成; (4)25mg/ml蛋白酶K消化液。 (5)变性液(70%甲酰胺+2×SSC,pH7.0):4ml 20×SSC;8ml蒸馏水;28ml甲酰胺。每次新鲜配制。 (6)杂交后洗涤液:20×SSC 4ml;蒸馏水16ml;甲酰胺20ml。每次新鲜配制。调节pH前升至室温。 实验步骤 1、脱蜡: 1)二甲苯脱蜡3次,每次5min; 2)100%酒精两次,每次2min; 3)移出酒精,斜置切片,标记末段向下,空气干燥。 2、蛋白酶处理: 1)每个染色缸40ml蛋白酶K消化溶液,配制方法如下:2×SSC 40ml倒人Facal管,在水浴槽中预热。将消化酶液加入管内,摇动直到酶溶解。 2)37℃水浴槽中预热染色缸和蛋白酶K溶液。37℃孵育20min。 3)×SSC在室温下漂洗切片3次,每次1min。 4)梯度酒精脱水(-20℃预冷)。 3、变性: 1)每一个立式染色缸配制40ml变性溶液; 2)78℃水浴槽中平衡预热混合液染色缸; 3)78℃孵育8min; 4)即移入-20℃预冷70%酒精的染色缸内2min,再依次移入80%、90%和100%的-20℃预冷酒精内,每缸2min; 5)空气干燥。 4、杂交: 1)准备探针; 2)取一个较大的湿盒,交叉放置切片;

相关文档
最新文档