初等数论完整资料整合。

初等数论完整资料整合。
初等数论完整资料整合。

第一章

考点

1、会求最大公因数与最小公倍数

解法:最大公因数用辗转相除法

最小公倍数为两个数的乘积除以两者的最大公约数,所以也是要先求出两者的最大公约数

2、判别一个数是为质数还是合数

判别法:用小于√x的所有质数除此数,看能否被整除

3、证明整除(最好用同余证)

例1证:73|8n+2+92n+1(n∈N)

解:法一 8n+2+92n+1=64×8n+9×81n

=64×8n+9×(73+8)n

=64×8n+9×(C0n73n+C1n73n-1×8+…+C n n8n)

=64×8n+9(73q+8n)( q∈Z)

=73×8n+9q×73

所以73|8n+2+92n+1

法二 8n+2+92n+1≡64×8n+9×81n≡64×8n+9×8n

≡73×8n≡0(mod73)

所以73|8n+2+92n+1

例2已知17|2x+3y,证明17|9x+5y

解:因为9x+5y=17(x+y)- 4(2x+3y) 且17|2x+3y

所以17|9x+5y

例3设k为正奇数,证:1+2+3+....+9|1k+2k+3k+ (9)

证:记S=1k+2k+3k+ (9)

则2S=(1k+9k)+(2k+8k)+…+(9k+1k)

=(1+9)q1 (q1∈Z)

所以10|2S

又因为2S=(0k+9k)+(1k+8k)+…+(9k+0k)

=(0+9)q2(q2∈Z)

所以9|2S

又因为(9,10)=1

所以90|2S 即45|S

从而1+2+3+....+9|1k+2k+3k+ (9)

4、证明某种类型的质数有无穷多个

例:证明4n+1形的质数的个数为无穷。(最后一节课讲的)

第三章同余

考点:1、同余的性质;(应用在同余解题中)P48

2、简化剩余系和欧拉函数;(求简化剩余系的个数)P58

3、欧拉定理和费马定理对循环小数的应用;(利用欧拉定理解题;判断是纯循环还是混循环,若是混循环,从第几位开始)P61

具体分析:

一、同余的性质

1、a≡a (mod m)

2、若a≡b (mod m),则b≡a (mod m)

3、若a≡b (mod m) b≡c (mod m) 则 a≡c (mod m)

4、i.若a1≡b1 (mod m) a2≡b2 (mod m) 则 a1+a2≡b1+b2 (mod m)

ii. a+b≡c (mod m) 则 a≡c-b (mod m)

5、a1≡b1 (mod m) a2≡b2 (mod m) 则 a1a2≡b1b2 (mod m)

特别的,若a≡b (mod m) 则 ak≡bk (mod m)

6、若a≡b (mod m) 且a=a1d b=b1d (d,m)=1 则 a1≡b1 (mod

m)

7、i.若a≡b (mod m) k>0 则 ak≡bk (mod mk)

ii.若a≡b (mod m) d为a,b及m的任一正公因数,

则a/d≡b/d (mod m/d)

8、若a≡b (mod m) i=1、2…k 则a≡b(mod m1m2…m k)

例:一个小于4000的四位数,被3、4、5、7、9除皆余2,

求这个数。

解:设这个数为x,则由题意得:

x≡2(mod 3) x≡2(mod 4) x≡2(mod 5)

x≡2(mod 7) x≡2(mod 9)

则x≡2(mod 3、4、5、7、9)

即x≡2(mod 1260)

∴x=1260t+2

∵x<4000

∴x=1260t+2 (t=1、2、3)

x=1262、2526、3782

9、若a≡b (mod m),d|m ,d>0,则a≡b (mod d)

10、若a≡b (mod m),则(a,m)=(b,m).从而d能整除m和a、

b中的一个,必能整除a、b中的另一个。

二、简化剩余系和欧拉函数

满足简化剩余系的条件:

1、φ(m)个

2、两两对模m不同余

3、每一个模与模m互质

其中利用欧拉函数计算简化剩余系的个数:

1、当m为质数时:φ(m)=m-1

2、m为合数时:φ(m)等于0、1、2…m-1中与m互质的数的

个数。

三、欧拉定理与费马定理对循环小数的应用

欧拉定理:设m>1,m∈Z,(a,m)=1,则有aφ(m)≡1(mod m)

例1、

同类型题见教材P64习题第1题。

例2、3729的个位数是几?

