理论力学公式

理论力学公式
理论力学公式

静力学

静力学是研究物体在力系作用下平衡的科学。

第一章、静力学公理和物体的受力分析

教学目标:掌握物体的受力分析和正确画出受力图。 知识结构:

1、 基本概念:力、刚体、约束和约束力的概念。

2、 静力学公理:

(1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别 (2)二力平衡公理;(二力构件)

(3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理) (4)作用与反作用定律; (5)刚化原理。 3、常见约束类型与其约束力:

(1)光滑接触约束——约束力沿接触处的公法线; (2)柔性约束——对被约束物体与柔性体本身约束力为拉力; (3)铰链约束——约束力一般画为正交两个力,也可画为一个力; (4)活动铰支座——约束力为一个力也画为一个力;

(5)球铰链——约束力一般画为正交三个力,也可画为一个力; (6)止推轴承——约束力一般画为正交三个力;

(7)固定端约束——两个正交约束力,一个约束力偶。

4、物体受力分析和受力图: (1)画出所要研究的物体的草图; (2)对所要研究的物体进行受力分析;

(3)严格按约束的性质画出物体的受力。

意点:(1)画全主动力和约束力; (2)画简图时,不要把各个构件混在一起画受力图;

(3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理; (4)作用力与反作用力。

第二章、平面汇交力系与平面力偶系

教学目标:掌握平面汇交力系和平面力偶系的合成与平衡的计算方法。 知识结构: 1、平面汇交力系: (1)几何法(合成:力多边形法则;平衡:力多边形自行封闭)

(2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程

0x

F

=∑,0y F =∑)

意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直)

(2)对于二力构件,一般先设为拉力,若求出负值,说明受压。 2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。 (2)力偶矩:M Fh =±,逆时针正,反之负。

(3)力偶的性质:

[1]、力偶中两力在任何轴上的投影为零;

[2]、力偶对任何点取矩均等于力偶矩,不随矩心的改变而改变;(与力矩不同) [3]、若两力偶其力偶矩相等,两力偶等效; [4]、力偶没有合力,力偶只能由力偶等效。

(4)力偶系的合成(i

M M

=

∑)与平衡(

0M =∑)

第三章、平面任意力系

教学目标:掌握平面任意力系的简化与平衡力系的计算方法,会计算平面桁架的内力。 知识结构:

1、力的平移定理:把力向某点平移,须附加一力偶,其力偶矩等于原力对该点的力矩。

2、

简化的中间结果:

(1)主矢R

′F ——大小:R F ′=;

方向:(cos ,/R

ix

R

F F ′′=F i ,()cos ,/R

iy

R F F ′′=∑F j 。

(2)主矩()O

O

i

M M =∑F

3、简化的最后结果:

(1)主矢0R

′≠F ——[1]、0O M =,合力,作用在O 点; [2]、0O M ≠,合力,作用线距O 点为/O R

M F ′。

(2)主矢0R

′=F ——[1]、0O M ≠,合力偶,与简化中心无关; [2]、0O M =,平衡,与简化中心无关。

4、平面任意力系的平衡

(1)平衡条件——0R

′=F 、0O M =。

(2)平衡方程——[1]、基本式:

0x

F =∑、0y

F =∑、()0O

M =∑F ;

[2]、二矩式:0x

F =∑、()0A

M =∑F 、()0B

M =∑F ,A 、

B 连线不垂直于x 轴;

[3]、三矩式:

()0A

M =∑F 、()0B

M =∑F 、()0C

M =∑F ,

A 、

B 、

C 三点不得共线。

5、平面平行力系平衡方程:

注注

(1)

0y

F =∑、()0O

M =∑F ,y 轴不垂直力的作用线;

(至少有一个力矩方程) (2)()0A

M =∑F 、()0B

M =∑F ,A 、B 连线不与各力平行。 意点:(1)矩心应取在多个未知力的交点上;

(2)投影方程和力矩方程中的正负号;

(2)平衡方程的写法:

()0A

M =∑F ,不可写成0M =∑、()0M A =∑、

()0A

M F =∑或()0A

=∑M F 。

6、静定与超静定问题——比较未知量个数与独立平衡方程的个数。

7、平面简单桁架内力计算——(1)节点法(平面汇交力系)、(2)截面法(平面任意力系)

第四章、空间力系

教学目标:掌握空间力系的简化与平衡力系的求解方法,会计算物体的重心。 知识结构:

1、力在轴上的投影——直接投影法、间接(二次)投影法。

2、空间汇交力系——合成与平衡(三个独立方程)

3、力对点之矩、力对轴之矩——对点()O =×M F r F ,对轴 ()z z xy M M F h ==±F 等;力对点的矩矢在过该点的轴上的投影等于力对该轴的矩。

4、空间力偶系——合成与平衡

5、空间任意力系的简化:

(1)中间结果:

[1]、主矢R

i ′=∑F F ——大小:R F ′=;

方向:()cos ,/R

ix

R F

F ′′=F i 等。

[2]、主矩()O O

i

=∑M M F

(2)最后结果:

[1]、主矢0R

′≠F ——[a]、0O =M ,合力,作用线过简化中心; [b]、0O ≠M 、R

O ′⊥F M ,合力,作用线距O 点为/O R M F ′; [c]、0O ≠M 、//R

O ′F M ,力螺旋,中心轴过O 点。

[2]、主矢0R

′=F ——[a]、0O ≠M ,合力偶,与简化中心无关; [b]、0O =M ,平衡,与简化中心无关。

6、空间任意力系的平衡

(1)平衡条件——0R

′=F 、0O =M 。

(2)平衡方程——

0x

F =∑、0y

F =∑、0z

F =∑、

()0x

M =∑F 、()0y

M =∑F 、()0z

M =∑F 。

(3)、空间平行力系平衡方程:0z

F =∑、()0x

M =∑F 、()0y

M =∑F 等

7、重心确定方法:

