基于RX3i的流量控制系统设计

基于RX3i的流量控制系统设计
基于RX3i的流量控制系统设计

基于GE Rx3i控制器的流量控制系统设计摘要:本文通过介绍过程控制的历史发展,从而引出流量控制系统的设计。流量的控制系统设计:用电磁流量计采集流量信号,将采集到的流量信号转换成标准的电压信号,经过A/D转换(模拟量输入模块有此功能)送入控制器,流量的控制选用GE Rx3i 系统采用PID控制,将经过PID控制后的电压信号经D/A(模拟量输出模块有此功能)转换后送到调节阀,控制阀门的开合度从而实现流量的控制。

本文详细介绍了GE Rx3i系统,包括其操作系统PPS1.5和ME,各个模块的功能以及模块端口的定义如何实现PAC与计算机的联机,以及最后的编程。

关键词:PACSystems RX3i ,A/D ,D/A ,电磁流量计,PID,PPS1.5

GE Rx3i controller based on the flow control system

Abstract:This paper describes the historical development of process control,which leads to traffic control system.Design of Flow Control System:Electromagnetic flow meter signal acquisition, the collected traffic signals into a standard voltage signal, through A / D(Analog input module has this feature)converter into the controller,Traffic control system is used GERx3i PID control,PID control will go through after the voltage signal by the D / A (analogoutput module has this feature) converted taken control valve,control valve to open heterozygosity in order to achieve flow control .

This paper describes the GE Rx3i system,including its operating system PPS1.5 and ME,the functions of each module and the module port definition of how PAC line

computer,and the final program.

Key words: PACSystems RX3i,A/D ,D/A,Electromagnetic Flowmeter,PPS1.5

目录

1 绪论 (1)

1.1 过程控制的发展 (1)

1.2 课题研究内容与意义 (2)

2 流量的检测 (3)

2.1 流量的概念 (3)

2.2 流量的检测方法 (3)

2.3 电磁流量计结构及测量原理 (3)

2.4涡街流量计测量原理 (5)

2.5转子流量计的特点及工作原理 (6)

2.6质量式流量计 (6)

2.7 A/D转换 (7)

2.8IC695ALG600的参数设置 (10)

3流量的控制 (11)

3.1 控制流程 (11)

3.2 控制算法 (12)

3.2.1 PID (12)

3.2.2数字式PID 控制算法 (12)

3.2.3微分项的改进 (14)

3.3系统的加速 (15)

3.4PID参数的整定 (15)

4控制系统的设计 (17)

4.1 PAC与PLC的比较 (17)

4.2 Proficy Process Systems简介 (18)

4.3 GE-Faunc公司的PAC (18)

4.2 PAC的组成 (20)

4.2.1 CPU模块 (20)

4.2.2 I/O模块 (20)

4.2.3 电源模块 (20)

4.3 PAC硬件连接 (20)

4.4 PAC与电脑主机的通信连接 (22)

4.5 PACI/O端口的定义 (24)

4.6 程序的编写与调试 (25)

结语 (27)

致谢 (28)

附录 (29)

参考文献 (33)

1 绪论

1.1 过程控制的发展

随着瓦特蒸汽机的发明和使用,人类的工业得到了快速的发展,将人们从繁重的劳动中解脱出来,大大的提高了生产力和劳动效率。随着工业进一步的快速发展和科技水品的提高,工业自动化成了势在必行的发展趋势。工业自动化是机器设备或生产过程在不需要人工直接干预的情况下,按预期的目标实现测量、操纵等信息处理和过程控制的统称。工业自动化的实现是建立在自动控制系统的基础上的。而作为自动控制系统的核心—控制器,随着科技的发展和工业的高要求也在不断的更新。PLC作为现代工业控制的巨头,本次毕业设计用到的PACSystems 更是走在了控制器的前沿。

进入90年代以来,自动化技术发展很快,并取得了惊人的成就,已成为国家高科技的重要分支。过程控制是自动化技术的重要组成部分。在现代工业生产自动化中,过程控制技术正在为实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。

在本世纪40年代前后,工业生产大多处于手工操作的状态,人们主要是凭经验用人工去控制生产过程。生产过程中的参数靠人工观察,生产过程的操作也靠人工去执行。因此,当时的劳动效率是很低的。

40年代以后,生产自动化发展很快。尤其是近年来,过程控制技术发展更为迅速。纵观过程控制的发展历史,大致经历了下述几个阶段:

50年代前后,过程控制开始得到发展。一些工厂企业实现了仪表化和局部自动化。这是过程控制发展的第一阶段。这阶段主要的特点:检测和控制仪表普遍采用基地式仪表和部分组合仪表;过程控制结构大多数是单输入单输出系统;被控制参数主要是温度、压力、流量、液位四种参数;控制目的是保持这些参数的稳定,消除或减少对生产过程的主要扰动。

在60年代,随着工业生产的不断发展,对过程控制提出了新的要求;随着电子技术的迅速发展也为自动化技术工具的完善提供了条件,开始了过程控制的第二阶段。在仪表方面,开始大量采用单元组合仪表。为了满足定型、灵活、多功能的要求,有出现了组合仪表,它将各个单元划分为更小的功能块,以适应比较复杂的模拟和逻辑规律相结合的控制系统的需要。

70年代以来,随着现代工业生产的迅猛发展,仪表与硬件的开发,微型计算机的开

发应用,使生产过程自动化的发展达到了一个新的水平。对全工厂或整个工艺流程的集中控制、应用计算机系统进行多参数综合控制,或者用多台计算机对生产过程进行控制和经营管理,是这一阶段的主要特征。过程控制发展到现代过程控制的新阶段,这是过程控制发展的第三阶段。在新型的自动化技术工具方面,开始采用微处理器为核心的智能单元组合仪表;在测量变送器方面,教为突出的成分在线检测与数据处理的应用日益广泛;在模拟式调节仪表方面,不仅Ⅲ型仪表产品品种增加,可靠性提高,而且是本质安全防爆,适应了各种复杂控制系统的要求。

1.2 课题研究内容与意义

本次课题的研究内容主要是学习流量的测量与控制。通过学习GE公司的PAC的相关模块的使用,了解工程控制系统搭建的一般工程,掌握过程控制系统相关信号的采集、控制的一般方法,并在此基础上通过调节控制参数深入理解各种控制算法的作用。

我们主要目的是利用GE公司提供的PAC控制器、电源模块、I/O接口模块、以太网模块和组态软件实现工程控制系统的设计。其次我们在设计中更好的了解PLC,让我们平时所学的理论在实际中得到更好的验证,体会理论与实际的区别,学会如何将理论加以改进,在实际的运用中得到更好的效果,为以后的工作做准备。

2 流量的检测

2.1 流量的概念

流量指单位时间内流体经过某一流通截面的流体数量,又称为瞬时流量。流体可以是气体、液体、固体颗粒等流动的物体,也可以是他们的任意组合。当流体以体积表示时称为体积流量,当流体以质量表示时称为质量流量,其表达式为

