Molecular cloning and characterization of an anti-bolting

Molecular cloning and characterization of an anti-bolting
Molecular cloning and characterization of an anti-bolting

Molecular cloning and characterization of an anti-bolting

related gene(BrpFLC)from Brassica rapa ssp.Pekinensis

Zhugang Li a,1,Lingxia Zhao a,1,Chongshi Cui b,Guoyin Kai a,

Lida Zhang a,Xiaofen Sun c,Kexuan Tang a,c,*

a Plant Biotechnology Research Center,Fudan-SJTU-Nottingham Plant Biotechnology R&D Center,

School of Agriculture and Biology,Shanghai Jiao Tong University,1954Huashan Road,Shanghai200030,China

b College of Horticulture,Northeast Agricultural University,Harbin150030,China

c State Key Laboratory of Genetic Engineering,School of Life Sciences,Morgan-Tan International Center for Life Sciences,

Fudan-SJTU-Nottingham Plant Biotechnology R&D Center,Fudan University,Shanghai200433,China

Received16April2003;received in revised form13August2004;accepted31August2004

Available online25September2004

Abstract

Bolting reduces the commercial value of Chinese cabbage,so inhibiting Chinese cabbage from bolting is important.Flowering locus C (FLC),a repressor of?owering,encodes a MADS-domain transcription factor in Arabidopsis thaliana.Here we report on the cloning and characterization of a FLC homologous gene from Chinese cabbage(designated as BrpFLC,GenBank accession number:AY364013)using RACE-PCR.The full-length cDNA of BrpFLC was851base pair(bp)and contained a591bp open reading frame(ORF)encoding a protein with197amino acid residues.The BrpFLC gene had a high degree of similarity to Brassica napus MADS-box protein mRNA(AY036890) and Brassica rapa cultivar samjin?owering locus C(FLC)mRNA(AY273162).Southern blot analysis indicated that the FLC gene belonged to a multi-gene family when the coding sequence of BrpFLC was used as a probe,and there was a single copy when a30UTR region was used as a probe.Northern blot analysis using the30UTR of BrpFLC as the probe revealed that the transcript level of BrpFLC of different anti-bolting Chinese cabbage cultivars was reduced by vernalization at different degrees,and the BrpFLC transcript levels of anti-bolting cultivars remained higher than those of easy bolting cultivars after vernalization,implying that the degree of vernalization sensitivity of the BrpFLC gene was related to the level of bolting of Chinese cabbage.

#2004Elsevier Ireland Ltd.All rights reserved.

Keywords:Bolting;Brassica rapa ssp.Pekinensis;BrpFLC;Chinese cabbage;Molecular cloning;RACE

1.Introduction

Chinese cabbage(Brassica rapa ssp.Pekinensis), originated in China[1,2],is widely cultivated in Northeast Asia as one of the most widely cultivated crops,and it can be dried,pickled,or cooked for eating[3].Exposing the germinating seed or plantlet to a range of low temperatures (vernalization)will accelerate?owering of the plant. Flowering reduces the commercial value of Chinese cabbage,so it is desirable to use late-?owering Chinese cabbage in agricultural production[4].Bolting of Chinese cabbage is an early signal of?owering,which is accelerated by vernalization and following?ower induction Chinese cabbage cannot be harvested.The temperature in spring in China is usually low,which often reduces Chinese cabbage production.

The study of genes controlling?owering time has been conducted predominantly in Arabidopsis.The FRI,FLC, CO,FT and FCA have been isolated by the generation of mutants with alteration to?owering time[5–7].FRI and FLC are major loci determining?owering time in late-and early-?owering Arabidopsis,synergistically causing late ?owering[8–11].The level of FLC gene expression correlates with the time of?owering in Arabidopsis,and

https://www.360docs.net/doc/a32584370.html,/locate/plantsci

Plant Science168(2005)407–413

*Corresponding author.Tel.:+862162932002;fax:+862162824073.

E-mail address:kxtang1@https://www.360docs.net/doc/a32584370.html,,kxtang1@https://www.360docs.net/doc/a32584370.html,(K.Tang).

1Co-?rst authors.

0168-9452/$–see front matter#2004Elsevier Ireland Ltd.All rights reserved.

doi:10.1016/j.plantsci.2004.08.012

the FLC gene encodes a dosage dependent repressor of ?owering[10,12].Flowering is repressed when the FLC gene is overexpressed in transgenic plants[8,12–17]. Expression analyses of?ve FLC-related genes from Brassica napus suggest that BnFLC1–5could delay?ower-ing by3weeks to more than7months in Arabidopsis,and the expression of Arabidopsis FLC could delay?owering time by2–6weeks in early?owering of B.napus cultivar [12].In the present paper,we described the cloning of the anti-bolting gene(BrpFLC)from Chinese cabbage. The expression pro?les of BrpFLC in Chinese cabbage cultivars(B.rapa ssp.Pekinensis)with different bolting following vernalization and without vernalization are also presented.