(1)利用对称性:在对称轴、对称面或对称中心上;

(2)分割法(负面积法):/C i i

x Px P =

∑等;——三角形的重心/3h 、半圆的重心

43R

π

(3)实验法:悬挂法,称重法。

第五章、摩擦

教学目标:能够熟练地分析有摩擦时物体的平衡问题并求解。 知识结构: 1、滑动摩擦力

(1)静滑动摩擦力——方向:与相对滑动趋势方向相反;

大小:max 0s s N F F f F ≤≤=。

(2)动滑动摩擦力——方向:与相对滑动方向相反; 大小:d d N F f F =。

2、摩擦角与自锁

(1)摩擦角f ?——临界平衡状态时,全约束力与接触处公法线之间的夹角,或tan f s f ?=。

(2)自锁——所有主动力合力的作用线与接触处公法线间的夹角小于摩擦角,物体静止的情况。

3、滚动摩阻——转向:与相对滚动趋势转向相反; 大小:max 0f N M M F δ≤≤=。

运动学

运动学是研究物体运动的的几何性质(轨迹、运动方程、速度和加速度等)的科学。

第六章、点的运动学

教学目标:能够熟练地计算点的位移、速度和加速度。 知识结构:

1、 研究内容——研究点相对某参考系的几何位置随时间变化的规律,包括点的运动轨迹、

运动方程、速度和加速度。 2、 研究方法:

(1)矢量法——()t =r r 、=v r

&、==a v r &&& (2)直角坐标法——()1x f t =、()2y f t =、()3z f t =等

(3)自然法——()s f t =、v s ==v ττ&、2

/t n t n a a v v ρ=+=+=+a a a τn τn &。

意点:(1)矢量法主要用于理论推导; (2)直角坐标法是较为一般的方法。特别是点的运动轨迹未知的情形;

(3)自然法(弧坐标法)是针对点的运动轨迹已知的情形。运算简便,各量物理意义

明确;

(4)v &与v &的区别。

第七章、刚体的简单运动

教学目标:能熟练计算定轴转动刚体的角速度、角加速度以及刚体内各点的速度和加速度,

正确计算轮系的传动比。 知识结构:

1、刚体的平行移动(平移): (1)定义:在刚体内任取一直线段,在运动过程中这条直线段始终与其初始位置平行;

(2)分类:若刚体内各点的轨迹为直线,则称为直线平移;

若刚体内各点的轨迹为平面曲线,则称为平面曲线平移; 若刚体内各点的轨迹为空间曲线,则称为空间曲线平移; 2、刚体的定轴转动: (1)定义:刚体在运动时,其上或其扩展部分有两点保持不动。 (2)刚体定轴转动的整体运动描述:

[1]、转动方程——()f t ?=;

[2]、角速度——ω?=&,ωω=k [3]、角加速度——=ωα?=&&&,αα=k

(3)定轴转动刚体上各点的运动描述: [1]、运动方程——s R ?=,R 是点到转轴的距离; [2]、速度:v R ω=,v =×=v ωr τ

[3]、加速度:t n a a =×+×=+a αr ωv τn ,其中:t a R α=,2

2

/n a v R

R ω==

a ==()2tan ,/ωα=a n 。

3、 轮系的传动比——主动轮I 与从动轮II 的角速度的比值12212211

ωR z

i ωR z =±=±=±;正号表示两轮为同向转动,负号表示两轮为反向转动。

第八章、点的合成运动

教学目标:能正确选取动点、动系,分析三种运动,掌握速度和加速度的合成。 知识结构:

1、 研究同一点相对两个不同参考系的运动之间的关系。

2、 定性分析:

(1)动点——合成运动的研究对象;

(2)参考系——[1]、定参考系:习惯上把固结在地球上的参考系称为定系; [2]、动参考系:把相对定系做运动的参考系称为动系; (3)运动——[1]、绝对运动:动点相对定系的运动; [2]、相对运动:动点相对动系的运动;

[3]、牵连运动:动系相对定系的运动——牵连点对定系的速度和加速度称为动点在该瞬时的牵连速度、牵连加速度。 3、定量分析:

(1)点的速度合成定理:a e r =+v v v ;

(2)点的加速度合成定理:a e r C =++a a a a ,2C e r =×a ωv 。

意点:动点、动系和定系的选择原则:

(1)动点、动系和定系必须分别属于三个不同的物体,否则绝对、相对和牵连运动中

就缺少一种运动,不能成为合成运动;

(2)动点相对动系的相对运动轨迹易于直观判断(已知绝对运动和牵连运动求解相对运动的问题除外)。否则,会使相对加速度分析产生困难。 具体地,有:

[1]、两个不相关的动点,求二者的相对速度。

根据题意,选择其中之一为动点,动系为固结于另一点的平动坐标系;

[2]、运动刚体上有一动点,点作复杂运动。 该点取为动点,动系固结于运动刚体上。

[3]、机构传动,传动特点是在一个刚体上存在一个不变的接触点,相对于另一个刚体运动。

(a )导杆滑块机构:典型方法是动系固结于导杆,取滑块为动点。

(b )凸轮挺杆机构:典型方法是动系固结于凸轮,取挺杆上与凸轮接触点为动点。 (c )特殊问题,特点是相接触两个物体上的接触点位置都随时间而变化。此时,这连个物体的接触点都不宜选为动点,应选择满足前述选择原则的非接触点为动点。

第九章、刚体的平面运动

教学目标:能运用基点法、速度瞬心法和速度投影定理求解平面运动刚体上各点的速度和加速度。 知识结构:

1、刚体的平面运动——在运动中,刚体上的任意一点与某一固定平面的距离始终保持不变。

2、定性分析:(1)简化为平面图形在自身平面内的运动;