00lim

lim t t v dv qv vA t dt M dM qm vA t dt ρ?→?→?===??===? 上式中:V 为流体的体积;M 为流体的质量;ρ为介质的密度;v 为流体的平均流速;A 为流通截面的面积。质量流量和体积流量的关系为qm=ρqv 。

2.2 流量的检测方法

流量的检测方法繁多。根据流量的定义,流量最直接的检测方法为体积法和质量法两大类:

(1)差压式流量测量法:利用流体流过通道中阻力件时产生的压力差与流量之间的确定关系求得流量。

(2)容积式流量测量法:利用标准容积的容器,接连不断的对流动介质进行测量从而直接确定流量。

(3)流速式流量测量法:通过测量管道截面上流体平均流速来测量流量。

(4)直接式:直接检测与质量与流量成正比的参量来计算质量流量。

(5)间接法:同时测量体积流量和流体密度来计算质量流量。

2.3 电磁流量计结构及测量原理

测量流量的传感器有很多种,此次毕业设计选用的传感器是电磁流量计。电磁流量计由磁路系统、测量管和电极及壳体组成。

电磁流量计是基于法拉第电磁感应原理制成的一种流量计。当被测流体在磁场中沿着垂直于磁感线方向流动从而切割磁感线时,在对称安装在流通通道两侧的电极上将产生感应电势,感应电势大小可表示为:

E=BDV ,

公式中的E 表示感应电动势;B 表示此磁感应强度;D 为通道内径;V 为测量管内

电极截面上的平均流速。由此可得管道的体积流量为:

q v=πD2 V/4=πDE/4B=KE/B(其中K=πD/4)

由上式可见,体积流量q v与感应电动势E和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关。这就是电磁流量计的测量原理。

在实际工作中,电磁流量计多采用交变磁场,由电流激磁线圈产生。设B=Bmsinwt E=4q v Bmsinwt/Dπ=Kq v(其中K=4Bmsinwt/Dπ)。该式说明只要测量出电动势E的大小,流量即可得出。

通常电磁流量计测到的电流电压信号不是标准的信号从而无法直接从输入端口输入,因此需要用测量转换器进行转换,转换成标准的信号。测量转换器由线圈励磁电路和传感器输出转换电路组成。图2-3-1是电磁流量传感器测量原理转换原理图,励磁电路向传感器线圈提供恒流1/8工频矩形波励磁电流;前置放大电路进行阻抗转换,抑制共模干扰;放大电路作量程转换,隔离直流电干扰电势;同步采样主要是为了除去正交干扰、串模干扰,输出直流电压信号;V/f(电压/频率)转换电路把流量信号转换为频率信号,用作累计总量的数字量输出;频率信号经过f/I(频率/电流)转换器转换为4-20mA的直流电信号输出。

图2-3-1

本次毕业设计我所选用的电磁流量计为江苏国仪自动化仪表有限公司提供的卫生型电磁流量计。此流量计主要工作的对象是导电液体(我主要测量自来水的流量)流量计主要参数:

环境温度:-25℃~+60℃;

流体温度:-25℃≤介质温度<130℃

相对湿度:5%~90%

测量精度:±0.5%

重复性:0.25%

电源:220V AC±20% 60HZ.(24VDC.可选)

模拟电流输出:负载电阻:0~1.5KΩ时0~10mA;0~750Ω时4~20mA,

流动方向:正,反。

此款流量计已经进行了测量转换,所以不用另外的测量转换电路,由于流量计得到的信号是模拟量,经过A/D转换后,才可以送入PAC进行处理。

2.4 涡街流量计测量原理

当非流线型阻流体(bluff body)垂直插入流体中,随着流体流动,阻流体就产生漩涡分离,这些漩涡形成了多少有些规则的排列,称此排列为涡街(如图2-4-1所示)。根据卡曼原理,大多数排列情况或多或少地有些不稳,只有排列成两排内旋且相互交错的漩涡列,涡列宽度h 与漩涡间距l 之比

这样的涡列才是稳定的,称为卡曼涡街(Karman V ortex Street),产生卡曼涡街的阻流体称为漩涡发生器。根据卡曼涡街原理,漩涡频率 f 与平均流速v,涡列宽度 b 有如下关系

式中,v—漩涡发生体两侧的平均流速,米/ 秒;b—漩涡发生体特征宽度,米;S—斯特劳哈(Strouhal)数,无量纲,在一定的雷诺数范围内为常数。

由传感器检测漩涡发生器的挠性振动,经过信号转换即可获得测量管中流体流量。

图2-4-1

2.5 转子流量计的特点及工作原理

转子流量计是工业上和实验室最常用的一种流量计。它具有结构简单、直观、压力损失小、维修方便等特点。转子流量计适用于测量通过管道直径D<150mm的小流量,也可以测量腐蚀性介质的流量。使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。

转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,从上端流出。当被测流体流动时对转子的作用力,正好等于转子在流体中的重量时(称为显示重量),转子受力处于平衡状态而停留在某一高度。分析表明;转子在锥形管中的位置高度,与所通过的流量有着相互对应的关系。因此,观测转子在锥形管中的位置高度,就可以求得相应的流量值。

为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制成。

2.6 质量式流量计

流体在旋转的管内流动时会对管壁产生一个力,它是科里奥利在1832年研究水轮机时发现的,简称科氏力。质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,变送器提供的激励电压加到驱动线圈上时,振动管作往复周期振动工业过程的流体介质流经传感器的振动管,就会在振管上产生科氏力效应,使两根振管扭转振动,安装在振管两端的拾振线圈将产生相位不同的两组信号,这两个信号差与流经传感器的流体质量流量成比例关系。计算机解算出流经振管的质量流量。不同的介质流经传感器时,振管的主振频率不同,据此解算出介质密度。安装在传感器器振管上的铂电阻可间接测量介质的温度。

测量管道内质量流量的流量测量仪表。在被测流体处于压力、温度等参数变

化很大的条件下,若仅测量体积流量,则会因为流体密度的变化带来很大的测量误差。在容积式和差压式流量计中,被测流体的密度可能变化30%,这会使流量产生30~40%的误差。随着自动化水平的提高,许多生产过程都对流量测量提出了新的要求。化学反应过程是受原料的质量(而不是体积)控制的。蒸气、空气流的加热、冷却效应也是与质量流量成比例的。产品质量的严格控制、精确的成本核算、飞机和导弹的燃料量控制,也都需要精确的质量流量测量。因此质量流量计是一种重要的流量测量仪表。

质量流量计是采用感热式测量,通过分体分子带走的分子质量多少从而来测量流量,因为是用感热式测量,所以不会因为气体温度、压力的变化从而影响到测量的结果。质量流量计是一个较为准确、快速、可靠、高效、稳定、灵活的流量测量仪表,在石油加工、化工等领域将得到更加广泛的应用,相信将在推动流量测量上显示出巨大的潜力。质量流量计是不能控制流量的,它只能检测液体或者气体的质量流量,通过模拟电压、电流或者串行通讯输出流量值。但是,质量流量控制器,是可以检测同时又可以进行控制的仪表。质量流量控制器本身除了测量部分,还带有一个电磁调节阀或者压电阀,这样质量流量控制本身构成一个闭环系统,用于控制流体的质量流量。质量流量控制的设定值可以通过模拟电压、模拟电流,或者计算机、PLC提供。