解:

第一种方法:运用同余的性质

3729≡729≡(72)14*7≡(-1)14*7≡7 (mod 10)

或≡(-3)29≡-329≡-(32)14*3≡-(-1)14*3≡-3≡7 (mod 10)

第二种方法:运用欧拉定理

∵(37,10)=1

∴37φ(10)≡374≡1 (mod 10)且29=4q+1 q=7

∴3729≡(344)q*37≡1q*37≡37≡7 (mod 10)

费马定理:若p为素数(质数),则a p≡a(mod m)

1、有理数a/b (0

只含2的因子或5的因子或2和5的因子。

2、无限小数:

①纯循环:(从小数点后第一位开始循环)分母不含2

和5中任何一个因子,即分母与10互质。

②混循环:分母除了2、5外还有其他因子,从2、5

中指数大的那个之后开始循环。

例:67/60

60=22*51*q (q∈Z)

则从第二位之后开始循环,即从第三位之后开始循环。

第四章同余式

考点:一次同余式 P74

孙子定理P76

高次同余式P80

质数模的同余式P84

同余式的概念:

若用f(x)表示多项式a n x n+a n-1x n-1+…+a0,其中a是整数,设m是一个正整数

f(x)≡0(modm),表示模m的同余式P74

一次同余式:ax≡b(modm),a不同余m

注:有解的充分与必要条件是(a,m)|b 即ax-my=b有解,且有解时d=(a,m)个解

一次同余式解的过程:ax/d≡bx/d(modm/d)

ax/d-my/d=b/d即x=x0+mt/d,y=y0+at/d

∴原同余式的解为x≡x0+mk/d(modm)

例题1 4x≡10(mod6)

1°首先判断有无解d=(4,6)=2,2|10,有解

2°化简为2x≡5(mod3),2x-3y=5

3°找一组特解x0=1,y0=-1即x=1+3t,t=0,+-1...

∴原方程的解为x≡1+3t(mod6),t=0,1(取t=0,1...d-1)即x≡1,4(mod6)

例题2(完整格式)3x≡2(mod4)

∵(3,4)=1,1|2∴原方程有一个解

将3x≡2(mod4)转化为3x-4y=2,解得x=2+4t,t=0,+-1

∴原方程的解为X≡2(mod4)

课后习题:第一题P75答案自行百度

孙子定理

x≡b1(modm1) m i(i=1,...k)两两互质

x≡b2(modm2) m=(m1,...m i),m=m i M i

... x=M i′M i b i+...+M k′M k b k(modm)

x=b k(modm k) M i=m2...m k,M i'M i≡1(modm i)

例题 x≡2(mod3)

x≡3(mod4)

x≡4(mod5)

解:

∴原同余式组的解为x≡59(mod60)

课后习题:第一题P79

高次同余式

定理1 若m1 ,m2,...,m k是k个两两互质的正整数,m=m1m2...m k,则同余式

f(x)≡0(modm)(1)

与同余式组

f(x)≡0(modm i),i=1,2...k(2)

有相同的解,且若用T i表示f(x)≡0(modm i)(i=1...k)的解数,则(1)的解数T=T1T2...T k

例1 x2+3x+2≡0(mod12)

解:原方程等价于 x2+3x+2≡0(mod3)(1)

x2+3x+2≡0(mod4)(2)

解(1)得x≡1,2(mod3)(2)得x≡2,3(mod4)

故同余式f(x)有2×2=4个解

x≡b1(mod3),b1=1,2

x≡b2(mod4),b2=2,3

由孙子定理

12

将其代入,从而x≡2,7,10,11(mod12)

定理2 f(x1)+ptf'(x1)=0(modp2)(由泰勒公式推导)

例2 x4+7x+4≡0(mod27)

解:先解x4+7x+4≡0(mod3)

将x≡1(mod3)即x=1+3t1,t1=0,-+1

将x=1+3t1代入x 4+7x+4≡0(mod9)

得:f(1)+3t1f'(1)≡0(mod9)即:12+3t1.11≡0(mod9)

4+11t1≡0(mod3),得t1=1+3t2,t2=0,+-1...

