2.3 确定二次函数的表达式-朱翠香

2.3 确定二次函数的表达式-朱翠香
2.3 确定二次函数的表达式-朱翠香

1 / 2

第二章 二次函数

《确定二次函数的表达式(第1课时)》

北师附校 朱翠香

一、教学目标

知识与技能:

体会确定二次函数表达式所需要的条件,会用待定系数法求二次函数的表达式。 过程与方法:

经历确定二次函数表达式的思维过程,类比求一次函数表达式的方法,体会求二次函数表达式的思想方法. 在观察发现中体会数形结合的思想。 情感、态度与价值观:

逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。 教学重点:求二次函数的解析式

教学难点:根据问题灵活选用二次函数表达式的不同形式,求出函数解析式。

二、教学过程 第一环节 复习引入

1、二次函数的一般形式: ;

顶点式: 。 2、完成下表:

发现:以上函数表达式中顶点在原点的有 ,顶点在y 轴上的有 。 3、我们用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需

要 个独立的条件;确定反比例函数x

k

y =(k ≠0)的关系式时,通常只需要 个条件.

如果要确定二次函数的关系式y=ax 2+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件?(请小组讨论交流)

第二环节 初步探究

引例:如图2-7是一名学生推铅球时,铅球行进高度y (m)与水平距离x (m)的图象,其中(4,3)为图像的顶点,你能求出其表达式吗?

题后反思:

例1、二次函数y=ax 2

+c 的图象经过点(2,3)和(-1,-3),求二次函数的表达式.

巩固练习:1、二次函数2y x bx c =++的图像经过点A (1,3)和B (0,1 )

,求函数表达式。

2、已知二次函数图像的顶点在原点,且过点(1,3),求该函数表达式。

变式训练:二次函数图像过点(2,4),且当x=1时,y 有最值是6。求函数解析式。

表达式

顶点坐标 ①y=ax 2 ②y=ax 2+c ③y=a(x-h)2+k

④y=ax 2+bx+c

2 / 2

1y x

3

40第三环节 深入探究

例2:已知二次函数的图象与y 轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.

想一想(请小组讨论交流)

(1)在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式? (2)求二次函数的表达式的一般步骤是什么? 题后反思:

1、用顶点式k h x a y +-=2)(确定二次函数表达式,当知道 ,就可以确定这个二次函数的表达式.

2、用一般式y=ax 2+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道 ,也可以确定二次函数的表达式.

3、求二次函数的表达式的一般步骤是 。 巩固练习:已知,二次函数有最小值为-9,对称轴为直线x=3,且过点(4,-8),则函数关系式为 。 变式训练:二次函数的图像与x 轴交点的横坐标为-2和1,且经过点(0,4),求二次函数的表达式。

第四环节:反馈练习

1、【A 】已知抛物线顶点在原点,且过点(-1,-1),则抛物线表达式为 。

2、【A 】如右图,求抛物线的表达式。

3、【B 】(2015?青岛中考)如图隧道的截面由抛物线和长方形构成,长方形的长是

12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用

c bx x y ++-

=2

6

1表示,且抛

物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为2

17m 。 求抛物线的函数

关系式,并计算出拱顶

D 到地面OA 的距离;

第五环节 归纳小结

通过本节课的学习,你有哪些收获?

数学知识: 数学思想:

第六环节 课堂检测

1、【A 】已知二次函数的图象y=﹣x 2+bx+c 经过点A (3,0),B (﹣1,0).此函数解析式为

2、【A 】已知一个二次函数的图象与y= -x 2-3的图象形状相同,开口方向也相同,图象顶点坐标为(2,6),则这个二次函数的解析式为 。

3、【B 】(2016?青岛中考)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax 2+bx (a≠0)表示.已知抛物线上B ,C 两点到地面的距离均为m ,到墙边的距离分别为m ,m .求该拋物线的函数关系式,并求图案最高点到地面的距离;