(2)平面运动可以分解为随基点的平移与绕基点的转动。 3、定量分析:(1)平面运动方程——()1O x f t ′=,()2O y f t ′=,()3f t ?=; (2)基点法求平面图形内各点速度——B A BA =+v v v

——速度投影定理:向A 、B 两点连线方向投影——cos cos B A v v βθ=; ——速度瞬心法:取速度为零的P 点为基点——B BP =v v ;

(3)基点法求平面图形内各点加速度——t

t

B A BA BA =++a a a a 。 意点:(1)车轮纯滚动问题,轮心加速度与角加速度之间的关系。 (2)机构运动学分析(连接点运动学分析)

[1]、若已知点的位置、时间的函数关系,可根据点的运动学,确定速度、加速度; [2]、接触滑动——可根据合成运动的理论分析;(两个刚体)

[3]、铰链连接——可根据平面运动理论求解。(同一平面运动刚体)

动力学

动力学:研究物体的机械运动与作用力之间的关系。

第十章、质点动力学的基本方程

教学目标:能正确建立质点的运动微分方程。 知识结构: 动力学基本定律:

1、第一定律(惯性定律);

2、第二定律(质点动力学基本方程):m =F a

——质点运动微分方程:22d d m t

=∑r

F ;投影式***1、已知运动求力;2、已知力求运

动;(3)混合问题。

3、第三定律(作用与反作用定律)。

第十一章、动量定理

教学目标:能熟练运用动量定理、质心运动定理及其守恒定律求解动力学问题。 知识结构:

1、质点动量——m =p v

(1)质点动量定理:[1]、微分形式——()d d m t =v F 或

()d

d m t

=v F ; [2]、积分形式——2

1

21d t t m m t ?==∫

v v F I 。

2、质点系动量——i i

m =∑p v

或C m =p v

(1)质点系动量定理:[1]、微分形式——()

()

d d d

e e t =

=∑∑p F I 或

()d d e t

=∑p

F ; [2]、积分形式——()21e

?=∑p p I 。

(2)质心运动定理——()e

C m =

∑a F 。

3、冲量:(1)常力的冲量——t =I F ; (2)变力的冲量——21

d t t t =

I F 。

意点:(1)质心运动定理的应用 ——常用方法:[1]、求系统质心坐标;[2]、求导得质心加速度;[3]、利用质心运动定理求外力。

(2)动量守恒定律及质心运动守恒定律;

(3)各运动量均应是相对惯性参考系的绝对运动量。

第十二章、动量矩定理

教学目标:能熟练运用动量矩定理及其守恒定律求解动力学问题,会计算刚体定轴转动和平面运动的动力学问题。

知识结构:

1、质点对点O 的动量矩——()O m m =×M v r v 。

2、质点系对点O 的动量矩——()O O

i i

m =∑L M v ;对轴的动量矩——[]

O z z

L =L 。

(1)刚体平移——(),()O O C z z C m L M m ==L M v v ;

(2)定轴转动——z z L J ω=。

3、质点系动量矩定理——

()d ()d e O

O i t

=∑L M F ; ——投影式:())()d d d (),

(),

()d d d y e e e x

z

x i y i z i L L L M F M F M F t

t

t

=∑=∑=∑。 4、刚体定轴转动微分方程——()z z

J M α=∑F 。

5、刚体对轴的转动惯量——2z i i

J m r

=∑;

(1)平行轴定理——2z zC J J md =+;

(2)回转半径——z ρ=

或2z z J m ρ=。

6、质点系相对质心的动量矩定理——()

d ()d

e C C i t

=∑L M F 。

7、刚体平面运动微分方程——()

e Cx x

ma F =Σ、()

e Cy y

ma F =Σ、()

()e C C J M α=ΣF

()e t C t ma F =Σ、()e n C n ma F =Σ、()()e C C J M α=ΣF 。

意点:

(1)动量矩定理的表达形式只适合于对固定点或固定轴,且其中的速度或角速度都是绝对速度或绝对角速度。对质心也成立时,其中的速度或角速度还可以是相对质心的速度或角速度。 (2)建立坐标系,在有一个固定轴的情况下一般取为角位移,角位移的正向确定后,角速度、角加速度以及力矩的方向均与角位移的正向相一致。 (3)注意动量矩守恒定律的应用。

(4)记住三个转动惯量:[1]、均质杆对一端的转动惯量——2

/3z J ml =; [2]、均质杆对中心轴的转动惯量——2/12z J ml =; [3]、均质圆盘对中心轴的转动惯量——2/2z J mR =。 (5)灵活运用动量定理、动量矩定理判断物体做何种运动,如P278,12-6,12-7。

第十三章、动能定理

教学目标:能熟练运动动能定理和机械能守恒定律求解动力学问题。 知识结构: 1、功——2

1

M M W d =?∫

F r

(1)常力在直线运动中的功——W Fs =;

(2)重力的功——1212()C C W mg z z =?Σ;

(3)弹性力的功——2

21212()2

k W δδ=

?; (4)定轴转动刚体上的功——2

1

12d z W M ???=

(5)平面运动刚体上力系的功——2

2

1

1

12C d d C i

R

C C W W M ???′=

=?+∑∫

∫F r 。 2、质点系的动能——21

2

i i T m v =∑

(1)平移刚体的动能——2

12C T mv =; (2)定轴转动刚体的动能——2

12z T J ω=;

(3)平面运动刚体的动能——2221

11

2

22

P C z T J ωmv J ω=

=+。 3、动能定理:(1)微分形式——d i T W δ=∑;

(2)积分形式——21i

T T W ?=

∑。

4、功率方程——

i i i dT

P dt

==?∑∑F v 。 5、机械能守恒定律。

意点:一般情况下,需综合应用这些定理求解未知量。 (1)优选动能定理,动能定理取整个系统作为研究对象的机会多些。且若系统只有一

个自由度,且为理想约束,应首先考虑使用动能定理求运动(但求不出约束力),再应用动量定理(质心运动定理)、动量矩定理求约束反力。 (2)对突减约束问题,一般宜采用平面运动微分方程求解。