又将t1=1+3t2代入x=1+3t1,得4+9t2,t2=0,+-1...

又将x=4+9t2代入f'(x)≡0(mod27)得

f(4)+f'(4)9t2≡0(mod27)即288+263.9t2≡0(mod27)

∴32+263t2≡0(mod3)即2t2-1≡0(mod3),解得:t2≡2(mod3)即t2=2+3t3,t3=0,+-1...

代入x=4+9t2得x=22+27t3,t3=0,-+1...

即方程的解为x≡22(mod27)

例3 x3+2x2+x+1≡0(mod25)

解:先解x3+2x2+x+1≡0(mod5)

将x≡1(mod5)即x=1+5t1,t1=0,+-1...

将x=1+5t1代入x3+2x2+x+1≡0(mod25)

得f(1)+5t1f'(1)≡0(mod25)

即5+5t1.8≡0(mod25) 1+8t1≡0(mod5)

得t1≡3(mod5)即t1=3+5t2,t2=0,+-1...

将t1=3+5t2代入x=1+5t1得x=16+25t2,t2≡0,+-1,+-2

∴方程的解为x≡16(mod25)

课后习题第一题P84

质数模的同余式

f(x)≡0(modp),f(x)=a n x?+a n-1x n-1+…+a0(1)其中p是质数,而a n与p不同余

定理1:同余式(1)与一个次数不超过p-1的质数模同余式等价(应用费马x p≡x(modp)去降次)

例1:x15 +3x2-1≡0(mod7)注:以x p -x 除原式

即x15 +3x2-1≡(x7 -x)(x8 +x2)+(x3+3x2-1)(mod7)

∴x15 +3x2-1≡x3+3x2-1(mod7)

从而原方程等价于x3+3x2-1≡0(mod7),

定理2设k≤n,而x≡a i(mod p),i≡1,2…k为(1)的k个不同的解,则对?x∈z,有f(x)≡(x-a1)…(x-a k)?f(x)(mod p).其中

f k(x)为首项系数为a n的n-k次多项式。

定理3. (1)x3-1-1≡(x-1)…(x-(p-1))(mod p)

(2)(p-1)!+1≡0(mod p)

定理4.(1)的解数不超过它的次数。

定理5.f(x)≡x n+a n-1+…+a0≡0(modp),n≤p,有n个解

<二>x p-x被f(x)除余式的系数是p的倍数。

例:2x3+3x+1≡0(mod 7)

[4?2x3+12x+4≡0](mod 7)

<二>x3+5x+4≡0(mod 7)

解:原同余或等价于x3+5x+4≡0(mod 7)

而x7-x≡(x3+5x+4)?9(x)+40x2-110x-100.

而40x2-110x-100的系数不能全部被7整除

∴原方程没有3个解。

例5:解同余式

f(x)≡2x17+6x16+x14+5x12+3x11+2x10+x9+5x8+2x7+3x5+4x4+6x3+4x2+x 解:∵5为质数,故由费马定理得:x5≡x(mod 5).

从而f(x)≡2x+x4+x2+3x2+2x2+x+2x3+3x+4x4+6x3+4x2+x+4

≡x3+2x2+2x+4(mod 5)

从而原方程等价于x3+2x2+2x+4≡0(mod5)

解得x≡3(mod5)

第五章二次同余式与平方剩余

第一节一般二次同余式

二次同余式的一般形式:ax2+bx+c≡0(mod m),a≡0(mod m).

讨论二次同余式 x2 ≡a(mod m),(a,m)=1 (1)是否有解,

定义:若同余式(1)有解,则a叫做模m的平方剩余,若同余式(1)无解,则a叫做模m的平方非剩余。

第二节单质数的平方剩余与平方非剩余

X2 ≡a(mod p),(a,p)=1;(1)

定义1:若(a,p)=1,则a是模p的平方剩余的充分与必要条件是:

a p-1/2 ≡1(mod p);