第七环节 作业布置

【必做题】课本习题2.6

【选做题】抛物线与x 轴交于A 、B 两点,与y 轴交C 点,

点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是 直线

x=

,求抛物线的解析式。

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生: 时间: 学习目标 1、熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、.二次函数的三种表达式 一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )] 交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线] 2、一般地,自变量x 和因变量y 之间存在如下关系: y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 例题1已知函数y=x 2 +bx +1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x >0时,求使y ≥2的x 的取值范围. 例题2、一次函数y=2x +3,与二次函数y=ax 2 +bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大. (4)当x 为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax 2 +bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<- a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1 图① 图② 2.函数y = 21x 2 +2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+2 1

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

二次函数表达式三种形式练习题

7.已知二次函数的图象经过点(﹣1,﹣5),( 0, 4)和(1,1),则这二次函数的表达式为( A .y=﹣6x 2+3x+4 B .y=﹣2x 2+3x ﹣4 C .y=x 2+2x ﹣4 D .y=2x 2+3x ﹣4 8.若二次函数 y=x 2﹣2x+c 图象的顶点在 x 轴上,则 c 等于( )A .﹣1 B .1 C . ) D .2 9.如果抛物线经过点A (2,0)和B (﹣1,0),且与y 轴交于点C ,若OC=2.则这条抛物线的解析式是( ) A . 10. A . 11. A . y=x 2﹣x ﹣2 B .y=﹣x 2﹣x ﹣2 或 y=x 2+x+2 C .y=﹣x 2+x+2 D .y=x 2﹣x ﹣2 或 y=﹣x 2+x+2 如果抛物线 y=x 2 ﹣6x+c ﹣2 的顶点到 x 轴的距离是 3,那么 c 的值等于( ) 8 B .14 C .8 或 14 D .﹣8 或﹣14 二次函数 的图象如图所示,当﹣1≤x ≤0 时,该函数的最大值是( ) 3.125 B .4 C .2 D .0 当﹣2≤x ≤1 时,二次函数 y=﹣(x ﹣m )2+m 2+1 有最大值 3,则实数 m 的值为( ) A . 或﹣ B . 或﹣ C .2 或﹣ D . 或﹣ 13.如果一条抛物线经过平移后与抛物线 y=﹣ x 2 +2 重合,且顶点坐标为(4, 的解析式为 . 14.二次函数的图象如图所示,则其解析式为 . 15.若函数 y=(m 2﹣4)x 4+(m ﹣2)x 2的图象是顶点在原点,对称轴是 y 轴的抛物线,则 m= . 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x 轴的距离为 2, 则该二次函数的解析式为 . 17.如图,已知抛物线 y=﹣x 2+bx+c 的对称轴为直线 x=1,且与x 轴的一个交点为(3,0), 那么它对应的函数解析式是 . 18.二次函数 y=ax 2+bx+c 的图象经过 A (﹣1,0)、 B (0,﹣3)、 C (4,5)三点,求出 抛物线解析式 . 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为 4,此函数关系式为 20.如图,一个二次函数的图象经过点A ,C ,B 三点,点A 的坐标为(﹣1,0),点B 的坐标为 (4,0),点 C 在 y 轴的正半轴上,且 AB=OC .则这个二次函数的解析式是 . 21.坐标平面内向上的抛物线y=a (x+2)( x ﹣8)与x 轴交于A 、B 两点,与y 轴交于C 点,若 1.把二次函数 y=x 2﹣4x+5 化成 y=a (x ﹣h )2+k (a ≠0)的形式,结果正确的是( ) A .y=(x ﹣2)2+5 B .y=(x ﹣2)2+1 C .y=(x ﹣2)2+9 D .y=(x ﹣1)2+1 2.将 y=(2x ﹣1)?(x+2)+1 化成 y=a (x+m )2+n 的形式为( ) D . 3.与 y=2(x ﹣1)2+3 形状相同的抛物线为( )A .y=1+ x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为( A .y=﹣2(x+2)2+4 B .y=﹣2(x ﹣2)2+4 C .y=2(x+2)2﹣4 D .y=2(x ﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( ) A .y=﹣3(x ﹣1)2+3 B .y=3(x ﹣1)2+3 C .y=﹣3(x+1)2+3 D .y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数 y= x 2的图象相同的抛物线所对应的函数是( ) A .y= (x+6)2 B .y= (x ﹣6)2 C .y=﹣ (x+6)2 D .y=﹣ (x ﹣6)2 A . B . C . ) 2),则它