(3)注意观察有无动量守恒、动量矩守恒,若有,则要充分利用这些条件。

第十四章、达朗贝尔原理(动静法)

教学目标:正确理解达朗贝尔原理,能熟练运用动静法求解质点和质点系的动力学问题。 知识结构: 1、达朗贝尔原理: (1)惯性力—I m =?F a ;

(2)质点的达朗贝尔原理—0N I ++=F F F ;

(3)质点系的达朗贝尔原理—

()0e i

Ii

+=∑∑F F

、()()

()0e O i O Ii +=∑∑M F M F 。

2、惯性力系的简化: (1)刚体平移,向质心简化——I C m =?F a ;

(2)刚体定轴转动,向转轴z 上一点简化——IR C m =?F a ;

(刚体有质量对称平面且与转轴垂直)——IO z M J α=?; 亦可向质心简化——IR C m =?F a 、IC C M J α=?;

(3)刚体做平面运动,向质心简化——IR C m =?F a ; (平行于质量对称平面)——IC C M J α=?

3、避免出现轴承动约束力的条件是——转轴通过质心,且刚体对转轴的惯性积等于零;或曰刚体的转轴应是刚体的中心惯性主轴。 意点:

(1)达朗贝尔原理常用于求解突减约束动力学问题; (2)惯性力系取决于绝对加速度、绝对角加速度。

第十五章、虚位移原理

教学目标:会运用虚位移原理求解系统(非自由质点系)的平衡问题。 知识结构:

1、约束类型(了解);

2、虚位移——在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移;

3、虚功——力在虚位移中做的功W δδ=?F r ;

4、虚位移原理——对于具有理想约束的质点系,其平衡的充分必要条件是:作用在质点系的所有主动力在任何虚位移中所做虚功之和为零

0i F W δ=或()0xi i yi i zi i F x F y F z δδδ++=∑。

意点:

1、对理想约束系统,常取整个系统为研究对象;

2、求各虚位移之间的关系

(1)几何法——根据主动力与虚位移的方向确定虚功的正负号、且要画出主动力作用点的虚位移;

(2)解析法——此时采用的虚功方程是它的解析式,即

()0xi

i

yi

i

zi

i

F x F y F z δδδ++=∑

其中i x δ等是第i 个力作用点坐标的变分,而xi F 等是第i 个力在相应坐标轴上的投影;

(3)虚速度法——虚速度之间的关系与实速度之间的关系是相同的,即可以根据运动学理论分析。

运动学公式

注注 1.点的运动

? 矢量法

2

2 , , )dt

r

d dt v d a dt r d v t r r ====- 直角

坐标法

)

()()(321t f z t

f y t f x ===z

v

y v x v z

y x

&&&=

==z a

y a x a z

y x &

&&&&

&=

==

定轴转动刚体上一点的速度和加速度:(角量与线量的关系)

ˉ 点的合成运动

r

e a v v v +=r e a a a a +=(牵连运动为平动时)

k r e a a a a a ++=(牵连运动为转动时)

其中, )

,sin(2 , 2r e r e k r e k v v a v a ωωω=×=

ω

R v =ε

τR a =2

ω

R a n =全加速度:

2

,(ωε

=

n a

tg 轮系的传动比:

n

n n n i Z Z R R n n i ωω

ωωωωωωωω13221111221212112 ,?????======

ω

ω , ?=+=AB v v v v BA BA A B 为图形角速度

ετ

?=AB a BA 2

ω

?=AB a

n BA

ω,ε分别为图形的角速度,角加速度

n

BA

BA A B a a a a ++=τ22 , , )(dt

d dt d dt d t f ?

ωε?ω?==

==

三.运动学解题步骤.技巧及注意的问题

1.分析题中运动系统的特点及系统中点或刚体的运动形式。

2.弄清已知量和待求量。

3.选择合适的方法建立运动学关系求解。

各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。

动力学公式

1. 动量定理

质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和.

质心运动定理

M a c = ∑F ≡ R 2. 动量矩定理:

平行移轴定理

刚体平面运动微分方程

三.动能定理

平面运动刚体的动能:

质点系相对质心的动量矩定理

∑==)

()( )(e C e i C r C M F m dt

L d ∑=

?W

T T 12质点系动能定理的积分形式

∑==)

()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理

)

(2

2)

( e z

z e z

z M dt d I M I ==∴?ε或—刚体定轴转动微分方程

222222

1 21)(2121ωωωC C C I v M d M I +=+=

Τ2

'md I I zC z +=∑∑==∴)

( , )(e C C C F m I F a m ε()d d e i p

F t

=∑r r

四. 达朗伯原理

对整个质点系,主动力系、约束反力系、惯性力系形式上构成平衡力系。这就是质点系的达朗伯原理。可用方程表示为:

用动静法求解动力学问题时,对平面任意力系,刚体平面运动可分解为

随基点(质点C )的平动:

绕通过质心轴的转动:

根据动静法,有

虚位移原理

在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移 .

力在虚位移中作的功称虚功.

对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功的和等于零.