2.Materials and methods

2.1.Plant materials

Five different bolting Chinese cabbage cultivars,pro-vided by Professor Chongshi Cui of Northeast Agricultural University in China were used in the study.The?ve Chinese cabbage cultivars were as following:Ricaze No.1(the high anti-bolting,strong winter cultivar),Dongchun No.2(the high anti-bolting,strong winter cultivar),Yangchun(the anti-bolting,medium winter cultivar),Dongnong901(the easy bolting,frail winter cultivar)and Jingxiawang(the easier bolting,frailer winter cultivar).The cultivar Chundawang,purchased from seed market in Shanghai is a strong winter as well as anti-bolting cultivar.All unvernalized Chinese cabbages were planted in a green-house with a14-h photoperiod at258C.The seeds were vernalized at1–28C in dark for28,35,49,and63days and then sown in the same greenhouse[10].

2.2.Cloning and sequencing of the full-length cDNA of BrpFLC

Total RNA was extracted from leaves of anti-bolting Chinese cabbage‘‘Chundawang’’with TRIzol reagents (GIBCO BRL,USA)according to the manufacturer’s instruction.The?rst strand cDNA was synthesized from 5m g total RNA according to the protocol of the30RACE System for rapid ampli?cation of cDNA ends(RACE)using the adapter primer(AP,Table1)(GIBCO BRL,USA).The following primers were designed based on the coding sequence of Arabidopsis FLC protein mRNA(GenBank accession number:AF537203):the forward primer(primer 1)and the reverse primer(primer2,Table1),in which Xba I and Sac I enzymatic sites were incorporated.All the primers used in cloning of the BrpFLC full-length cDNA,except the primers provided in the kit(AP,AAP,AUAP),were synthesized by Shanghai Sangon Biotechnological Com-pany in China.The sequences of all the primers used in this experiment were given in Table1.PCR was carried out in a total volume of25m l containing1m l cDNA,10pmol of primer1,10pmol of primer2,10m mol dNTPs,1?PCR reaction buffer and 2.5U Taq polymerase.PCR was performed under the following condition:the template was denatured at948C for3min followed by35cycles of ampli?cation(948C for1min,568C for1min,728C for 1min)and by8min at728C.The PCR product was puri?ed and cloned into pGEM-T easy vector(Promega,Madison, WI,USA)followed by sequencing.The ampli?ed FLC coding sequence from Chinese cabbage‘‘Chundawang’’was con?rmed by NCBI search.The30RACE primer (primer3,Table1)was designed according to this coding sequence and30RACE-PCR was performed as described above.

Based on the30RACE sequence,the gene speci?c primers4and5(Table1)were designed to amplify the50 end of BrpFLC by the cDNA tailed with oligoC.The?rst cycle of PCR was performed with primer4and abridged anchor primer(AAP)as described above.The second round of ampli?cation was performed with primer5and AUAP using the?rst-cycled PCR product diluted50-fold. By aligning30and50product and coding sequence region, the sequence of the full-length cDNA was deduced.To amplify the full-length cDNA of BrpFLC,PCR ampli?ca-tion was carried out using primer6and AUAP in a total volume of50m l reaction solution containing5m l of10?pfu buffer(plus Mg2+),1m l of10mM dNTP mixture,1m l of10m M primer6,1m l of10m M AUAP,2m l of cDNA and10U of pfu DNA polymerase using the following protocol:948C for3min followed by35cycles of ampli?cation(948C for1min,588C for1min,728C for 90s)and by728C for10min.The ampli?ed blunt-ended DNA fragment was dA-tailed using dA-tailing Kit (Sangon,China),ligated with pGEM-T easy vector followed by sequencing.

2.3.Sequence analysis

Sequencing of BrpFLC gene was performed on ABI377 Sequencer(Perkin-Elmer,USA).Amino acid sequence analysis and multiple alignments were conducted on internet network(http://www.expasy.ch).The phylogenetic tree was constructed by software CLUSTAL W1.81and MEGA2 using neighbor-joining method[18–19].