专题训练(二)确定二次函数的表达式五种方法

专题训练(二)确定二次函数的表达式五种方法?方法一利用一般式求二次函数表达式 1.已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为() A.y=x2-x-2 B.y=-x2+x+2 C.y=x2-x-2或y=-x2+x+2 D.y=-x2-x-2或y=x2+x+2 2.若二次函数y=x2+bx+c的图象经过点(-4,0),(2,6),则这个二次函数的表达式为______________. 3.一个二次函数,当自变量x=-1时,函数值y=2;当x=0时,y=-1;当x=1时,y=-2.那么这个二次函数的表达式为____________. 4.如图2-ZT-1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0, 0),B(2,0)三点. (1)求抛物线的表达式; (2)若M是该抛物线的对称轴上的一点,求AM+OM的最小值. 图2-ZT-1

?方法二利用顶点式求二次函数表达式 5.已知二次函数y=ax2+bx+c,当x=1时,有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的表达式是() A.y=-2x2-x+3 B.y=-2x2+4 C.y=-2x2+4x+8 D.y=-2x2+4x+6 6.已知y是x的二次函数,根据表中的自变量x与函数y的部分对应值,可判断此函数的表达式为() A.y=x2 B.y=-x2

C .y =3 4(x -1)2+2 D .y =-3 4 (x -1)2+2 7.[2018·巴中改编]一位篮球运动员在距离篮框中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮框中心距离地面高度为3.05m .在如图2-ZT -2所示的平面直角坐标系中,此抛物线的表达式是________. 2-ZT -2 8.已知抛物线y 1=ax 2+bx +c 的顶点坐标是(1,4),它与直线y 2=x +1的一个交点的横坐标为2. (1)求抛物线的函数表达式; (2)在如图2-ZT -3所示的平面直角坐标系中画出抛物线y 1=ax 2+bx +c 及直线y 2=x +1,并根据图象,直接写出使得y 1≥y 2成立的x 的取值范围. 图2-ZT -3

二次函数表达式、图象、性质及计算(讲义)

二次函数表达式、图象、性质 及计算(讲义) 一、知识点睛 1. 一般地,形如__________________(_______________)的 函数叫做x 的二次函数. 2. 表达式、图象及性质: ①由一般式通过______________可推导出顶点式. 顶点式:________________(其中h =______,k =_________). ②二次函数的图象是_________,是________图形,对称轴是__________,顶点坐标是_____________. ③当a_______时,函数有最_____值,是____________; 当a_______时,函数有最_____值,是____________. ④当a _____时,图象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______;当a_____时,图 象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______. ⑤a ,b ,c 符号与图象的关系: a 的符号决定了抛物线的开口方向,当_____时,开口向____;当_____时,开口向____. c 是抛物线与_______交点的______. b 的符号:与a_____________,根据_____________可推导. 3. 二次函数图象平移: ①二次函数图象平移的本质是__________,关键在______. ②图象平移口诀:________________、________________. 平移口诀主要针对二次函数_________________. 二、精讲精练 1. 下列函数(x ,t 是自变量)是二次函数的有________.(填写序号) ①2132y x x =--;②2123y x x =-+;③21 32 y x =-+; ④2 22y x =+;⑤2y x =-;⑥231252 y x x =-+; ⑦215s t t =++;⑧2 20x y -+=. 2. 若函数7 2 )3(--a x a y =为二次函数,则a =( ) A .-3 B .3 C .±3 D .5 3. 通过配方把221213y x x =-+写成2 ()y a x h k =-+的形式( ) A .2 (3)5y x =-- B .2 (3)5y x =+- C .2 2(3)5y x =-+ D .2 2(3)5y x =--

2017中考二次函数专题(含答案)

1.如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标. 2. 在直角坐标系xoy 中,(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化后得到如图15.1所示的BCD ?. (1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,

若直线PC 将ABC ?的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ?、BCD ?分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ?与BCD ?重叠部分面积的最大值. 3. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的 图15.1 C D O B A x y