2.7 A/D转换

由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别。处理这些信号,必须首先将这些模拟信号转换成数字信号。

由于输入的模拟信号在时间上是连续量,所以一般的A/D转换过程为:取样、保持、量化和编码。

CP S

S ADC 取样保持电路

ADC的量化编码电路...D D D n-11

v I (t )v I (t )

输入模拟电压取样展宽信号

数字量输出(n位)

2-7-1A/D 转换原理图 取样定理:

fs>2fimax

式中f S 为取样频率,f imax 为输入信号v I 的最高频率分量的频率。因为每次把取样电压转换为相应的数字量都需要一定的时间,所以在每次取样以后,必须把取样电压保持一段时间。可见,进行A/D 转换时所用的输入电压,实际上是每次取样结束时的v I 值。 取样—保持电路: 电路组成及工作原理(取Ri =Rf )N 沟道MOS 管T 作为开关用。当控制信号v L 为高电平时,T 导通,v I 经电阻Ri 和T 向电容C h 充电。则充电结束后v O=-v I=v C 。控制信号返回低电平后,T 截止。C h 无放电回路,所以v O 的数值可被保存下来

R R i

f

I v L

v T A C h v o

2-7-2保持电路图

(1).逐次逼近法

逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。

采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图3-3所示。

图2-7-3

基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。

逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo<Vi,该位1被保留,否则被清除。然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的Vo再与Vi比较,若Vo<Vi,该位1被保留,否则被清除。重复此过程,直至逼近寄存器最低位。转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。逐次逼近的操作过程是在一个控制电路的控制下进行的。

A/D转换器的主要技术指标

1.转换精度

1)分辨率——说明A/D转换器对输入信号的分辨能力。

一般以输出二进制(或十进制)数的位数表示。因为,在最大输入电压一定时,输

出位数愈多,量化单位愈小,分辨率愈高。

(2)转换误差——它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。常用最低有效位的倍数表示。

2.转换时间——指从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。

并行比较A/D转换器转换速度最高;逐次比较型A/D转换器次之;间接A/D转

换器的速度最慢。

2.8 IC695ALG600的参数设置

PAC中的IC695ALG600是一个8通道模拟量输入模块,它里面就有A/D转换的功能。在进行A/D转换时,先选择哪一个或几个通道。在选定的通道内进行设置,就A/D 转换的类型而言就有许多如:V oltage/Current Thermocouple RTD等。我所选用的是V oltage/Current ,输入信号时电压信号。之后就来设定我的输入电压的范围。在range type 中选择V oltage/Currentchannel在range中选择范围,有多种选择根据实际情况进行选择,我选的就是0V- 10V再在value format中选择是16位还是32位,我选的就是32位。其他的选项需要修改的部分在都会用黑色的字体提示。根据自己的选择进行修改。如我的选择如下图所示:

图2-8-1

3流量的控制

3.1 控制流程

控制量流量的时延很小,所以不用滞后超前校正环节,直接根据偏差来进行调节,采用闭环控制。闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会被反送回来影响控制器的输出,形成一个或者多个闭环。闭环控制系统有正反馈和负反馈之分,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,因此又称负反馈控制系统。

图 3-1-2控制流程图

+

- + + + c(t)

u(t) e(t) r(t) 比例 积分

微分 调节阀 图3-1-1流量控制方框图 初值设定

计算初值与返回值的差值△Q

△Q=0 返回

△Q >0

加大阀门开合度 Y N

Y

减小阀门开合度

N

3.2 控制算法

3.2.1 PID

PID 控制算法是一种基于偏差在“过去、现在和将来”信息估计的有效而简单的控制算法。而采用PID 控制器的控制系统其控制品质的优劣在很大程度上取决于PID 控制器参数的整定。PID 控制器参数整定,是指在控制器规律己经确定为PID 形式的情况下,通过调整PID 控制器的参数,使得由被控对象、控制器等组成的控制回路的动态特性满足期望的指标要求,达到理想的控制目标。

对于PID 这样简单的控制器,能够适用于广泛的工业与民用对象,并仍以很高的性价比在市场中占据着重要地位,充分地反映了PID 控制器的良好品质。概括地讲,PID 控制的优点主要体现在以下两个方面: 原理简单、结构简明、实现方便,是一种能够满足大多数实际需要的基本控制器; 控制器适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,确切地说,在很多情况下其控制品质对被控对象的结构或参数摄动不敏感。 PID 控制器是一种基于偏差在“过去、现在和将来”信息估计的有效而简单的控制算法。而采用 PID 控制器的控制系统其控制品质的优劣在很大程度上取决于 PID 控制器参数的整定。PID 控制器参数整定,是指在控制器规律己经确定为PID 形式的情况下,通过调整PID 控制器的参数,使得由被控对象、控制器等组成的控制回路的动态特性满足期望的指标要求,达到理想的控制目标。

3.2.2 数字式 PID 控制算法

在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式HD 控制算法和增量式PID 控制算法。(1)位置式PID 控制算法由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(2-1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(2-1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: 000t=kT(k=0,1,2)()()()()e(kT)-e(k-1)T e(k)-e(k-1)t k k j j e t dt e jT T e j de t dt T T ==?? ? ? ? ?≈= ? ? ?≈= ???

∑∑? (2-3) 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将e(kT)简化表示成e(k)等,即省去T 。将式(2-3)代入式(2-1),可以得到离散的PID 表达式为: 0(){()()[()(1)}1k D p j T T u k K e k e j e k e k T T

==++--∑ (2-4)

中式:

k — 采样序列号;

u(k)— 第k 次采样时刻的计算机输出值;

e(k)—第k 次采样时刻输入的偏差值;

e(k-1)— 第k-1次采样时刻输入的偏差值;

K I — 积分系数,K I =K P T/T I

K D —微分系数,K D T D

/T。 我们常称式(2-4)为位置式PID 控制算法。

对于位置式PID 控制算法来说,位置式PID 控制算法示意图如图4-2-1所示,由于全量输出,所以每次输出均与过去的状态有关,计算时要对误差进行累加,所以运算工作量大。而且如果执行器(计算机)出现故障,则会引起执行机构位置的大幅度变化,而这种情况在生产场合不允许的,因而产生了增量式PID 控制算法。

(2)增量式PID 控制算法

所谓增量式PID 是指数字控制器的输出只是控制量的增量Δ(k)。增量式PID 控制系统框图如图2-3所示。当执行机构需要的是控制量的增量时,可以由式(2-4)导出提供增量的PID 控制算式。根据递推原理可得:

k-1

p I d j=0u(k-1)=K e(k-1)+K e(j) +K [e(k-1)-e(k-2)] (2-4) +

- r(t) e(t) Δu c(t) PID 增量算法 调节阀 流量

图3-2-2增量型控制示意图 +

- r(t) e(t) u c(t)