=?0

i i r F ρρδ0

)()()(0

=++=++∑∑∑∑∑∑i O

i

O

i

O

i

i

i

Q m

N m F m Q N

F 虚位移 ?δδδ,,x r ρ

等 实位移

d ,d ,d r x ?

r

C

Q a M R ?=ε

C QC I M ?=(3)

02/cos , 0)((2) 0sin , 0(1) 0cos , 0000=??==+?==?+=∑∑∑QA A

n

Q n

A n Q A M l mg F m

R mg R F R mg R F ???τ

ττr

F W ρρδδ?=

经典力学和相对论

牛顿经典力学 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿 力学较多采用直观的几何方法,在解决简单的力学问题 时,比分析力学方便简单。 广义相对论 广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。 爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠复了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。 物理经典力学和爱因斯坦的相对论有什么区别物理经典力学是牛顿时期的力学那时候的坐标系是忽略时间的,只有空间

爱因斯坦的相对论时期是考虑了时间的是时间和空间都考虑的 相对论与经典力学的区别与联系。 可以这样高度总结地来看: 经典力学是狭义相对论在低速(v<

理论力学复习总结(重点知识点)

第一篇静力学 第 1 章静力学公理与物体的受力分析 1.1 静力学公理 公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F' 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2?光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=^ F 2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3. 力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应 用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo ( F) =± Fh) 4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶, 记为(F,F')。 例2-8 如图2.-17 (a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17( b) 所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB) 构成一力偶与矩为M的力偶平衡(见图2-17 (c))。由平面力偶系的平衡方程刀Mi=0,得-Fad+M=0 500 则有FA=FB ' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17 ( c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB '471.40N,方向如图2-17 ( b)所示。 第3章平面任意力系 1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中 各力对于同一点之矩的代数和。 2. 平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时 为零,即F R'=0,M O=0. 3. 平面任意力系的平衡方程:刀Fx=0,刀Fy=O,刀Mo(F)=0.平面任意力系平衡的解析条件是,力系 中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零 例3-1 如图3-8 (a)所示,在长方形平板的四个角点上分别作用着四个力,其中F仁4kN , F2=2kN , F3=F4=3kN,平板上还作用着一力偶矩为M=2kN ? m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR'建立如图3-8 (a)所示的坐标系,有 F 'Rx=刀Fx= - F2cos60° +F3+F4cos30 ° =4.598kN

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

物理力学计算公式

计算公式 力学 速度:v = t s , s = vt, t = v s 质量:m =g G =ρv, ρ=V m , V=m 重力:G = mg =ρgV , 压强:P=S F , F=PS 固体平放:F=G , P=S G 液体: P=ρgh, F=PS 浮力:F 浮= G-F (称重法) F 浮=ρ液gV 排= ρ液gV 浸 =ρ液gSh 浸 F 浮=F 向上-F 向下 漂浮:F 浮=G 物 功: W= Fs= Pt 功率: P= t W = Fv 杠杆平衡: F 1l 1=F 2l 2 或 21 F F = 12l l

滑轮组机械效率:η= 总有 W W =Fs Gh =Fnh Gh =Fn G W 有=Gh ,W 总=Fs ,s=nh 斜面机械效率:η= 总有 W W =Gh FL W 有=Gh ,W 总=FL 滑轮组省力情况: 不考虑滑轮重力和摩擦时:F=n 1G 物 不考虑摩擦时:F=n 1(G 物+ G 轮) 线的末端移动的距离与动滑轮移动距离的关系:s=nh 二、常量、常识、单位换算 1m=109nm; 1g/cm 3= 103 kg/m 3 1m/s= 3.6 km/h 中学生的质量: 50kg 。 一本物理课本的质量: 300g ; 纯水的密度:1000kg/m 3或1g/cm 3 ; 一个鸡蛋的重量: 0.5N ; 课桌的高度约: 80cm ;每层楼的高度约: 3m ; ρ铜 > ρ铁 > ρ铝(填“>”或“<”) 一个标准大气压=1.013×105Pa=760 mmHg ;

(1)密度、质量、体积的关系:ρ﹦m/V ,m=ρV,V= m/ρ ρ---密度--- Kg/m3 (千克每立方米)、m--- 质量--- Kg(千克)、V----体积--- m3 (立方米) (2)速度、路程、时间的关系:v﹦s/t ,s=vt,t= s/v v---速度--- m/s(米每秒)、s--- 路程---- m(米)、t---时间----s(秒) (3)重力、质量的关系:G=mg,m=G/g ,g=G/m G----重力---- N(牛顿)、m ---质量--- Kg(千克),g=9.8N/Kg (4)杠杆的平衡条件:F1 ×L1 = F2 ×L2 F1---动力--- 牛(N)、L1---动力臂---米(m)、F2---阻力---牛(N)、L2---阻力臂---米(m) (5)滑轮组计算:F= (1/n)G,s=nh F---拉力--- N(牛顿)、G----物体重力--- N(牛顿)、n----绳子的段数、 s----绳移动的距离--- m(米)、h---物体移动的距离--- m(米) (6)压强的定义式:p= F/S(适用于任何种类的压强计算),F=pS,S=F/p p---- 压强--- Pa(帕)、F---压力---- N(牛顿)、S--- 受力面积--- m2 (平方米) (7)液体压强的计算:p = ρgh,ρ= p/gh,h=p/ρg p---压强--- Pa(帕)、ρ---液体密度--- Kg/m3 (千克每立方米)、g=9.8N/Kg、h---液体的深度--- m(米

整理理论力学复习总结知识点教学提纲

此文档收集于网络,如有侵权,请联系网站删除 第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充 分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F'工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡 力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于 同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平 衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

精品文档. 此文档收集于网络,如有侵权,请联系网站删除 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即 FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F')。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB'构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平,得衡方程∑Mi=0﹣Fad+M=0 则有FA=FB' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB'=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q 的主矩同时为零,即FR`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 精品文档. 此文档收集于网络,如有侵权,请联系网站删除