对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标. 4. 如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为 (-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2 )试探究抛物线上是 第25题图

专题训练(二)确定二次函数的表达式常见的五种方法.docx

专题训练(二)确定二次函数的表达式常见的五种方法 >方法一利用一般式求二次函数表达式 1?已知抛物线过点A(2,0),B(—l,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为() A? y = x2—x—2 B? y = —X2+X+2 C - y=x? —x—2 或y= —x?+x + 2 D? y=—x'—x—2 或y=x? + x+2 2?若二次函数y = x?+bx+c的图象经过点(一4,0),(2,6),则这个二次函数的表达式 为 _____________ ? 3?—个二次函数,当自变量x= —1时,函数值y = 2;当x=0时,y= —1;当x=l时, y=—2.那么这个二次函数的表达式为______________ . 4? [2016-安庆外国语学校月考]如图2-ZT-1,在平面直角坐标系中,抛物线y=ax? + bx+c 经过A(-2,-4)> 0(0,0),B(2,0)三点. ⑴求抛物线y=ax?+bx+c的表达式; (2)若M是该抛物线对称轴上的一点,求AM + OM的最小值. o V /\ 图2-ZT-1 >方法二利用顶点式求二次函数表达式 5?已知二次函数y=ax2+bx+c,当x=l时,有最大值8,其图象的形状、开口方向与抛物线y=—2x?相同,则这个二次函数的表达式是() A? y=—2x2—x+3 B. y=—2x2+4 C?y= —2x?+4x + 8 D. y=-2x2+4x+6 6?已知y是x的二次函数,根据表中的自变量x与函数y的部分对应值,可判断此函数表达式为()

A.y = x B. y=—x2

3 7.某广场中心有高低不同的各种喷泉,其中一支高度为二米的喷水管喷水的最大高度为 4米,此时喷水的水平距离为+米,在如图2-ZT-2所示的坐标系屮,这支喷泉喷水轨迹的 函数表达式是____________ . 图2-ZT-2 8?已知抛物线y]=ax2+bx+c的顶点坐标是(1,4),它与直线y2=x+l的一个交点的横坐标为2. (1)求抛物线的函数表达式; (2)在如图2-ZT-3所示的平面直角坐标系中画出抛物线yj=ax2+bx+c及直线y2 = x + 1,并根据图象,直接写出使得yi^y2成立的x的取值范闱. 图2-ZT-3 >方法三利用交点式求二次函数表达式 25 9?若抛物线的最高点的纵坐标是手,且过点(一1,0),(4,0),则该抛物线的表达 式为()A? y=—X2+3X+4B. y=—X2—3X+4 C ? y = x‘一3x—4 D. y=x? —3x+4 10?抛物线y=ax2+bx+c与x轴的两个交点坐标为(一1,0),(3,0),其形状及开口方向与抛物线y=—2/相同,则抛物线的函数表达式为() A? y=—2x‘一x + 3 B. y=—2x2+4x + 5 C - y=—2X2+4X +8D. y = —2X2+4X+6

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生:时间: 学习目标 1熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、?二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a老) 顶点式:y=a(x-h)A2+k [ 抛物线的顶点P (h, k)] 交点式:y=a(x-x1)(x-x2)[ 仅限于与x轴有交点A (x1 , 0)和B (x2 , 0)的抛物线] 2、一般地,自变量x和因变量y之间存在如下关系: y=axA2+bx+c (a, b, c为常数,a M),且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还可以决定开口大小,lal越大开口就越小,lal越小开口就越大.) 则称y 为x的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 2 例题1已知函数y=x + bx +1的图象经过点(3, 2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x > 0时,求使y》2的x的取值范围. 例题2、一次函数y=2x + 3,与二次函数y=ax2+ bx + c的图象交于A ( m 5)和B (3, n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax2+ bx+ c(a M0)的图象,如图①所示,则下列关系式中成立的是( b b b b ——=1

确定二次函数的表达式

2.3 确定二次函数的表达式 学习目标: 经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究. 学习重点: 能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题. 学习难点: 用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误. 学习过程: 一、做一做: 已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规 律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式, 你能得出什么结论?与同伴交流. 二、试一试: 两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?你能分别用函数表达式,表格和图象表示这种变化吗? 表示方法优点缺点 解析法 表格法 图像法 三者关系 【例1】已知函数y=x2+bx+1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x>0时,求使y≥2的x的取值范围. 【例2】一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值?