PID 位置算法 调节阀 流量 图3-2-1位置型控制示意图

用式(2-3)减去式(2-4),可得:

p I D u(k)=u(k-1)+ K [e(k)-e(k-1)]+K e(k)+K [e(k)-2e(k-1)+e(k-2)] (2-5) 式(2-5)称为增量式PID 控制算法。

增量式控制算法的优点是误动作小,便于实现无扰动切换。当计算机出现故障时,可以保持原值,比较容易通过加权处理获得比较好的控制效果。

在PID 增量算法中,由于执行元件本身是机械或物理的积分储存单元,如果给定值发生突变时,由算法的比例部分和微分部分计算出的控制增量可能比较大,如果该值超过了执行元件所允许的最大限度,那么实际上执行的控制增量将时受到限制时的值,多余的部分将丢失,将使系统的动态过程变长,因此,需要采取一定的措施改善这种情况。

纠正这种缺陷的方法是采用积累补偿法,当超出执行机构的执行能力时,将其多余部分积累起来,而一旦可能时,再补充执行。

3.2.3 微分项的改进

1)不完全微分PID 控制算法

在PID 控制中,微分信号的引入可改善系统的动态特性,但也易引起高频干扰。在误差扰动突变时尤其显出微分项的不足。若在控制算法中加入低通滤波器,则可使系统性能得到改善。

1.不完全微分型PID 算法传递函数为式(2-6),传递函数框图如图4-2-3所示:

?????? ??++???? ??+=1111)(S K T S T S T K S G D D D I P C

(2-6)

图3-2-3 不完全微分型PID 算法传递函数框图

2

.完全微分和不完全微分作用的区别

图3-2-4 完全微分和不完全微分作用的区别

3、不完全微分型PID 算法的差分方程

[][])1()()1()()1()(--++--++

-=n u n e T K T T n e n e T K T T n u n u D D D D D D D D (2-7)

[])1()()()(--+=?n u n u K n u T T K n u D D P D I P

(2-8) 3.3 系统的加速

在增量式算法中,比例项与积分项的符号有以下关系:如果被控量继续偏离给定值,则这两项符号相同,而当被控量向给定值方向变化时,则这两项的符号相反。

由于这一性质,当被控量接近给定值的时候,反号的比例作用阻碍了积分作用,因而避免了积分超调以及随之带来的振荡,这显然是有利于控制的。但如果被控量远未接近给定值,仅刚开始向给定值变化时,由于比例和积分反向,将会减慢控制过程。

为了加快开始的动态过程,我们可以设定一个偏差范围v ,当偏差|e(t)|< β时,即被控量接近给定值时,就按正常规律调节,而当|e(t)|>=β时,则不管比例作用为正或为负都使它向有利于接近给定值的方向调整,即取其值为|e(t)-e(t-1)|,其符号与积分项一致。利用这样的算法,可以加快动态过程。

3.4 PID 参数的整定

PID 参数的设定一般是根据经验设定一个经验值。比如我的流量控制系统,因为流量没有多大的时延,所以只需要设定比例和积分常数。根据经验一般将比例常数设定为P (%)40--100,我设定是80,将积分常数设定为I (%)0.1—1,我设定的为0.5,在根据实际的调试过程来修改。

在GE 中的PID 参数设定有点特殊,首先选择PID 的控制模块,我选的就是PID IND 就是说该模块的输入数据都是整型的,在设定PID 模块的物理地址,我设定的为R00020,该模块有39个需要设定的位子分别对应着不同的物理地址,其首地址便是R00020。如采样周期对应的便是第二个,一次其物理地址便是R00022,其时间的设定范围是0-65535,对应的时间是0-10.9分,根据自得时间算出对应的值。如我选用的是10秒,

所以设定值大约是1000。因此选一个MOV INT将1000送到R00020中即可。对于比例常数、积分常数和微分常数分别对应05、06、07,因为这几个参数的物理地址相距较近,所以可以选用一个BLK MOV INT一起送到PID模块中。

4控制系统的设计

4.1 PAC与PLC的比较

PAC这一术语,它定义了一种新类型的控制器。该控制器结合了PC的处理器、RAM和软件的优势,以及PLC固有的可靠性、坚固性和分布特性。PAC采用现有的商业化技术(COTS),非常适合于工业化环境,它具有可伸缩性,易于维护和具有较低的发生故障时间等特性。

说到PAC就不的不说到PLC,PAC是PLC新一代的产品,其特点与PLC有许多相似之处。PLC具有稳定可靠、价格便宜、功能齐全、应用灵活方便、操作维护方便等优点。在以改变几何形状和机械性能为特征的制造工业和以物理变化和化学变化将原料转化成产品为特征的过程工业中,除了以连续量为主的反馈控制外,还有在制造工业中存在了大量的开关量为主的开环的顺序控制,它按照逻辑条件进行顺序动作和按照时序动作;另外还有与顺序、时序无关的按照逻辑关系进行连锁保护动作的控制;以及大量的开关量、脉冲量、计时、计数器、模拟量的越限报警等状态量为主的——离散量的数据采集监视。

虽然PAC形式与传统PLC很相似,但性能却广泛全面得多。PAC是一种多功能控制器平台,用户可按照自己意愿组合、搭配和实施的技术和产品以实现功能的侧重,因为基于同一发展平台进行开发,所以采用PAC系统保证了控制系统各功能模块具有统一性,而不仅是一个完全无关的部件拼凑成的集合体。

PAC与PLC最根本的不同在于它们的基础不同。PLC性能依赖于专用硬件,PAC 的性能是基于其轻便控制引擎,标准、通用、开放的实时操作系统,嵌入式硬件系统设计以及背板总线。

PLC的用户应用程序执行是通过硬件实现的,而PAC设计了一个通用软件形式的控制引擎用于应用程序的执行,控制引擎位于实时操作系统与应用程序之间,这个控制引擎与硬件平台无关,可在不同平台的PAC系统间移植。因此对于用户来说,同样的应用程序不需修改即可下载到不同PAC硬件系统中,用户只需根据系统功能需求和投资预算选择不同性能PAC平台。这样,根据用户需求的迅速扩展和变化,用户系统和程序无需变化,即可无缝移植。

PAC特性:

1.高速处理器,无信息瓶颈的快速吞吐率专利技术。

2.每个模块槽的双背板总线支持(老的90-30背板总线和新的PCI总线)。

3.新推出的基于PCI高速吞吐率的先进的I/O 模块。

恒温水箱

目录 一、设计题目 (2) 二、设计要求 (2) 三、设计作用与目的 (2) 四、所用设备及软件 (3) 五、系统设计方案 (3) 5.1 硬件总体设计 (3) 5.1.1硬件系统子模块 (4) 5.2 软件总体设计 (4) 六、系统硬件设计 (5) 6.1单片机最小系统电路 (5) 6.2 键盘电路 (6) 6.3 数码管及指示灯显示电路 (7) 6.4 温度采集电路 (8) 6.5 电源电路 (10) 6.6报警电路设计 (11) 6.7加热管控制电路设计 (11) 七、系统软件设计 (12) 7.1主程序流程图 (12) 7.2读取温度DS18B20模块的流程 (14) 7.3 键盘扫描处理流程 (16) 7.4 报警处理流程 (17) 八、实验调试结果 (17) 8.1 硬件电路调试 (17) 8.2 软件调试 (18) 8.3 数据测试 (18) 8.3.1静态数据测试 (18) 8.3.2动态数据测试 (19) 九、设计中的问题及解决方法 (19) 十、设计心得 (20) 十一、参考文献 (20) 附录2:程序清单 (22)

恒温水箱控制系统的设计 一、设计题目 恒温水箱控制系统的设计 二、设计要求 温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 三、设计作用与目的 及时准确地得到温度信息并对其进行适时的控制,在许多工业场合中都是重要的环节.水温的变化影响各种系统的自动运作,例如冶金、机械、食品、化工各类工业中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的水处理温度要求严格控制。对于不同控制系统,其适宜的水质温度总是在一个范围。超过这个范围,系统或许会停止运行或遭受破坏,所以我们必须能实时获取水温变化。对于,超过适宜范围的温度能够报警。同时,我们也希望在适宜温度范围内可以由检测人员根据实际情况加以改变。 单片机对温度的控制是工业生产中经常使用的控制方法.自从1976年Intel 公司推出第一批单片机以来,80年代单片机技术进入快速发展时期,近年来,随着大规模集成电路的发展,单片机继续朝快速、高性能方向发展。单片机主要用于控制,它的应用领域遍及各行各业,大到航天飞机,小至日常生活中的冰箱、彩电,单片机都可以

流量监控系统的研究与设计

流量监控系统的研究与设计 【摘要】网络监控系统作为网络管理的一部分起着极为重要的作用。本文所设计的基于流量分析的网络监控系统实现了对本地网络流量的实时监控、统计分析以及异常流量的查询功能,并能对网络中存在的拒绝服务攻击进行检测。 【关键词】流量分析;数据监控;数据包捕获;网络编程 0引言 目前,业界相关的研究基本都是通过对数据流量进行分析,找出可以真实反映网络的数学模型,例如自相似模型,但仍然不能全面客观地反映网络的真实状态。事实上,要达到对网络性能的有效监测,获得真实的流量数据,并对这些数据进行详细的定性定量分析,才是真正有效的方法。流量测量还可以实现监测拥塞链路,拒绝服务攻击,满足服务等级的QoS 策略等功能。因此,研究并实现相应的监控系统是至关紧要的。 网络流量监控系统对网络内到达本地服务器的所有数据包进行分析,掌握当前网络总流量,同时可以根据不同的需要对特定端口或特定外部地址进行监视,防止非法入侵,以保障本地网络系统的安全和稳定。[1]网络监控能使系统及时地发现网络流量异常的现象,使服务器在发现非法入侵后能立即做出反应,来保护自己的服务器不被破坏,以求获得安全性的同时,提高网络性能。 1Winpcap网络编程介绍 数据包的捕获需要能够做到以下几点功能: (1)捕获原始数据包,包括在共享网络上各主机的交换数据包; (2)在数据包发往应用程序之前,过滤掉某些特殊的数据包; (3)发送原始的数据包; (4)收集网络通信过程中的统计信息。 Winpcap用于windows系统下的直接的网络编程。大多数网络应用程序访问网络是通过广泛使用的套接字。这种方法很容易实现网络数据传输,因为操作系统负责底层的细节(比如协议栈,数据流组装等)以及提供了类似于文件读写的函数接口。Winpcap 的主要功能在于独立于主机协议(如TCP-IP)而发送和接收原始数据报。Winpcap 的组成主要由三个模块组成。第一个模块NPF(Netgroup Packet Filter),是一个虚拟设备驱动程序。它的功能是过滤数据包,并把这些数据包原封不动地传给用户态模块,这个过程中包括了一些操作系统特有的代码。第二个模块packet.dll 为win32 平台提供了一个公共的接口。不同版本的

井下排水泵自动化系统设计分析

井下排水泵自动化系统设计分析 摘要:地下涌水是矿井生产过程中时常发生的现象之一,通过有效的排水系统 及时排出涌水是保障全矿井生产高效、安全开展的关键所在。针对煤矿井下排水 泵自动化系统的设计开展分析,希望能够为其他矿井排水系统的自动化建设提供 借鉴与参考。 关键词:煤矿;排水泵;自动化;系统设计 1 引言 煤矿开采过程中,利用井下排水系统能够及时、高效的将地下涌水排出井外,防止发生水害事故,确保矿井生产的安全,在井下排水系统之中,水泵是极为关 键的设备,如果在排水系统之中水泵出现故障,不仅会导致煤矿无法正常生产, 甚至会出现淹井安全事故,严重的威胁到井下作业人员生命安全。所以,井下排 水系统对于保证矿井生产的安全与稳定极为重要,开发水泵自动化系统,自动控 制井下排水工作,对于确保煤矿安全生产意义重大。 2 水泵自动化监控体系 2.1 设备、结构组成 水泵的监控处理包括外围传感器、就地控制箱、PLC柜、低压柜等。其中PLC 柜包括中间继电器、指示平面、信号处理器等,借助运算控制可完成信号处理, 从而提高水泵运行稳定性;低压开关柜包括继电器、接触器导等,起到对电磁阀 的控制管理作用;就地接线箱包括I/O模块、指示装置等;传感器包括流量传感 装置、闸门转矩行程开关等。 2.2 系统功能 监控系统借助水位计便可实现水量监控,及时将相关数据传送至对应设备。 水位正常状况下,为了避免水泵负荷过高,可让水泵轮换运转工作,一旦水位发 生异常问题,相应信号便可进行阀门控制管理,需引起重视的是必须及时向水泵 中添加一定量的水,这是确保水泵正常运行的关键,尽量避开高峰用水时间,合 理控制水泵开关对水泵监控、节能控制等均具有积极影响。从提高设备实用性出发,需要在设计中留出对应接口,这对水泵数据的采集、传递而言是基础环节, 然后借助互联网可将相关数据传递到对应人员,该方法实用价值较高。 2.3 操作方式分析 系统监控可实现检修、半自动、全自动控制处理。其中全自动借助传感器进 行水位监测,还可根据人工设定、水位等进行泵设备运行状况的分析,从而实现 水量调整、阀门控制处理,该方法对设备全自动运转具有保障作用,此外还需要 及时进行系统防护处理,避免意外事故的发生;半自动处理、水位调整中一般需 要人工手动处理,系统仅自动进行水位采集处理,该方法是当下较为常用的方法,具有安全性高的特点;检修状态下,系统设备处于半停滞状态,相关作业人员需 要在短时间内完成检修处理,专业技术要求高。 3 井下水泵自动化系统设计分析 3.1 水仓水位监测设计 监测作业主要通过MPM281压力传感装置予以实现。在主水仓和副水仓内分 别布设压力感应装置一台。所使用的MPM281压力感应装置是一种被广泛应用于 工业生产领域的高性能设备,属于自带隔离的精密补偿型硅压阻式元件。主要核

水箱恒温控制系统的设计

水箱恒温控制系统的设计 [摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。本设计是基于STC89C521单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机STC89C52作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。 The Design of Refrigerator Door Shell Shaping Control System Abstract:The system makes use of the single chip STC89C52 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.