Z.Li et al./Plant Science168(2005)407–413 408

Table1

Primers used in the cloning of the full-length cDNA of BrpFLC by RACE

AP50-GGCCACGCGTCGACTAGTAC(T)17-30

AAP50-GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-30

AUAP50-GGCCACGCGTCGACTAGTAC-30

Primer150-CGCTCTAGAATGGGAAGAAAAAAACTAGAA-30

Primer250-ATAGAGCTCCTAATTAAGTAGTGGGAGAG-30

Primer350-GCTGCTGAAAGAAGAGAATCAG-30

Primer450-AGAGCTTTTGACTGAAGATTCAGG-30

Primer550-CGGAGAAGCTGTAGAGCTT-30

Primer650-CGCTCTAGAATGGGAAGAAAAAAACTAGAA-30

2.4.Southern blot analysis

Genomic DNA was extracted from young leaves of plants at three-to?ve-leaf stage from unvernalized anti-bolting Chinese cabbage‘‘Chundawang’’using CTAB method[20]. Aliquots of DNA(13m g)were digested overnight at378C with Hin dIII,Xba I,Bam HI and Eco RI,respectively,which did not cut the coding sequence region,fractionated by1.0% agarose gel,transferred to a positively charged Hybond-N+ nylon membrane(Amersham Pharmacia,Sweden)and hybridized with BrpFLC coding sequence as the probe.In order to further identify the copy number of BrpFLC, aliquots of Chinese cabbage genomic DNA(15m g)were digested overnight at378C with Kpn I,Eco RI and Sna BI, respectively,fractionated by1.0%agarose gel transferred to a positively charged Hybond-N+nylon membrane and hybridized with another gene speci?c probe of BrpFLC(30 UTR).The probes were labeled with biotin-dUTP on the basis of gene images random prime labeling module (Amersham Pharmacia,Sweden)and Southern blot analyses were performed according to the manufacturer’s instruc-tions.Hybridizing bands were detected using CDP-star detection system(Amersham Pharmacia)and signals were visualized by exposure to Fuji X-ray?lm at room temperature for2–3h.

2.5.Northern blot analysis

Total RNA was extracted from leaves of the?ve different bolting Chinese cabbage cultivars(Jingxiawang,Dongnong 901,Yangchun,Dongchun No.2and Ricaze No.1)after treated with vernalization or unvernalization using TRIzol reagents(GIBCO BRL,USA)according to the manufac-turer’s instruction.Aliquots of total RNA(20m g)were separated in1.0%formaldehyde-denatured(w/v)agarose gel,transferred to a Hybond-N+nylon membrane and hybridised with the BrpFLC30UTR and its coding sequence probes.Hybridization and?uorescence exposure were the same as mentioned in Southern blot analysis except that Northern blot was performed at658C.In order to reveal the differentiation among different cultivars after vernalization treatments more clearly,the Northern blot?gure was captured and analyzed by using a UVP transilluminator and the labworks(UVP Inc.,Cambridge,UK).

3.Results and discussion

3.1.Cloning of the full-length cDNA of BrpFLC and sequence analysis

Based on the conserved region of FLC in Arabidopsis (AF537203),speci?c primers(primer1and primer2)were designed to amplify the coding region of FLC from Chinese cabbage‘‘Chundawang’’.A speci?c612bp band was ampli?ed and sequence analysis with ORF?nder(https://www.360docs.net/doc/a32584370.html,)indicated that this fragment con-tained a591bp ORF,which was highly homologous to MADS genes.A30primer was designed for30RACE-PCR and a speci?c342bp band was ampli?ed with an overlap of 157bp.Two speci?c reverse primers designed according to the coding sequence(primers4and5)were used for the ampli?cation of the50end of BrpFLC and a500bp fragment was obtained which contained a50untranslated region of 54bp.By aligning and comparing the coding sequence region,30and50RACE product,the full-length cDNA of BrpFLC was deduced and con?rmed by RT-PCR using primers6and AUAP.The cloned full-length cDNA of BrpFLC gene was851bp with a591bp ORF encoding197 amino acids(Fig.1).NCBI search revealed that BrpFLC belonged to MADS gene family.Sequence alignment revealed that the amino acid sequence of BrpFLC was 98%identical to B.rapa cultivar samjin FLC(AAP31678) and81%identical to FLC in Arabidopsis(AAN04056).At the nucleotide level,the BrpFLC was99%identical to B. rapa cultivar samjin FLC mRNA(AY273162)and93% identical to Arabidopsis FLC mRNA(AF537203).As B. napus MADS protein(AAK70217)and Arabidopsis FLC (AAN04056)were demonstrated to delay?owering[10,12], BrpFLC might also have the function of repressing ?owering.Multiple sequence alignments revealed that BrpFLC also contained typical MADS-box,a conserved domain with about55amino acids in all the reported MADS-box proteins(Fig.2(A)).There was an I-box(from 58th to84th aa,Fig.2(A))made up of27-hydrophilic amino acid residues(indicated by the arrowhead,Fig.3)between MADS-box(from1st to55th aa,Fig.2(A))and K-box(from 86th to150th aa,Fig.2(A)),which was not a conserved region[16],and C-terminus was downstream from the K-box,which was not a conserved region made up of more 10-hydrophobic amino acid residues(indicated by the arrowhead,Fig.3).The ORF encoded a197aa protein with a calculated molecular weight of21.64kDa and an isoelectric point of9.25,revealed by Expasy Molecular Biology Server Analysis(https://www.360docs.net/doc/a32584370.html,).