而a是模p的平方非剩余的充分与必要条件是:

a p-1/2 ≡ -1(mod p),

且若a是模p的平方非剩余,则(1)式有二解。

定义2:模p的简化剩余系中平方剩余与平方非剩余的个数为p-1/2,而且p-1/2个平方剩余分别与序列12、22、32……(p-1/2)2。

例:求模7的平方剩余与平方非剩余。

解:12 22 32在模7下,1 4 2 为平方剩余

即:x2 ≡1、4、2(mod 7)有解。

平方非剩余:3、 5、 6

第三节勒让德符号

勒让德符号(a/P)是一个对于给定的单质数p定义在一切整数a上

的函数,

(a/p)= 1,a是模p的平方剩余

-1,a是模p的平方非剩余

0,p︱a

性质1,(a/p)≡a p-1/2(mod p),

2 , (a2/p)=1,(1/p)=1

3, (-1/p)=(-1)p-1/2

4,若a≡a1(mod p),则(a/p)=(a1/p),

a1a2a3…a n

p)(a2/p)…(a n/p)

————————=(a1/

P

(ab2/p)=(a/p),p︱b

5,(2/p)=(-1)的p的二次方减1除以8在p=8q+r下,等于(-1)的r的二次方减1除以8

6,(a/P)=(-1)(P-1/2)(q-1/2)(p/q)

例:判断同余式x2 ≡286(mod 563)是否有解,

解:563为质数,由勒让德的性质得:

(286/563)=(2/563)(11/563)(13/563)

=(-1)9-1/8(-1)(11-1/2)(563-1/2)(563/11)(-1)(13-1/2)(563-1/2)(563/13)

=(4/13)(2/13)=(-1)(9-1/8) =-1 无解。

第五节雅可比符号

定义:雅可比符号(a/m)是一个对于给定的大于1的单整数m定义在一切整数a上的函数,它在a上的函数值是(a/m)

=(a/p1)(a/p2)……(a/p r),其中m=p1p2…p r,p i是质数,(a/p i)是a 对p i的勒让德符号。

区别与联系:1.m是奇数,而p为奇质数;

2.(a/p)的值可以判断同余式是否有解,而(a/m)的值一般来说没有这个功用;

3.联系:当m为奇质数时,即可以看作雅可比又可以看作勒让德。

性质:1若a≡a1(mod m),则(a/m)=(a1/m),

2,(a2/m)=1,(1/m)=1

3, (-1/m)=(-1)m-1/2,

4, a1a2a3…a n

————— =(a1/m)(a2/m)…(a n/m)

m

(ab2/m)=(a/m),(b,m)=1

5,(2/m)=(-1)的m的平方减1除以8在m=8q+r时,等于(-1)的8分之r的平方减1次方,

6.m,n为小于1的单整数,(n/m)=(-1)(m-1、/2)(n-1/2)(m/n)

例:(3149/5987)=(-1)(3149-1/2)(5987-1/2)(5987/3149)

=(2838/3149)=(2/3149)(-1)(1419-1/2)(3149-1/2)(3149/1419)

=(-1)(25-1/8)(311/1419)= - (-1)(311-1/2)(1419-1/2)(1419/311)=1

1.在有解的情况下,求同余式X2 ≡a(mod p),p=4m+3.的解

解:因为同余式有解,且p=4m+3

所以a p-1/2≡a2m+1 ≡1(mod p)

(a m+1)2≡a(mod p)

所以x≡+-a m+1(mod p)为原同余式的解。

2.在有解的情况下,求同余式X2 ≡a(mod p),p=8m+5的解。

解:因为同余式有解,p=8m+5,

所以a p-1/2≡a4m+2 ≡1(mod p)

(a2m+1)2—1 ≡0(mod p)

(a2m+1-1)(a2m+1+1)≡0(mod p)

a2m+1-1 ≡0(mod p)或 a2m+1+1≡0(mod p)

1,当a2m+1≡1(mod p)时,两边同时乘以a得,(a m+1)2≡a (mod p)

所以x≡+-a m+1(mod p)为原同余式的解

2,当a2m+1≡-1(mod p)(1)时,p=8m+5

2为p的平方剩余,

即2p-1/2≡24m+2≡-1(mod p)(2)

由(1)(2)得,a2m+12p-1/2≡1(mod p)

(a m+122m+1)2≡a(mod p)

x≡+-a m+122m+1(mod p)