高中物理力学公式

高中物理力学公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、力学 1、f = k x :胡克定律 (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料 有关) 2、 G = mg :重力 (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、θcos 2212221F F F F F ++=合 : 求F 1、F 2的合力的公式 2221F F F +=合 : 两个分力垂直时 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反 向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 4、摩擦力的公式: (1 )f = N :滑动摩擦力 (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也 可以小于G 。 ②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关。 (2 ) 0 f 静 f m (f m 为最大静摩擦力) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 说明:①摩擦力可以与运动方向相同,也可以与运动方 向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作 用。 5、F=G 221r m m : 万有引力(适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = ×10-11 N ·m 2 / kg 2 (1)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力 加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高 度)) a 、 F 万=F 向 万有引力=向心力 即 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 ③ 行星或卫星做匀速圆周运动的角速度: ,轨道半径越大,角速度越小。 ④行星或卫星做匀速圆周运动的周期: ,轨道半径越大,周期越大。 ⑤行星或卫星做匀速圆周运动的轨道半径: ,周期越大,轨道半径越大。 ⑥行星或卫星做匀速圆周运动的向心加速度:2 r GM a =,轨道半径越大,向心加速度越小。 ⑦地球或天体重力加速度随高度的变化:22)('h R GM r GM g +== 特别地,在天体或地球表面:20R GM g = 022) ('g h R R g += 23 24GT r M π=

经典力学的局限性(难)

6.经典力学的局限性难 1.关于经典力学、狭义相对论和量子力学,下面说法中正确的是( ) A.狭义相对论和经典力学是相互对立,互不相容的两种理论 B.在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律 C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动 D.不论是宏观物体,还是微观粒子,经典力学和量子力学都是适用的 【答案】BC 【解析】 A项:经典力学是狭义相对论在低速(v<<c)条件下的近似,即只要速度远远小于光速,经过数学变换狭义相对论的公式就全部变化为牛顿经典力学的公式,故A错误; B项:在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律,故B正确; C、D项:牛顿经典力学只适用于宏观低速物体,而微观、高速适用于狭义相对论,故C 正确;D错误。 故选:BC。 2.下列物理学公式正确的是 A.声音在空气中的传播速度(p为压强,为密度) B.声音在空气中的传播速度(p为压强,为密度) C.爱因斯坦提出的质量与速度关系(为静止质量,c为光速,为物体速度) D.爱因斯坦提出的时间与速度关系(为静止时间,c为光速,为物体速度) 【答案】BD 【解析】 A、B项:密度的单位为kg/m3,压强的单位为N/m2,又1N=1kg m/s2,则的单位为 ,等于速度的单位。故B正确,A错误; C项:爱因斯坦提出的质量与速度关系,(m0为静止质量,C为光速,v为物体速度)故C错误;

D项:爱因斯坦提出的时间与速度关系(t0为静止时间,C为光速,v为物体速度),故D正确。 故应选:BD。 3.2017 年 6 月 16 日,来自中国的“墨子号”量子卫星从太空发出两道红色的光射向青海德令哈站与千里外的云南丽江高美古站,首次实现了人类历史上第一次距离达千里级的量子密钥分发。下列说法正确的是() A.经典力学适用于“量子号”绕地球运动的规律, B.经典力学适用于光子的运动规律, C.量子力学可以描述“量子号”发出“两道红光”的运动规律 D.量子密钥分发的发现说明经典力学已经失去了使用价值 【答案】AC 【解析】A、经典力学适用于宏观低速的物体运动,卫星的运动相对微观粒子的运动速度小很多,属于宏观低速,故A正确。B、量子力学适用于微观高速的物体运动,如光子的运动,故B错误。C、D、量子力学和经典力学的适用范围不同,各自在自己的范围内是有价值的,并不会失去用处;故C正确,D错误。故选AC。 4.(多选)爱因斯坦相对论的提出是物理学领域的一场重大革命,主要是因为( ) A.否定了经典力学的绝对时空观 B.揭示了时间、空间并非绝对不变的本质属性 C.打破了经典力学体系的局限性 D.使人类对客观世界的认识开始从宏观世界深入到微观世界 【答案】BC 【解析】A、运动的钟变慢,运动的尺缩短,运动物体的质量变大,这是狭义相对论的几个重要的效应,揭示了时间、空间并非绝对不变的属性,故A错误,B正确; C、爱因斯坦相对论解释了经典牛顿力学不能解释的高速、微观范围,但狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,它打破了经典力学体系的局限性,故C正确; D、普拉克提出的量子理论使人类对客观世界的认识开始从宏观世界深入到微观世界,故D错误。 5.下列说法正确的是 A.不论是对宏观物体,还是微观粒子,经典力学和量子力学都是适用的 B.当物体运动速度很大(接近光速)时,经典力学理论所得的结果与实际结果之间出现了较大的偏差

高中物理力学公式大全

高中物理力学公式大全 一、力(常见的力、力的合成与分解) 1)常见的力 1.重力g=mg (方向竖直向下,g=9.8m/s2≈10m/s2, 作用点在重心,适用于地球表面附近) 2.胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)} 3.滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力f=gm1m2/r2 (g= 6.67× 10-11n•m2/kg2,方向在它们的连线上) 6.静电力f=kq1q2/r2 (k=9.0× 109n•m2/c2,方向在它们的连线上) 7.电场力f=eq (e:场强n/c,q:电量c,正电荷受 的电场力与场强方向相同) GAGGAGAGGAFFFFAFAF

8.安培力f=bilsinθ(θ为b与l的夹角,当l⊥b 时:f=bil,b//l时:f=0) 9.洛仑兹力f=qvbsinθ(θ为b与v的夹角,当v⊥b时:f=qvb,v//b时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μfn,一般视为fm≈μfn; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册p8〕; (5)物理量符号及单位b:磁感强度(t),l:有效长度(m),i:电流强度(a),v:带电粒子速度(m/s),q:带电粒子(带电体)电量(c); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 GAGGAGAGGAFFFFAFAF