3.2.Phylogenetic tree analysis

Phylogenetic tree analysis revealed that BrpFLC,three FLCs from B.rapa(AAP31680,AAP31681and AAP31678),FLC from B.oleracea(AAP31677)and FLC from B.napus(AAK70217)were grouped into one cluster with nearest distance as bootstrap value of the subgroup was100%which was in good agreement with previous molecular evolution results that AA genome was much more related with AACC genome than with CC genome in Brassica[21–23].FLC from B.napus(AAK70215)and FLC(AAN04056)from Arabidopsis were grouped into the other cluster,and the two clusters joined together to form a higher subgroup1.MAF4(AAO65315),MADS-box protein (NP_201311),MAF2(AAO65307)and AGL3(AAG37904) from Arabidopsis were grouped into subgroup2.Subgroup1

Z.Li et al./Plant Science168(2005)407–413409

and 2were derived from a common ancestor in evolution (Fig.2(B)).

3.3.Southern blot analysis

In order to test whether BrpFLC belonged to a multi-gene family,Southern blot analysis was performed using BrpFLC coding sequence as the probe.The result revealed that there were several hybridization bands (Fig.4(A)),indicating that the BrpFLC belonged to multiple-gene family which was in agreement with previous reports about FLC genes in B.napus [12]and B.rapa [24].In order to further investigate the copy number of the BrpFLC gene,Southern blot analysis was carried out using another speci ?c probe (30UTR of BrpFLC )and the result showed that there was only one hybridization band (Fig.4(B)),suggesting that BrpFLC was a single-copy gene.

3.4.Expression pro?le of BrpFLC in different bolting Chinese cabbage cultivars with and without vernalization Total RNA extracted from the ?ve different bolting Chinese cabbage cultivars under vernalization or unverna-lization treatment,was used to investigate the expression pro ?les of BrpFLC by Northern blot analysis.Northern blot analysis was performed using the full coding sequence of BrpFLC as the probe and the result revealed that the transcript level of the BrpFLC gene was greatly reduced by vernalization in all cultivars and there was no obvious difference among the ?ve Chinese cabbage cultivars without vernalization after 4weeks (Fig.5(A)).There were two hybridization bands in the Northern blot picture (Fig.5(A)),implying that there was at least another homologue related to vernalization with high similarity to the BrpFLC .

When the BrpFLC 30UTR was used as speci ?c probe in Northern blot,the results revealed that the transcript level of BrpFLC was obviously reduced by vernalization in all the ?ve cultivars,whereas there was no obvious difference among the ?ve Chinese cabbage cultivars without vernaliza-tion (Fig.5(B)).All the ?ve cultivars still remained certain levels of BrpFLC transcripts 4or 5weeks post-treatment (vernalization),but BrpFLC transcript levels of the two high anti-bolting cultivars (Ricaze No.1and Dongchun No.2)were reduced much less than those of the other three cultivars,as a whole the transcript levels of BrpFLC were much higher after 4weeks of treatment than those after 5weeks of treatment.The transcript levels of BrpFLC were reduced much more by vernalization treatments after 7weeks than those after 5weeks.However,the BrpFLC transcripts were almost not detectable in Yangchun,

Z.Li et al./Plant Science 168(2005)407–413

410Fig.1.The full-length cDNA sequence and deduced amino acid sequence of BrpFLC .The start codon (ATG)was underlined and the stop codon (TAA)was underlined italically.

Z.Li et al./Plant Science168(2005)407–413411

Fig.2.Multiple alignment and phylogenetic tree analyses of BrpFLC.(A)Multiple alignment of BrpFLC with other MADS proteins.The identical amino acid residues were indicated with black background and the different amino acid residues were indicated with white background.Gray shade indicated60%or more conservation among all the aligned sequences.AAP31678:?owering locus C of B.rapa cultivar samjin(BrsFLC);AAP31681:?owering locus C(B.rapa); AAP31680:?owering locus C(B.rapa);AAK70217:MADS-box protein(B.napus);AAP31677:?owering locus C(B.oleracea var.capitata);AAK70215: MADS-box protein(B.napus);AAO65307:MADS affecting?owering2variant I(A.thaliana);NP_201311:MADS-box protein(A.thaliana);AAO65315: MADS affecting?owering4variant I(A.thaliana);AAG37904:MADS-box protein AGL31(A.thaliana);AAN04056:?owering locus C protein(A.thaliana).

(B)Neighbor-joining phylogenetic tree analysis with bootstrap values.

Dongnong 901and Jingxiawang,faint in Dongchun No.2and comparatively stronger in Ricaze No.1.After 9weeks of vernalization treatments,the BrpFLC transcripts were almost undetectable among all the ?ve cultivars.As also could be summarized by Fig.5(B),the transcript levels of the BrpFLC reduced gradually along with vernalization treatment in all ?ve cultivars.During 4weeks,all the BrpFLC transcripts reduced remarkably but the BrpFLC transcripts reduced gradually from 4to 9weeks in the cultivars Yangchun,Dongchun No.2and Ricaze No.1,while those of cultivars Jingxiawang and Dongnong 901reduced much less than the other three cultivars.