基于PLC的流量监控系统设计说明

毕业设计论文基于PLC的流量监控系统设计 xxxx大学 xxx.xx xxx

目录 1 选题背景 2方案论证 3 开发设计过程 4 结果分析 5 总结 参考文献 致谢 附录A:MAIN主程序: 附录B:CPU技术规范 附录C :EM 235模拟量输入,输出和组合模块的技术规范

基于PLC的流量监控系统设计 1 选题背景 本毕业设计课题来自实验室建设。目的是利用PLC来实现过程控制。目前,PLC使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。PLC通过模拟量I/O模块,实现模拟量与数字量之间的A/D、D/A转换,并对模拟量进行闭环PID控制。用MCGS组态软件组态配置工业控制监控系统,对数据进行实时监控。

2方案论证 本毕业设计原理是利用扩展模块EM235(AI4/AQ1*12位)进行数据采集,然后把采集到的数据利用程序进行工程量转换,给定量与输入量相减得出偏换,送到执行器,从而构成的是单闭环控制。 采用增量式PID,具有以下优点:(1)增量算法控制误动作影响小。(2)增量算法控制易于实现手动/自动无扰动切换。(3)不产生积分失控,易获得较好的调节品质。在实际应用中,在以步进电机或多圈电位器作执行器件的系统中,则采用增量式PID算法。 MCGS即"监视与控制通用系统",英文全称为Monitor and Control Generated System。MCGS是为工业过程控制和实时监测领域服务的通用计算机系统软件,具有功能完善、操作简便、可视性好、可维护性强的突出特点。MCGS 工控组态软件是一套32位工控组态软件,集流程控制、数据采集、设备控制与输出数据与曲线等诸多强大功能于一身,广泛应用于石油、电力、化工、钢铁、矿山、冶金、机械等多种工程领域。所以用MCGS作为本次毕业设计的开发软件是很有必要的。

流量控制系统设计

目录 第一章过程控制仪表课程设计的目的意义 (2) 1.1 设计目的?2 1.2课程在教学计划中的地位和作用?2 第二章流量控制系统(实验部分)?3 2.1控制系统工艺流程.........................................3 2.2 控制系统的控制要求?4 2.3 系统的实验调试 (5) 第三章流量控制系统工艺流程及控制要求......................... 63.1 控制系统工艺流程.............................................. 6 3.2设计内容及要求?7 第四章总体设计方案?8 4.1 设计思想 (8) 4.2 总体设计流程图........................................... 8第五章硬件设计..................................................... 95.1 硬件设计概要?9 5.2 硬件选型 ......................................................... 9 5.3 硬件电路设计系统原理图及其说明 (13) 第六章软件设计..................................................... 146.1 软件设计流程图及其说明 (14) 6.2 源程序及其说明............................................... 16第七章系统调试及使用说明?17 第八章收获、体会?20 参考文献 (21)

水泵性能测试系统设计

摘要 本文对水泵性能参数测试方法进行了分析和研究,提出了基于虚拟仪器技术的水泵性能参数测试系统的解决方案。在研究过程中,分析讨论了数据采集卡与虚拟仪器软件的接口方法;分析了光电传感器法、感应线圈法和霍尔传感器法三种转速测量方法在水泵转速测量中的优缺点;提出了在LabVIEW 虚拟仪器软件平台上,采用模块化设计方法开发应用程序的方法;分析讨论了对采集数据的软件滤波处理及应用最小二乘法对水泵参数数据的拟合。 试验结果表明这种基于虚拟仪器技术的水泵测试系统,可以适用于科研院校和水泵厂的使用要求,具有一定的推广应用价值。 关键词:水泵性能、虚拟仪器技术、转速测量、数据处理

ABSTRACT The paper does some research and analysis on the measurement methods of the Pump performance parameters. During the researching, the methods of interface between data acquisition card and visual instrument software are discussed; analyzing the difference among the methods of rotate measurement of asynchronous motor using photo electricity sensor, induce and hall sensor; using the style in the programming of system application software; analyzing the method of the median filter and using the conic approach technique in dealing with the measuring data; Experiment results approve that the pump performance measurement system based on visual instrument technology can be used in the institutes and small-scale Pump manufactory. Key words: pump testing research, visual instrument technology, rotational velocity measurement, data processing.

数字图像课程设计 监控视频中道路车流量检测系统设计

山东建筑大学 课程设计说明书 题目:监控视频中道路车流量检测系统设计课程:数字图像处理课程设计 院(部):信息与电气工程学院 专业:电子信息工程 班级:电信 学生姓名: 学号: 指导教师: 完成日期:2013年6月

目录 摘要································································································II 1 设计目的 (1) 2 设计要求 (1) 3 设计内容 (2) 3.1运动车辆检测算法比较 (2) 3.2形态学滤波 (5) 3.3车辆检测 (6) 3.4车辆计数 (9) 3.5软件设计 (9) 总结与致谢 (10) 参考文献 (11) 附录 (12)

摘要 获得实时的交通信息是当前各种检测方式的前提,但是现有的信息采集方式并不能满足交通管理与控制的需求。随着计算机技术的快速发展,基于视频的检测技术在交通中得到了广泛的应用,同其它检测方式相比,它具有检测范围大、设置灵活、安装维护方便、检测参数多等优点。基于图像处理的视频检测方式近年来发展很快,已成为当今智能交通系统的一个研究热点。本论文对视频交通流运动车辆检测的内容进行了深入地研究。结合视频图像详细的介绍了视频检测中的背景更新、阴影去除、车辆分割等关键技术和算法,介绍了视频检测的方法。最后在MATLAB的平台上进行了系统实现设计。实验结果表明,该算法具有一定的可行性,能够快速的将目标参数检测出来关键词:MATLAB;帧间差法;车辆检测