理论力学公式

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

初中物理力学公式大全(力学)精编版

初中物理力学公式大全 一、机械运动部分 (一)匀速直线运动的速度、路程、时间公式: 1、求速度:v=s/t 2、求路程:s=vt 3、求时间:t=s/v 【注:v ——速度——m/s (km/h );s ——路程——m (km );t ——时间——s (h )】 【各量关系:在t 一定时,s 与v 成正比;在s 一定时,t 与v 成反比;在v 一定时,s 与v 成正比。注意:绝对不能说v 与s 正比或与t 成反比】 (二)变速直线运动的平均速度: ... t t ... s s t s v 2121 ++++== 总总【注意:“平均速度”绝对不能错误的理解为“速度的平均值”】 (三)几种特殊题型中的各量关系: 1、“回声测距”问题:s= 往返往返vt 21s 21=;或往返t 2 1 v vt s ?== 2.“火车过桥(洞)问题”: (1)火车通过桥时所经过的距离:s=s 桥+s 车;(2)火车完全在桥上所经过的距离:s=s 桥;-s 车 3.利用相对速度求解的问题:【相对速度——相对运动的两个物体,以其中一个为参照物,另一物体相对于它的运 动速度。当两个物体在同一条线或相互平行的两条线上运动时: A 、同向相对速度:21v v v +=同向 B 、异向相对速度:小大异向v v v -=】 (1)追击问题:在研究追击问题时,为了简化问题,通常以被追击者为参照物,追击所用时间就是追击者以“同向相对速度”运动完他们的“间距”所用时间。即:小 大间 同向间追v v s v s t -= = (2)相遇问题:相向而行或背向而行的物体,他们的相对速度是:21v v v +=异向,s 相对=s 1+s 2 (3)错车问题:○1同向错车:s 相对=s 1+s 2 , v 同向=v 大-v 小 , 同向相对错v s t = ○2相向错车:s 相对=s 1+s 2 ; v 异向=v 1+v 2 , 同向 相对 错v s t = 【注意:在研究水中物体运动的相遇、追击问题时,一般以水为参照物,则物体都以相对于水的速度运动,可使问 题简化。如:在一河水中漂浮有一百宝箱,在距百宝箱等距离的上下游各有一艘小船,它们同时以相同的静水速度向百宝箱驶去,则哪艘小船先到达百宝箱处? 】 二、密度部分 (一)、物体的物重与质量的关系:1.求重力:G=mg ; 2.求质量:m=G/g 【注:G ——重力——N ;m ——质量——kg ;g ——9.8N/k g (通常可取10N/kg )——N/kg 】 (二)、密度及其变形公式: 1、求物质的密度:ρ=m/V ; 2、求物质的质量:m=ρV 3、求物质的体积:V=m/ρ 【注:m ——质量——kg (g );V ——体积——m 3(cm 3);ρ——密度——kg/m 3(g/cm 3 )】 【各量关系:在V 一定时,m 与ρ成正比;在m 一定时,V 与ρ成反比;在ρ一定时,m 与V 成正比。注意:绝对不能说ρ与m 正比或与V 成反比】 (三)、空心问题:一物体体积为V 物,质量为m 物,组成物体的物质密度为ρ物质,判断物体是否是空心。 1、比较密度:计算物体的平均密度ρ物(ρ物=m 物/V 物),与组成物体的物质密度ρ物质比较,不等则是空心的,相等则是实心的。 2、比较质量:计算有V 物体积的该种物质的质量m '(m '=ρ物质V 物),与物体质量m 物比较,不等则是空心的,相等则是实心的。且空心体积V 空=(m '-m 物)/ρ物质 3、比较体积:计算质量为m 物的该种物质应该有的实心体积V 实(V 实=m 物/ρ物质),与物体体积V 物比较,不等则是

理论力学复习题

1.For personal use only in study and research; not for commercial use 2. 3.物体重P=20KN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞D上,如图所示,转动绞,物体便能升起。设滑轮的大小,AB与CD杆自重及摩擦忽略不算,A,B,C三处均为铰链链接。当物体平衡时,求拉杆AB和支杆CB所受的力。 2.在图示刚架的点B作用一水平力F尺寸如图,钢架重量忽略不计,求支座A,D的约束力Fa和Fd。 3.已知梁AB上作用一力偶,力偶矩为M,梁长为L,梁重不计,求在图a,b,c三种情况下,支座A,B的约束力。 4.无重水平梁的支撑和载荷如图a,b所示,已知力F,力偶矩M的力偶和强度为q的均布载荷,求支座A,B处的约束力。 5.由AC和CD构成的组合梁通过铰链C链接,它的支撑和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN·m,不计梁重,求支座A,B,D的约束力和铰链C处的所受的力。 6.在图示构架中,各杆单位长度的重量为300N/m,载荷P=10kN,A处为固定端,B,C,D,处为铰链,求固定端A处及B,C铰链处的约束力。 7..杆OA长L,有推杆推动而在图面内绕点O转动,如图所示,假定推杆的速度为v,其弯头高为a。求杆端A的速度大小(表示为x的函数)。 8.平底顶杆凸轮机构如图所示,顶杆AB课沿导槽上下移动,偏心圆盘绕轴O转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O 转动的角速度为w,OC与水平线成夹角φ。当φ=0°时,顶杆的速度。 9.图示铰接四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度w=2rad/s 绕轴O1转动。杆AB上有一套筒C,此套筒与杆CD相铰接。机构的各部件都在同一铅直面内。求φ=60°时,杆CD的速度和加速度。 10半径为R的半圆形凸轮D以等速Vo沿水平线向右运动,带动从动杆AB沿铅直方向上升,如图所示,求φ=30°时杆AB相对于凸轮的速度和加速度。 11.图示直角曲子杆OBC绕O轴转动,使在其上的小环M沿固定支杆OA滑动,已知:OB=0.1m,OB与BC垂直,曲杆的角速度w=0.5rad/s,角加速度为零,求当φ=60°时,小环M的速度和加速度。 12.如图所示,平面图形上的亮点A,B的速度方向能是这样吗?为什么? 13.平面图形在其平面内运动,某瞬时其上有两点的加速度矢相同,试判断下述说法是否正确:(1)其上各点速度在该瞬时一定都相等。 (2)其上各点加速度在该瞬时一定都相等。 14.如图所示,车轮沿着曲面滚动,已知轮心O在某一瞬时的速度V o和加速度a0,问车轮的角加速度是否等于a0cosβ/R?速度瞬心C的加速度大小和方向如何确定? 15.如图所示各平面图形均作平面运动,问图示各种运动状态是否可能? 16.汽车以36km/h的速度在水平直到上行驶,设车轮在制动后立即停止转动,问车轮对地面的动滑动摩擦因数f应为多大方能使汽车制动后6s停止。 17.跳伞者质量为60KG,自停留在高空中的直升飞机中挑出,落下100M后,将降落伞打开,设开伞前的空气阻力忽略不计,伞重不计,开伞后所受的阻力不变,经5S后跳伞者的速度减为4.3m/s。求阻力大小。 18.图示水平面上放一均质三棱柱A,在其斜面上又放一个均质三棱柱B。两三棱柱的横截面均为直角三角形,三棱柱A的质量为Ma为三棱柱B的三倍,其尺寸如图所示,设各处摩擦不计,初始时系统静止,求当三棱柱B沿三棱柱A华夏接触到水平面时,三棱柱A移动的距离。