Our results indicated that BrpFLC transcripts in high anti-bolting cultivars (Dongchun No.2and Ricaze No.1)remained somewhat higher levels than the other three cultivars in a comparatively long period of vernalization

Z.Li et al./Plant Science 168(2005)407–413

412Fig.3.Analysis of hydrophilic and hydrophobic domains of deduced amino acid sequence of

BrpFLC.

Fig.4.Southern blot analysis.(A)Genomic DNA was isolated from leaves of Chinese cabbage ‘‘Chundawang ’’(unvernalized)and digested with Hin dIII,Xba I,Bam HI and Eco RI,respectively,followed by hybridization with the biotin-dUTP-labeled BrpFLC coding sequence as the probe.(B)Genome DNA was digested with Kpn I,Eco RI and Sna BI,respectively,followed by hybridization with the biotin-dUTP-labeled BrpFLC 30UTR as the

probe.

Fig.5.Northern blot analysis for the expression of BrpFLC in different bolting Chinese cabbage cultivars after vernalization or non-vernalization treatment.Total RNA was isolated from leaves followed by hybridization with the biotin-dUTP-labeled BrpFLC 30UTR or the coding sequence as the probe.The rRNA was used as internal control paralleling in Northern blot (Upper panel).Lane 1:Jingxiawang was not vernalized;Lane 2:Jingxiawang was treated by vernalization;Lane 3:Dongnong 901was not vernalized;Lane 4:Dongnong 901was treated by vernalization;Lane 5:Yangchun was not vernalized;Lane 6:Yangchun was treated by vernalization;Lane 7:Dongchun No.2was not vernalized;Lane 8:Dongchun No.2was treated by vernalization;Lane 9:Ricaze No.1was not vernalized;and Lane 10:Ricaze No.1was treated by vernalization.The 4,5,7and 9weeks represented 28,35,49and 63days of venalization treatment,respectively.BrFLC denotes BrpFLC .(A)Northern blot analysis was conducted using the BrpFLC coding sequence as the probe for materials treated by 4weeks of vernalization.(B)Left:Northern blot analysis was conducted using the 30UTR as the probe for materials treated by 4,5,7and 9weeks of vernalization,respectively.Right:the UVP scanning result.Data represents the mean values ?S.E.of three replicates.

treatment(at least within7weeks),implying that BrpFLC was related to bolting in B.rapa ssp.Pekinensis.

Bolting means the transformation of vegetative growth to ?owering,which in?uences Chinese cabbage production in China and other regions of high latitude in autumn[25]. Bolting is a signal of?owering and is usually accelerated by vernalization.In the present study,we have demonstrated that BrpFLC is related with both vernalization and bolting. The anti-bolting cultivars still have a certain level of BrpFLC transcripts after vernalization,suggesting that BrpFLC encodes the dosage dependent repressor of ?owering[10,12,24].FLC represses?owering when over-expressed in transgenic plants,both in early and late ?owering B.napus[10,12,16,26,27].The cloning of the BrpFLC will enable us to study the role of BrpFLC gene on anti-bolting in B.rapa ssp.Pekinensis by genetic manipulation in the future.

Acknowledgements

This research was supported by China National‘‘863’’High-Tech Program,China Ministry of Education,Shanghai Science and Technology Committee and UK/CHINA Science and Technology Collaboration Fund.We are grateful to Youfang Cao and Shi Liu for their assistance with computer analysis.

References

[1]J.W.Li,Chinese cabbage origin and evolution problem discussion,

Acta Horticult.Sin.1(1962)297–304.

[2]C.Tan,The origin,distribution and evolution of the cultivars of

Chinese head cabbage(https://www.360docs.net/doc/a32584370.html,pestris ssp.Pekinensis),China Agric.

Sci.4(1979)68–75.

[3]Y.P.Lim,J.W.Bang,Y.K.Hu,K.S.Choi,H.Kim,S.Choi,Application

of BAC library for Chinese cabbage genome research,in:Proceedings of Plant Animal Genome IX Conference,2001,13–17January. [4]M.Hirai,H.Ajisaka,Y.Kuginuki,M.Yui,Utilization of DNA

polymorphism in vegetable breeding,in:Symposium on75th Anni-versary of Japanese Society of Horticulture,vol.67,1998,pp.1186–1188.

[5]M.Koornneef,C.Alonso-Blanco,A.J.Peeters,W.Soppe,Genetic

control of?owering time in Arabidopsis,Annu.Rev.Plant Physiol.

Plant Mol.Biol.49(1998)345–370.

[6]Y.Y.Levy,C.Dean,The transition to?owering,Plant Cell10(1998)

1973–1989.