随着经济的发展,人民生活水平的提高,汽车保有量大幅增加,怎样安全高效地对交通进行管理,就显得非常重要.解决这一问题的关键是建立智能交通系统(ITS),其中车辆检测系统是智能交通系统的基础.它为智能控制提供重要的数据来源 作为ITS的基础部分,车辆检测系统在ITS中占有很重要的地位,目前基于视频的检测法是最有前途的一种方法,它是通过图像数字的方法获得交通流量信息,主要有以下优点:(1)能够提供高质量的图像信息,能高效、准确、安全可靠地完成道路交通的监视和控制工作.(2)安装视频摄像机破坏性低、方便、经济.现在我国许多城市已经安装了视频摄像机,用于交通监视和控制.(3)由计算机视觉得到的交通信息便于联网工作,有利于实现道路交通网的监视和控制.(4)随着计算机技术和图像处理技术的发展,满足了系统实时性、安全性和可靠性的要求 2 设计要求 通过对视频流中的车辆进行检测和跟踪,准确地统计每个车道流量、平均车速、平均车道占有率、车队长度、平均车间距等信息为交通规划,交通疏导和车辆动态导航领域提供一系列指导。 设计车辆检测与识别方法和车流量统计方法,实现监控视频中道路车流量检测。通过实验验证检测精度。

智能化流量控制系统设计要点

东北大学秦皇岛分校控制工程学院《过程控制系统》课程设计 设计题目:智能化流量控制系统设计 学生: 专业: 班级学号: 指导教师: 设计时间:2013.7. 1-2013.7.6

目录 一. 设计任务 (3) 二.前言 (3) 四.系统硬件设计 (5) 4.1 设备的选型 (5) 4.1.1 控制器的选型 (5) 4.1.2变频器的选型 (6) 4.1.3流量传感器变送器的选型 (6) 4.2 硬件电路 (7) 五.软件设计 (8) 5.1 控制规律的选择 (8) 5.2 MATLAB 仿真 (8) 5.2.1 传递函数的确定 (8) 5.2.2 采用数字PID控制的系统框图 (9) 5.2.3 基于临界比例度法的PID参数整定 (9) 5.3程序编写 (12) 六.结束语 (16) 七.参考文献 (17) 附页.Matlab 仿真程序及原始图表 (17)

一.设计任务 1、系统构成:系统主要由流量传感器,PLC控制系统、对象、执行器(查找资料自己选择) 等组成。传感器、对象、控制器、执行器可查找资料自行选择,控制器选择PLC为控制器。PLC类型自选。 2、写出流量测量与控制过程,绘制流量控制系统组成框图。 3、系统硬件电路设计自选。 4、编制流量测量控制程序:软件采用模块化程序结构设计,由流量采集程序、流量校准程序、流量控制程序等部分组成 二.前言 本课程设计来源于工业工程中对于流量的监测和控制过程,其目的是利用PLC来实现过程自动控制。目前,PLC使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制,应用领域极为广泛,涉及到所有与自动检测、自动化控制有关的工业及民用领域。PLC 通过模拟量I/O模块和A/D、D/A模块实现模拟量与数字量之间的转换,并对模拟量进行闭环控制。 三.系统控制方案设计 图3.1 控制系统工艺流程图

循环水系统设计

循环水系统设计 1.1循环水系统设备组成 循环水系统作用为为窑炉、xx通道、xx设备提供降温冷却水。为了满足上述设备的不间断冷却水的供应,循环水系统分为水泵系统,柴油机泵系统和自来水系统三个小系统,以备设备故障,停电停水故障使上述设备出现无法冷却导致火灾发生。以下对系统进行逐个分解。 水泵系统和柴油机泵系统是组合在一起的,其中有水箱一个,电水泵两台,保安过滤器两台,板式换热器两台减压阀两套,安全阀一套,冷冻水一路,纯水补水管路一路,各型号阀门若干,不锈钢管道若干。 自来水系统是由自来水管道,保安过滤器一台组成,接入水泵系统的供水管道上。1.1循环水系统工作原理 整个循环水系统采用一用三备的工作方式,通过西门子S7100PLC冗余控制方式,水泵将纯水由水箱抽至保安过滤器,经过再次过滤后,纯水进入板式换热器与冷冻水进行热交换,使纯水温度降至10℃,然后经过减压阀降压至设备所需要的压力,供窑炉,xx通道,xx设备降温,回水由回水管道流入水箱进行循环使用。当其中一台水泵故障时,PLC控制系统自动切换至另一台水泵进行运行,两台水泵都故障时,系统自动启动柴油机,由柴油机带动柴油机水泵进行工作。当上述三台水泵全部故障时,设备管理人员手动开启自来水供水阀门,用自来水给设备紧急降温冷却。 循环水水质管理:动力部化验室每天对循环水水质进行检测,发现硬度、电导率等参数超标时通知设备管理人员进行换水,保证水质在规定的规格范围之内。 控制系统操作 本系统是采用西门子S7100冗余控制方式,系统可靠性高。控制柜上有“手动/自动”转换开关,可以在手动自动状态下运行,注意,手动状态一般用于调试阶段,正常运行不用手动,一定要用自动。自动状态下有两种运行方式:单动和联动。正常生产时用联动,程控运行。运行之前先观察冷却水水箱液位,如果低液位低于设定液位1.1米,电磁阀自动打开补水,补至1.6米自动停止。

恒温水箱毕业设计

一、绪论 (一)课题研究的背景 温度是工业上常见的被控参数之一,特别是在冶金、化工、建材、食品加工、机械制造等领域,恒温控制系统被广泛应用于加热炉、热处理炉、反应炉等。在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D转换,最终送入单片机及其相应的外围电路,完成监控。但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。本文介绍单片机通过数字温度传感器检测外部温度对水箱进行恒温控制的设计,通过控制继电器的通断,进而控制电炉的加热来实现恒温控制。因此,本系统采用一种新型的可编程温度传感器(DS18B20),不需复杂的信号处理电路和A/D转换电路就能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。在日常生活中,也经常用到电烤箱、微波炉、电热水器、烘干箱等需要进行温度检测与控制的家用电器。采用单片机实现温度控制不仅具有控制方便、简单、灵活等优点,而且可以大幅度地提高被控温度的技术指标,从而大大提高产品的质量,现以恒温水箱控制系统的设计进行介绍。 (二)国内外恒温控制技术发展现状及趋势 随着计算机控制技术的发展,恒温控制己在工业生产领域中得到了广泛应用,并取得了巨大的经济和社会效益。在不同的领域内,由于控制环境、目标、成本等因素,需要针对具体情况来设计系统结构和功能,以取得最佳的控制效果。其中,恒温环境的自动化控制技术在工业生产、商业运营中是一个重要研究。 1、国外恒温控制的发展现状及趋势 自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外恒温控制系统发展迅速,并在智能化,自适应参数的自整定等方面取得了很大的科技成果。在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表。 目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。虽然温度控制系统在国内各行各业的应用已经十分广泛,但从国内生产的温度控制器及技术来讲,其总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。 2、国内恒温控制的发展现状及趋势 我国目前在恒温控制技术这方面总体技术水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于

网络流量监控软件的设计与实现设计

网络流量监控软件的设计与实现设计

长沙理工大学 《网络协议编程》课程设计报告 网络流量监控软件的设计与实现 xxx 学 院 计算机与通信工程 专 业 网络工程 班 级 网络12-1 学 号 20125808** 学生姓名 xxxxxx 指导教师 xxxxx 课程成绩 完成日期 2015年9月25日