理论力学公式

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε = n a tg 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?= 1.点的运动 ? 矢量法 2 2 , , )dt r d dt v d a dt r d v t r r ====? 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x == =z a y a x a z y x == =2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 M a c = ∑F ≡ R 2. 动量矩定理: 平行移轴定理 ) (2 2) ( e z z e z z M dt d I M I ==∴?ε或—刚体定轴转动微分方程 ∑==) ()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理 ε τ ?=AB a BA 2 ω?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τωω , ?=+=AB v v v v BA BA A B 为图形角速度 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== 2 'md I I zC z +=() d d e i p F t =∑

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

理论力学知识点总结—静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 第二章平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为

合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。

力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法

肛肠动理论力学

肛肠动力学 一、概述 (一)肛肠动力学的概念 用静力学和动力学的方法来研究结肠、直肠、肛管(包括盆底)的各种运动方式,从而对排便生理、肛门自制生理及有关肛肠疾病的病理生理学进行研究,称为肛肠动力学(Anorectal Dynamics)。 平时,固态粪便储存于乙状结肠甚至降结肠中。结肠及直肠松弛,内外括约肌、耻骨直肠肌均处于张力收缩状态。在结肠至肛门这一段距离中,存在着一个远心端压力高,近心端压力低的向心型压力梯度和蠕动波梯度,排便阻力大于排便动力,粪便得以储存(自制)。排便时,结、直肠肌收缩,肠腔内压增高,腹肌亦收缩使腹压增高,而内括约肌、耻骨直肠肌、外括约肌均反射性松弛,肛管压力迅速降低,上述压力梯度逆转,排便动力大于排便阻力,粪便排出肛门(自制解除)。这两种状态下肛管、直肠、盆底的功能变化及各器官协调功能均可通过压力变化而表现出来,测定这些压力变化便可判断有关器官的功能和协调情况。(二)肛肠动力学的发展概况 压力测定的方法诊断肛肠疾病始于30多年前,但其历史却可上溯到一百多年前。1877年Cowers发现扩张直肠后。内括约肌短暂松弛,他即将之称为直肠内括约肌抑制反射。Denny-Brown等(1935)肯定了这一发现。Callaghan和 Nixon(1964)报道先天性巨结肠患者此反射缺如。1967年,Schnaufer、Lawson、Nixon等分别发表文章,介绍用肛管直肠测压诊断小儿先天性巨结肠的方法。此后,应用者逐渐增多。七十年代初。开始将肛管直肠测压的方法用于肛肠外科疾病的病理生理研究和诊断,如痔、肛裂患者肛管压力改变及扩肛治疗后压力的变化。以后,又相继有人报道排便失禁、直肠脱垂、肛瘘、直肠孤立性溃疡综合征、会阴下降综合征等疾病肛管直肠测压的结果。八十年代始,人们又用肛肠测压法评价各种肛肠手术后患者的肛管直肠功能,将其用于排便失禁的生物反馈治疗,将骶神经—肛门外括约肌反射用作术中监测手段,帮助鉴别神经组织。近几年来,测压方法以及由其衍生出来的各种方法已广泛地应用于肛肠外科的各个领域,被公认为十分重要的研究手段和有用的诊断方法。显然,"测压"这一名词已难以全面准确地体现本方法学的现状和发展趋势。本文作者在工程界学者的帮助下,于1986年提出"肛肠动力学"的概念,以期代替“测压”一词。 (三)肛肠动力学检查的意义 排便、自制以及多种肛肠疾病的发生、发展都与结肠、直肠、肛管、盆底的力学状态改变有关。由于涉及的因素很多,机理十分复杂以及检测手段的限制,过去医师们仅能凭病人主诉和直肠指诊x线照相所提供的比较粗略的形态学资料进行判断,而难以对它们的功能,尤其是运动状态下的功能进行定性、定量观察。近些年发展起来的排粪造影技术,使人们对大肠肛门运动过程中的形态学改变的观察成为可能,但对这些过程申肉眼无法观察到的力学状态却难以准确了解,动力学检查恰好提供了一种有效的定量手段,从而在肛肠疾病的诊断和研究中得到广泛应用。当它与肠道转运功能检查、排粪造影检查、盆底肌电图检查结合应用时,能提供关于结肠、直肠、盆底、内外括约肌生理的许多重要的基本信息,从而使肛肠外科疾病的研究、诊断、治疗水平有了提高。 (四)研究肛肠动力学的基本要求

相关文档
最新文档