[7]O.J.Ratcliffe,G.C.Nadzan,T.L.Reuber,J.L.Riechmann,Regulation

of Flowering in Arabidopsis by an FLC Homologue,Plant Physiol.

126(2001)122–132.

[8]I.Lee,S.D.Michaels,A.S.Masshardt,R.M.Amasino,The late-

?owering phenotype of FRIGIDA and mutations in LUMINIDEPEN-DENS is suppressed in the Landsberg erecta strain of Arabidopsis, Plant J.6(1994)903–909.

[9]T.C.Osborn,C.Kole,I.A.P.Parkin,A.G.Sharpe,M.Kuiper,Com-

parison of?owering time genes in Brassica rapa,B.napus and Arabidopsis thaliana,Genetics146(1997)1123–1129.

[10]C.C.Sheldon,D.T.Rouse,E.J.Finnegan,W.J.Peacock,E.S.Dennis,

The molecular basis of vernalization:the central role of FLOWERING LOCUS C(FLC),https://www.360docs.net/doc/a32584370.html,A97(2000)3753–3758.

[11]M.Koornneef,C.J.Hanhart,J.H.Van der Veen,A genetic and

physiological analysis of late?owering mutants in Arabidopsis thali-ana,Mol.Gen.Genet.229(1991)57–66.

[12]M.Tadege,C.C.Sheldon,C.A.Helliwell,P.Stoutiesdijk,E.S.Dennis,

W.J.Peacock,Control of?owering time by FLC orthologues in Brassica napus,Plant J.28(2001)545–553.

[13]J.H.Clarke,C.Dean,Mapping FRI a locus controlling?owering time

and vernalization response,Mol.Gen.Genet.242(1994)81–89. [14]M.Koornneef,V.H.Blankestijn-de, C.Hanhart,W.Soppe, A.J.

Peeters,The phenotype of some late?owering mutants is enhanced by a locus on chromosome5that is not effective in the Landsberg erecta wildtype,Plant J.6(1994)911–919.

[15]S.L.Sanda,R.M.Amasino,Interaction of FLC and late-?owering

mutations in Arabidopsis thaliana,Mol.Gen.Genet.251(1996)69–

74.

[16]S.D.Michaels,R.M.Amasino,FLOWERING LOCUS C encodes a

novel MADS-domain protein that acts as a repressor of?owering, Plant Cell11(1999)949–956.

[17]U.Johanson,J.West,C.Lister,S.Michaels,R.Amasino,C.Dean,

Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis?owering time,Science290(2000)344–347.

[18]S.Kumar,K.Tamura,I.B.Jakobsen,M.Nei,MEGA2:Molecular

Evolutionary Genetics Analysis software,Arizona State University, Tempe,Arizona,USA,2001.

[19]J.D.Thompson,D.G.Higgins,T.J.Gibson,CLUSTAL W:improving

the sensitivity of progressive multiple sequence alignment through sequence weighting,position speci?c gap penalties and weight matrix choice,Nucl.Acids Res.(1994)4673–4680.

[20]S.R.Rogers,A.J.Bendich,Extraction of total cellular DNA from

plants,algae and fungi,Plant Mol.Biotech.Man.(1994)1–8. [21]M.E.Schranz,P.Quijada,S.B.Sung,L.Lukens,R.Amasino,T.C.

Osborn,Characterization and effects of the replicated?owering time gene FLC in Brassica rapa,Genetics162(2002)1457–1468. [22]E.D.Soltis,P.S.Soltis,Contribution of plant molecular systematics to

studies of molecular evolution,Plant Mol.Biol.42(2000)45–75.

[23]https://www.360docs.net/doc/a32584370.html,gercrantz,Comparative mapping between Arabidopsis thaliana

and Brassica nigra indicates that Brassica genomes have evolved though extensive genome replication accompanied by chromosome fusions and frequent rearrangements,Genetics150(1998)1217–1228.

[24]R.J.Snowdon,T.Friedrich,W.Fried,W.Ko¨hler,Identifying the

chromosome of A-and C-genome diploid B.rapa(syn.rapa)and

B.oleracea in their amphidiploid B.napus,Theor.Appl.Genet.104

(2002)533–538.

[25]F.Cheng,S.J.Li,Y.S.Ao,G.F.Chen,Inheritance of bolting character

of Chinese cabbage,J.Nanjing Agric.Univ.22(1999)26–28. [26]S.R.Hepworth,F.Valverde,D.Ravenscroft,A.Mouradov,G.Coup-

land,Antagonistic regulation of?owering-time gene SCO1by CON-STANS and FLC via separate promoter motifs,EMBO J.21(2002) 4327–4337.

[27]S.D.Michaels,R.M.Amasino,Loss of FLOWERING LOCUS C

activity eliminates the late-?owering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernaliza-tion,Plant Cell13(2001)935–941.

