多自由度受迫振动的响应习题

多自由度受迫振动的响应习题

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

第4章多自由度系统的振动题解

习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 22121111)(l g m l g m m k k +++ =,2 221l g m k -=,2212l g m k - =,2 2222l g m k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ??? ???=m m M 00;?? ?? ??????- - =l mg l mg l mg l mg K 3 由频率方程02=-M p K ,得 0322 =????? ??? ? ?-- - -=mp l mg l mg l mg mp l mg B 0242 2 2224 2 =+-∴l g m p l g m p m l g p ) 22(1-=∴ ,l g p )22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ?? ??-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ??????-=112) 1(A ?? ????+=112)2(A 题4-1图

4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 222111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=??????????? ?--++????????????? ?00003122222 2122 1x a k a k a k a k b k x m a m θθ 由频率方程02=-M K p ,得 031 2 22222 212221=----+p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和 k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 4 34343432 11111θθθ+-= 2 2434343432 2211122l l k l l k l l k I θθθθ--= 题4-3图 题4-2图

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

第六章多自由度体系地微振动

第六章多自由度体系的微振动 教学目的和基本要求:正确理解线性振动的概念和力学体系平衡的分类;能运用拉格朗日方程初步分析两个自由度保守体系的自由振动问题;理解简正坐标的概念并了解利用简正坐标将复杂振动转化为简正振动的方法和意义。 教学重点:掌握运用拉格朗日方程分析两个自由度保守体系的自由振动问题的方法和简正坐标的物理意义。 教学难点:简正坐标的物理意义。 §6.1 振动的分类和线形振动的概念 振动不仅在宏观领域大量存在(如单摆、弹性振子和地震等),在微观领域也是一种普遍现象(如晶体中晶格的振动、光学中分子的振动等)。振动的种类根据所依据的标准不同可有几种分类方法,下面将简单介绍。 一:振动的分类 1.按能量的转换来划分. 自由振动——系统的能量E为常数,即能量守恒。 阻尼振动——系统的能量E逐渐转化为热能Q。 强迫振动——系统不断从外界吸收能量并将其转化为热能Q。 2.按体系的自由度划分. 单自由度振动——体系的自由度S=1。 有限多自由度振动和无限多自由度振动——体系的自由度为大于1的有限值或无限大值。 3.按体系的动力学微分方程的种类划分. 线性振动——体系的运动微分方程为线性方程。 非线性振动——体系的运动微分方程为非线性方程。 4.本章研究的主要问题. 以上我们按不同的标准将振动进行了归类,实际上这几种标准是相互交叉的,也就是说振动还可以按照以上两个或三个标准进行进一步的归类。如线性振动还可以进一步分为单自由度线性振动、有限多自由度线性振动和无限多自由度线性振动。 表6.1给出了同时按自由度和微分方程的种类对振动进行的分类。我们在本章研究的主

要问题是有限多自由度的线性振动,所以有必要对线性和非线性振动做进一步讨论。 表6.1 二:有限多自由度线性振动 1.定义:体系的自由度为有限多个且体系的运动微分方程为线性方程。 例如:单摆的运动微分方程为0=+θθsin l g ,方程为非线性的。但当θ很小时有θθ≈sin , 方程变为线性方程0=+θθl g 。如果同时还存在有阻尼θβ -及强迫力)t (f ,则方程可写成 )t (f l g =++θθβθ ,仍为线性方程。 2.应用:一般情况下当力学体系在其平衡位置做微振动时,只要考虑它的最低级近似即可。这样的振动无论是自由振动、阻尼振动还是强迫振动,也无论自由度的个数是多少,其振动的运动微分方程均可看成是线性的,也就是属于线性振动。 三:平衡位置及其分类. 1.平衡位置的定义及判定方法。 (1)定义:如果力学体系在t=0时静止地处于某一确定位置,当∞?→? t 时该体系仍能保持在此位置,那么该位置即为体系的平衡位置,我们说体系处于平衡态。 (2)判定方法:在§2.4节中我们已指出保守力学体系处于平衡位置时,其势能应取极值(见第二章4.2式),即 s ...,i ,q V i i 210==??,这可以做为保守体系平衡位置的判据。 2.平衡位置的分类及其判定方法. (1)平衡位置的分类:平衡位置按其性质不同可分为三类: ○1稳定平衡:力学体系受到扰动偏离平衡位置后将回到平衡位置或者在平衡位置的附近做微振动。

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

相关文档
最新文档