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

高中数学必修、选修全部知识点精华归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

初等数论总复习题及知识点总结

初等数论总复习题及知识点总结 最后,给大家提一点数论的学习方法,即一定不能忽略习题 的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经 说过如果学习数论时只注意到它的内容而忽略习题的作用,则相 当于只身来到宝库而空手返回而异。数论有丰富的知识和悠久的 历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅 导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马 大定理的阅读材料。初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;: 1,2,5;:1。第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。习题要求:1,2,4;:2,3。第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、 费尔马小定理及在循环小数中的应用习题要求:2,6;:1;: 2,3;1,2。第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方 程威尔逊定理。习题要求:1;:1,2;:1,2。第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同

余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。 第一章整除 一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。 二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。 三、重点和难点(1)素数以及它有关的性质,判别正整数a 为素数的方法,算术基本定理及其应用。(2)素数有无穷多个的证明方法。(3)整除性问题的若干解决方法。(4)[x]的性质及其应用,n!的标准分解式。 四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq成立。因此这一标准作为

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等 函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线 与方程、导数及其应用。选修1—2:统计案例、推理与证明、 数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。选修2—2:导数及其应用,推理与证 明、数系的扩充与复数选修2—3:计数原理、随机变量及其 分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平 面向量,圆锥曲线,立体几 何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运 算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与 定义域、值域与最值、反函 数、三大性质、函数图象、 指数与指数函数、对数与对 数函数、函数的应用

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论作业(3)答案

第三次作业答案: 一、选择题 1、整数5874192能被( B )整除. A 3 B 3与9 C 9 D 3或9 2、整数637693能被(C )整除. A 3 B 5 C 7 D 9 3、模5的最小非负完全剩余系是( D ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、如果)(mod m b a ≡,c 是任意整数,则(A ) A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 二、解同余式(组) (1))132(mod 2145≡x . 解 因为(45,132)=3|21,所以同余式有3个解. 将同余式化简为等价的同余方程 )44(mod 715≡x . 我们再解不定方程 74415=-y x , 得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为 )132(mod 21≡x , )132(mod 65)132(mod 3 13221≡+ ≡x , )132(mod 109)132(mod 3132221≡?+≡x . (2))45(mod 01512≡+x 解 因为(12,45)=3|15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为 )45(mod 10≡x ,

)45(mod 25)45(mod 3 4510≡+≡x , )45(mod 40)45(mod 3 45210≡?+≡x . (3))321 (m od 75111≡x . 解 因为(111,321)=3|75,所以同余式有3个解. 将同余式化简为等价的同余方程 )107(mod 2537≡x . 我们再解不定方程 2510737=+y x , 得到一解(-8,3). 于是定理4.1中的80-=x . 因此同余式的3个解为 )321(mod 8-≡x , )321(mod 99)321(mod 3 3218≡+-≡x , )321(mod 206)321(mod 3 32128≡?+-≡x . (4)?? ???≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x . 解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式 )7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x , 得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为 ). 494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=?-?+?-?+??≡x (5)???????≡≡≡≡) 9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

初等数论c++

备注:纯手写代码,注释。 数论 1、素数 (1)暴力求解法 根据素数的概念,没有1和其本身没有其他正因数的数。所以只需枚举比这个数小的数,看能整除即可; C++代码: #include #include #include using namespace std; bool determine(int number) { if(n<=2)return false; if(!n%2)return false; for(int i=3;i<=ceil(sqrt(number));i+=2)

//去掉了偶数的判断,效率提高一倍 /*如果number整除以i,那么会得到两个的因数, 而较小的那个因数不会超过number的二分之一次方; 所以只需判断到number的平方根向上取整即可;*/ if(number%i); else return false; return true; } int main() { int sum; cin>>sum; if(determine(sum)) cout<<"YES!"; else cout<<"NO!"; return 0; } 时间复杂度:o(sqrt(n)/2); 空间复杂度:几乎没有; (2)一般线性筛法: 因为任何一个合数都能分解成几个素数相乘的形式; 所以可以做一个表,首先把2设为质数,然后将2的倍数设为合数,剩下的数就是新得到的质数,然后重复这个过程,直到筛到合