Z.Li et al./Plant Science168(2005)407–413413

转基因动物与克隆动物的区别

转基因动物与克隆动物的区别:转基因,用人工方法将外源基因导入或整合到其基因组内,并能将此外源基因稳定的遗传给下一代的一类动物[1]。由于转基因动物体系打破了自然繁殖中的种间隔离,使基因能在种系关系很远的机体间流动(有性繁殖)。克隆,通常是一种生物技术,以人工诱导的无性生殖方式或者自然的无性生殖方式(例如:植物),产生与原个体有完全相同基因组之后代的过程。一个克隆就是一个多细胞生物在遗传上与另外一种生物完全一样。 基因工程的内容,原理,步骤:是利用DNA重组技术,将目的基因与载体DNA在体外进行重组,然后把这种重组DNA分子引入受体细胞,并使之增殖和表达的技术[1];取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;构建基因的表达载体;将目的基因导入受体细胞;目的基因的检测与鉴定。基因工程是人类根据一定的目的和设计,对DNA 分子进行体外加工操作,再引入受体生物,以改变后者的某些遗传性状,从而培育生物新类型或治疗遗传疾病的一种现代的、崭新的、分子水平的生物工程技术 现代生物工程:现代生物技术包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等五大工程技;可分为农业生物技术、医学生物技术、植物生物技术、动物生物技术、食品生物技术、环境生物技术等。[1] 生态系统(Ecosystem)是指在一个特定环境内,相互作用的所有生物和此一环境的统称。此特定环境里的非生物因子(例如空气、水及土壤等)与其间的生物之间具交互作用[2],不断地进行物质的交换和能量的传递,并借由物质流和能量流的连接,而形成一个整体,即称此为生态系统或生态系。 中国的环保策略:科学协调行业间关系,制定持续发展规划;实现森林资源的供需平衡,持续利用;建立自我调节的生态系统;提高人们的“绿色环保”意识;完善相关法律并严格执行;林业的可持续发展,城市的可持续发展 公害public nuisance,凡由于人类活动污染和破坏环境,对公众的健康、安全、生命、公私财产及生活舒适性等造成的危害均为公害,由于大气污染、水体污染、噪声污染、振动、恶臭等所影响和侵害的是不特定的公众,所以由此产生的危害一般均称为公害。

动物克隆与转基因

动物克隆与转基因 一、人工辅助生殖通常都指那些技术?这些技术主要针对何种需求(可以从阐述技术优缺点的视角来分析)? 人工辅助生殖技术(assisted reproductive technology, ART)主要包括人工授精(artificial insemination, AI)、卵母细胞的体外成熟(in vitro maturation, IVM)、体外受精(in vitrofertilization, IVF)、胚胎体外发育(in vitro production, IVP)、胚胎移植(embryo transfer, ET)和配子冷冻等。这些技术主要可用于改善动物的生殖性能、保护生物多样性和推动基础研究等。在动物方面,可用于商业(如高产)或名贵动物的繁殖及濒危动物的保护研究。此外,还有助于转基因动物克隆和转基因的相关基础研究。 在人类方面,有人工授精、试管婴儿、卵浆内单精子注射技术(ICSI)、种植前遗传学诊断(PGD)及辅助孵化(AH)等,试管婴儿技术(包括体外受精和胚胎移植等)主要解决不孕不育症,自我调控人类的生殖。但是,人工辅助生殖技术还有很多不完善的地方,对于不同的动物研究进展情况不同,主要在超排卵、核移植克隆等方面有待进一步发展。用于人类的辅助生殖技术,也存在一定的弊端,如无法保证妊娠率、多胎率较高、伴随着并发症以及费用风险较高等。此外,用于人类的辅助生殖技术还会引发一些伦理问题。 尽管人工辅助生殖技术尚存在一系列问题,但随着其快速的发展和完善,将有着更加广泛的应用。 三、胚胎分割、胚胎克隆和体细胞克隆在技术方法上有何不同?简单

分析体细胞克隆未来的应用方向和途径。 胚胎分割(Embryo bisection)的理论根据是动物细胞具有全能性,指借助显微操作技术或徒手操作方法切割早期胚胎成二、四等多等份再移植给受体母畜,从而获得同卵双胎或多胎的生物学新技术。来自同一胚胎的后代有相同的遗传物质,因此胚胎分割可看成动物无性繁殖或克隆的方法之一。 胚胎克隆以未分化或处于不同发育阶段的胚胎分裂球或细胞作为核供体,与体外成熟后去核的卵母细胞融合构建成克隆胚胎,或再从克隆胚胎内分离出细胞移入成熟去核卵母细胞融合后即可发育成再克隆胚胎,将这些胚胎移入同期发情的母体得到克隆体和再克隆体。 体细胞克隆则是取出一个双倍体细胞核移入一个去核的卵细胞,并在一定条件下进行核卵重组,再植入代孕母体中发育成新个体的过程。供体细胞均来自高度分化的体细胞,其种类繁多、数量无限。 体细胞克隆技术在动物育种及珍稀动物保护领域具有极其广阔的应用前景,异种克隆则为器官移植提供了一种全新的、可行的方法。体细胞克隆技术在未来将会与基因工程、干细胞技术相互结合,往简单、实用、高效等方向发展。 参考文献: [1]韩堃,石艳春等人类辅助生殖技术研究进展(J)Chinese Journal of Woman and Child Health Research Vo1.19 No.6 2008 [2]刑华犬科动物的生殖生物学与辅助生殖 [3]马利兵,王凤梅等哺乳动物体细胞克隆技术的研究进展(J)生物技术通报,2009,5:51-54