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

二次函数专题完整版

二次函数专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题训练(三) 与函数有关的最值问题 类型之一 由不等关系确定的最值问题 1.某工厂以每吨3000元的价格购进50吨原料进行加工,两种加工方式如下表: 行) (1)设其中粗加工x 吨,共获利y 元,求y 与x 的函数关系式;(不要求写出自变量的取值范围) (2)如果必须在20天内加工完,如何安排生产才能获得最大利润最大利润是多少 类型之二 由一次函数确定的最值问题 2.某工厂计划为地震灾区生产A ,B 两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料0.5 m 3,一套B 型桌椅(一桌三椅)需木料0.7 m 3,工厂现有库存木料302 m 3. (1)有多少种生产方案? (2)现要把生产的全部桌椅运往地震灾区,已知每套A 型桌 椅的生产成本为100元,运费为2元;每套B 型桌椅的生产成本为120元,运费为4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) 类型之三 由二次函数确定的最值问题 3.一个边长为4的正方形截去一个角后成为五边形ABCDE (如图Z -3-1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 图Z -3-1 4.[2015·青岛]如图Z -3-2,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角 坐标系,抛物线可以用y =-x 2 +bx +c 表示,且抛物线的点C 到墙面OB 的水平距离为3 m 时,到地面OA 的距离为m . (1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离; (2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过? (3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米? 图Z -3-2

确定二次函数的表达式习题

确定二次函数的表达式习 题 Final revision on November 26, 2020

5.5确定二次函数的表达式 一.选择题: 1.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为() A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32(1)x +-2 2.已知二次函数y ax bx c =++2的图象过点(1,-1),(2,-4),(0,4)三点,那么它的对称轴是直线() A .x =-3 B .x =-1 C .x =1 D .x =3 3.一个二次函数的图象过(-1,5),(1,1)和(3,5)三个点,则这个二次函数的关系式为() A .y x x =--+222 B .y x x =-+222 C .y x x =-+221 D .y x x =--222 4.已知:抛物线y x x c =-+26的最小值为1,那么c 的值是() A .10 B .9 C .8 D .7 二.填空题: 5.已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6.对称轴是x =-1的抛物线过点M (1,4),N (-2,1),这条抛物线的函数 关系式为________________. 7.已知二次函数y x bx c =++2的图象过点A (1,0),B (0,4),则其顶点坐 标是________________. 8.已知二次函数,当x =0时,y =-3;当x =1时,它有最大值-1,则其函数 关系式为________________. 9.抛物线y x =-+382向右平移5个单位的抛物线的函数关系式是___________. 三.解答题: 10.根据下列条件,分别求出对应的二次函数关系式。已知抛物线的顶点是(―1,―2),且过点(1,10) 11.根据下列条件,分别求出对应的二次函数关系式. (1)已知抛物线的顶点是(-1,-2),且过点(1,10); (2)已知抛物线过三点:(0,-2),(1,0),(2,3).

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

初中数学专题分类突破:二次函数的解析式及图象特征

初中数学专题分类突破:二次函数的解析式及图象特征 , 类型 1 由图象上的点确定解析式 ) 例1题图 【例1】如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴 的正半轴上,抛物线y=-1 2 x2+bx+c经过B,C两点,点D为抛物线的顶点,连结AC,BD,CD. (1)求此抛物线的解析式; (2)四边形ABDC的面积是__12__.解:(1)由已知,得C(0,4),B(4,4), 把B与C坐标代入y=-1 2 x2+bx+c,得 ? ? ?4b+c=12, c=4, 解得b=2,c=4,则解析式为y=-1 2 x2+2x+4. (2)∵y=-1 2 x2+2x+4=- 1 2 (x-2)2+6,∴抛物线顶点坐标为(2,6),则S 四边形ABDC =S △ABC +S △BCD = 1 2 ×4×4+ 1 2 ×4×2=8+4=12. 变式已知抛物线经过A(1,0),B(0,3)两点,且对称轴是直线x=-1,求抛物线对应的函 数解析式.(用顶点式与交点式两种方法完成) 解:方法一:设y=a(x+1)2+b, 将A(1,0),B(0,3)两点坐标代入,求得a=-1,b=4; 所求的函数解析式y=-(x+1)2+4=-x2-2x+3. 方法二:由题意可得抛物线与x轴的另一个交点为(-3,0), 设y=a(x-1)(x+3),将B(0,3)的坐标代入,得a=-1,