适的范围即可; 但是这个算法有缺陷: 1、同一个数可能被筛多次,这就产生了多余的步骤。 2、占用空间很大,如果使用bool数组的话,只能筛到1e9; 3、从1-n筛,不能从m-n开始筛; C++代码: #include #include #include using namespace std; bool s[1000000000]; int m,n; int main() { cin>>m>>n; memset(s,true,n); s[0]=s[1]=0; //输出M—N之间所有素数; for(int i=2;i<=ceil(sqrt(n));++i) if(s[i]) {

高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳

安徽·合肥郭建德老师整理 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线 与平面、平面与平面、棱柱、 棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二 项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、 抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点 第一章:集合与函数概念 §

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

初等数论知识点汇总

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012 21 11010 10 a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012 21 1a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 第二节 整数的性质及其应用(1) 基础知识 整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。 1.整除的概念及其性质 在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数(因子),称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 记作b a 。 由整除的定义,容易推出以下性质: (1)若c b |且a c |,则a b |(传递性质);

自考初等数论试题及答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求? ?? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

初等数论知识点汇总

第一节整数的p进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m位的正整数A,其各位上的数字分别记为,则此数可以简记为:(其中)。 由于我们所研究的整数通常是十进制的,因此A可以表示成10的次多项式,即,其中 且,像这种10的多项式表示的数常常简记为。在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A的p进制表示: ,其中且。而仍然为十进制数字,简记为。 第二节整数的性质及其应用(1) 基础知识 整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。 1.整除的概念及其性质 在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。 定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数(因子),称是的一个倍数,如果不存在上述,则称不能整除记作。

初等数论知识点总结

初等数论知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《初等数论》总结 姓名 xxx 学号 xxxxxxxx 院系 xxxxxxxxxxxxxxx 专业 xxxxxxxxxxxxxxx

个人感想 初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。 有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。 老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。 知识点总结 第一章 整数的可除性 1. 定义:设是给定的数,,若存在整数,使得则称整除 ,记作,并称是的一个约数,称是的一个倍数,如果不存在上述,则称不能整除 2性质: (1)若且,则(传递性质); (2)若且,则即为某一整数倍数的整数之集关于加、减运算封闭。若反复运用这一性质,易知及,则对于任意的整数有 。更一般,若都是的倍数,则。或着 ,则其中; (3)若,则或者,或者,因此若且,则; (4)互质,若,则; b a ,0≠b c bc a =b a a b |b a a b c b a c b |a c |a b |a b |c b |)(|c a b ±a b |c b |v u ,)(|cv au b ±n a a a ,,,21 b )(|21n a a a b +++ i b a |∑=n i i i b c a 1 |n i Z c i ,,2,1, =∈a b |0=a ||||b a ≥a b |b a |b a ±=b a ,c b c a |,|c ab |

自考初等数论试题及答案

初等数论考试试卷 1 一、单项选择题(每题3分,共18分) 1、 如果 ba , ab ,则(). A a b Bab C a b Dab 2、 如果 3n , 5n ,则 15 ( ) n . A 整除 B 不整除 C 等于 D 不一定 3、 在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、 如果 a b (modm ) , c 是任意整数贝V 5、 如果(),则不定方程ax by c 有解. A (a, b)c B c(a,b) C ac D (a,b)a 6、 整数5874192能被()整除. A 3 B 3 与 9 C 9 D 3 或 9 二、填空题(每题3分,共18分) 1、 素数写成两个平方数和的方法是( )? 2、 同余式ax b 0(modm ) 有解的充分必要条件是(). 3、 如果 a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、 如果p 是素数,a 是任意一个整数,则a 被P 整除或者(). 5、 a,b 的公倍数是它们最小公倍数的 (). 6、如果a ,b 是两个正整数,则存在()整数q ,r ,使a bq r ,0 r b . 三、计算题(每题8分,共32分) 1、 求[136,221,391]=? 2、 求解不定方程9x 21y 144 . 3、 解同余式 12x 15 0(mod45) . 429 4、 求563 ,其中563是素数.(8 分) 四、证明题(第 1小题10分,第2小题11分,第3小题11分,共32分) 2 3 n n n 1证明对于任意整数n ,数3 2 6是整数. 2、 证明相邻两个整数的立方之差不能被 5整除. A ac bc(modm) B a b C ac bc(mod m) D ab

相关文档
最新文档