课程设计成绩评定 院系计算机与通信工程专业网络工程 班级网络1201 学号xxxxxx 学生姓名xxxxxx指导教师xxxxxx 指导教师对学生在课程设计中的评价 指导教师成绩指导教师签字年月日课程设计答辩组对学生在课程设计中的评价 答辩组成绩答辩组长签字年月日

课程设计综合成绩 注:课程设计综合成绩=指导教师成绩×60%+答辩组成绩×40% 课程设计任务书 计算机与通信工程学院网络工程专业

网络流量监控软件的设计与实现 学生姓名:xxxxxx 指导老师:xxxxxx 摘要互联网迅速发展的同时,网络安全问题日益成为人们关注的焦点,病毒、恶意攻击、非法访问等都容易影响网络的正常运行,多种网络防御技术被综合应用到网络安全管理体系中,流量监控系统便是其中一种分析网络状况的有效方法,它从数据包流量分析角度,通过实时地收集和监视网络数据包信息,来检查是否有违反安全策略的行为和网络工作异常的迹象。在研究网络数据包捕获、 TCP/IP原理的基础上,采用面向对象的方法进行了需求分析与功能设计。该系统在VisualC++6.0环境下进行开发,综合采用了Socket-Raw、注册表编程和IP助手API等VC编程技术,在系统需求分析的基础上,对主要功能的实现方案和技术细节进行了详细分析与设计,并通过测试,最终实现了数据包捕获、流量监视与统计主要功能,达到了预定要求,为网络管理员了解网络运行状态提供了参考。 关键词网络管理;数据采集;流量统计;Winsock2

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩 机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保 证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2.压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

双闭环流量比值控制系统设计

目录 摘要 0 双闭环流量比值控制系统设计 (1) 1、双闭环比值控制系统的原理与结构组成 (1) 2、课程设计使用的设备 (1) 3、比值系数的计算 (2) 4、设备投运步骤以及实验曲线结果 (2) 5、总结 (6) 6、参考文献 (6)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

光伏水泵系统设计

摘要 光伏水泵系统是光伏技术的主要应用之一。光伏水泵可广泛应用于众多领域,偏远地区用水、灌溉、蓄电等。它具有无污染、少维修、不消耗其他能源等优点,得到人们的充分肯定。本论文主要的研究内容和结论如下: (1)讲述光伏水泵的原理,分析了泵站设计的一般要求和技术要求。 (2)泵站建设的条件分析和性能参数如扬程、流量的设计。 (3)光伏水泵的设计方案,包括日照数据处理、光伏组件的特性分析计算、电流电压的大小确定等。 在设计一个光伏水泵系统时有两个很重要的原则,一是选用最合适的系统配件,二是系统配件间达到最佳匹配。 【关键词】光伏水泵;性能参数;扬程

目录 第1章绪论 (1) 第2章光伏水泵简介 (2) 2.1光伏水泵的概述 (2) 2.2光伏水泵的背景 (2) 2.3光伏水泵的意义 (2) 第3章水泵系统 (4) 3.1系统组成及工作原理 (4) 3.1.2变频器主电路及硬件构成 (4) 3.1.3 DC/DC升压电路简述 (5) 3.2 光伏水泵最大功率点跟踪(MPPT)设计 (6) 3.3 系统的保护功能设计 (7) 3.4光伏水泵系统的几种结构形式 (8) 第4章光伏水泵系统设计 (9) 4.1 需水量计算 (9) 4.2 选择倾角并修正日照数据 (10) 4.3 数据处理 (10) 4.4 水泵的选择 (12) 4.5选择兼容的电动机 (13) 4.6 求出子系统的负载曲线 (13) 4.7 光伏系统的规格 (14) 4.8 电压大小 (14) 4.9 电流大小 (15) 参考文献 (16)

Abstract Photovoltaic photovoltaic water pump is one of the main applications of. Photovoltaic water pump is widely applied in many areas, remote areas, irrigation water, storage etc.. It has the advantages of no pollution, less repair, do not consume other energy a bit, have been fully affirmed. In this paper, the main research contents and conclusions are as follows: (1) Tells the story of photovoltaic water pump are analyzed the principle, general design requirements and technical requirements. (2) Pumping station construction condition analysis and parameters head, flow design. (3) The photovoltaic pump design, including the data processing, photovoltaic modules performance analysis, current and voltage size determination. In the design of a photovoltaic water pump system has two important principles, one is the most suitable system accessories choice, one is the matching system accessories. 【key words】Photovoltaic pump;Performance parameters;Lift

基于PLC的水箱温度控制系统

【摘要】 本文研究的是可编程控制器在水箱恒温控制系统中的应用,水箱恒温控制装置主要用来完成对水箱中液体的液位和温度检测,并对温度参数进行调节。系统中温度控制是一个非常重要的部分。通过铂热电阻对温度进行测量,将测量到的温度传到PLC中。PLC 对采集到的温度值与给定值进行比较,经过PID运算后,调节双向晶闸管在设定周期内通断时间的比例,改变加热丝中电流大小及加热时间,以完成对温度的控制要求。 本系统硬件部分主要由CPU224、EM235、双向晶闸管等组成;软件部分主要由PID 控制来完成。 关键词:PLC CPU224 EM235 双向晶闸管 PID控制 Abstract: In this paper, is the programmable controller in the water tank temperature control system application, water tank temperature control system is mainly used to complete the tank liquid level and temperature detection, and adjust the temperature parameters. System, temperature control is a very important part. By platinum RTD temperature measurement will be measured in the temperature reached the PLC. PLC on the collected temperature values compared with a given value, after a PID operation, the regulator Triac off the set period of time the ratio of change in heating wire in the current size and heating time to complete the right temperature control requirements. The system hardware mainly by the CPU224, EM235, bi-directional thyristor etc.; software, some of the major by the PID control to complete. Key words:PLC CPU224 EM235 Triac PID Contro l

基于单片机的流量控制系统设计

过程控制系统 课程设计 设计题目:基于单片机的流量控制系统设计 学生姓名: 专业:测控技术与仪器 班级学号: 指导教师 设计时间:2010.6.28-2008.7.11

《过程控制系统》课程设计任务书 专业测控技术与仪器班级姓名 设计题目:基于单片机的流量控制系统设计 一、设计实验条件 过程控制系统实验室实验系统 二、设计任务 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。(2)编制流量控制程序 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间: 2 周 2、设计时间安排: 熟悉实验设备、实验、收集资料:4天 设计计算、绘制技术图纸:4天 编写课程设计说明书:5天 答辩:1天

一,流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】 在天然气工业蓬勃发展的现在,天然气的计量引起了人们的特别关注,因为在天然气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、航天航空、军事领域等也都有广泛的应用。 二,系统方案 1、方案整体思路 液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。 本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。 2、实现流程 流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。 图1 流量过程控制组成框图

相关文档
最新文档