所求的函数解析式为 y=-(x-1)(x+3)=-x2-2x+3. , 类型 2 由系数的特征确定二次函数图象 ) 【例2】在一次函数y=kx+b(k≠0)中,y随x的增大而减小,则二次函数y=k(x-1)2的图象大致是( B) A.B.C. D. 变式图 变式二次函数y=ax2+bx+c的图象如图所示,那么下列关于此二次函数的四个结论中,正确的有( D) ①a<0;②c>0;③b2-4ac>0;④ a 2b <0. A.1个B.2个C.3个D.4个 【解析】①∵图象开口向下,∴a<0,故本选项正确; ②∵该二次函数的图象与y轴交于正半轴,∴c>0,故本选项正确; ③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式Δ=b2-4ac >0,故本选项正确; ④∵对称轴x=- b 2a >0,∴ a 2b <0,故本选项正确. , 类型 2 由图象的平移变换确定解析式) 【例3】已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线解析式为( A) A.y=x2+2x+1 B.y=x2+2x-1 C.y=x2-2x+1 D.y=x2-2x-1

05二次函数三种表达式

用待定系数法求二次函数的表达式 年级 九年级 学校 讲义编号 学生 老师 周老师 授课时间 2017..(:00——:00) 教学目标 用待定系数法求二次函数的表达式; 重 点 用待定系数法求二次函数的表达式; 难 点 用待定系数法求二次函数的表达式; 教学内容 【用待定系数法求二次函数表达式的方法】 (1)设:根据条件设函数表达式; (2)列:把已知点的坐标代入表达式,得到方程或方程组; (3)解:解方程或方程组,求出未知系数; (4)答:写出函数表达式,注意最后结果一般要化成一般式c bx ax y ++=2 二次函数解析式的表示方法 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:k m x a y +-=2 )((a ,h ,k 为常数,0a ≠, 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数各种形式之间的变换 二次函数c bx ax y ++=2 用配方法可化成:()k m x a y +-=2 的形式,其中a b a c k a b 442m 2 -=-=,. 求抛物线的顶点、对称轴的方法 公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 配方法:运用配方的方法,将抛物线的解析式化为k m x a y +-=2 )(的形式,得到顶点为(m,k ),对称轴是直线m x =. 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

专题 二次函数的三种表示方式

专题05二次函数的三种表示方式 1:一般式 形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0); 典型考题 【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式. (2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由. 【变式训练】抛物线的图象如下,求这条抛物线的解析式。(结果化成一般式) 【能力提升】如图,在平面直角坐标系中,抛物线212 1x y = 先向右平移2个单位,再向下平移2个单位,得到抛物线2y . (1)求抛物线2y 的解析式(化为一般式); (2)直接写出抛物线2y 的对称轴与两段抛物线弧围成的阴影部分的面积. y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ). 【典型例题】已知二次函数21322 y x x =-++. ⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.

【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【能力提升】二次函数的图象经过点(03)A -, ,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标; (3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 3:交点式 y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围; (2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标. 【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x =-2,此时抛物线与x 轴的两交点间距离为6. (1) 求抛物线与x 轴两交点坐标;(2)求抛物线的解析式. 【能力提升】已知二次函数y =x 2﹣4x +3. (1)求该二次函数与x 轴的交点坐标和顶点; (2)在所给坐标系中画出该二次函数的大致图象,并写出当y <0时,x 的取值范围.

相关文档
最新文档