转基因克隆动物技术涉及的生物学问题 生物学转基因

转基因克隆动物技术涉及的生物学问题生物学转基因 1 转基因克隆动物技术简介转基因克隆动物技术是转基因动物技术与克隆动物技术的有机结合,它是以动物体细胞(包括动物成体体细胞、胎儿成纤维细胞等)为受体,将目的基因导入其中,再以这些体细胞为核供体,进行动物克隆。这种结合不仅仅是简单的技术叠加,而是技术的重组、综合和优化,它实现了高效率、低成本的转基因动物制作,已成为当前动物生物技术领域研究的新热点。 1.1转基因克隆动物技术的发展历程 Wilmut研究小组在取得克隆绵羊“多利”后,Schnieke等用阳离子脂质体介导外源基因转染到培养的绵羊胎儿成纤维细胞中,然后将细胞融入去核卵母细胞中,经激活后在体外培养至囊胚期,移入同步受体母羊中,最后获得6只转基因绵羊。 Cibelli等用同一方法获得了3只转基因牛。 xx年6月21日,日本静冈县中小家畜实验场宣布,该实验场和北里大学合作,成功克隆出了体内含有水母基因的转基因猪。该实验第一次成功地把转基因技术和体细胞克隆技术有机地结合在一起。

xx年12月24日,我国东北农业大学刘忠华教授的转基因克隆猪获得成功,3头含绿色荧光蛋白的转基因克隆猪自然分娩。 1.2转基因克隆动物培育过程 转基因克隆动物的培育过程如图1所示。 2 转基因克隆动物涉及的生物学问题 2.1生物技术 2.1.1基因工程 图1中过程A表示目的基因的获取,目前常用的方法有以下几种:①从基因文库中获取目的基因;②利用PCR技术扩增目的基因;

③通过DNA合成仪用化学方法直接人工合成。得到目的基因后,还要构建基因表达载体,才能导入受体细胞。 图1中过程C表示将目的基因导入受体细胞,常用的方法为显微注射法。目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,还需要对目的基因进行分子水平上的检测。检测方法包括:DNA分子杂交法、DNA-RNA杂交法和抗原一抗体杂交法。 2.1.2细胞工程 图1中过程B表示从供体动物的某一部位取体细胞,在体外进行动物细胞培养,得到能进行传代的体细胞。过程D和E表示采用显微操作技术,用微型吸管吸出供体细胞的细胞核,注入去核的卵母细胞中(也有人将供体细胞注入受体细胞中)。过程F表示从受体动物中获得卵巢,再采集卵母细胞,在体外培养成熟,即培养到减数第二次分裂中期。过程G表示通过电刺激使两个细胞融合,得到重组细胞。 2.1.3胚胎工程

动物转基因技术及其应用

动物转基因技术及其应用 摘自(作者:幸宇云任军江西农业大学来源:《百名专家谈转基因》) 转基因是指利用现代分子生物学技术,将某些生物的基因导入到其他物种中,由于导入基 因的表达,引起这些物种性状发生可遗传的变化。转基因动物就是利用转基因技术获得的、具 有正常表达和可稳定遗传外源基因的动物。自1982年第一只转基因动物——一只因导入大鼠 生长激素基因而使生长速度倍增的转基因鼠诞生以来,各种转基因动物,如鱼、兔、猪、牛、 羊等先后问世,1997年,举世轰动的“多莉”克隆羊的诞生使转基因克隆动物成为现实,转 基因动物研究得到了进一步发展。 生产转基因动物的方法有很多,如:显微注射法、精子载体法、逆转录病毒载体法、胚胎 干细胞介导法、体细胞克隆介导法、人工染色体介导的基因转移法等,这些方法各有其优缺点,在转基因动物生产中有着不同程度的应用。 显微注射法是动物转基因技术中最早使用的方法。1982年,美国人Gordon就是利用这种 方法获得了名噪一时的转基因鼠。其基本原理是在显微镜下直接将目的基因注射到受精卵细胞 的原核内,在目的基因与胚胎基因组融合后进行体外培养,最后移植给受体母畜“借腹怀胎”。这种方法的优点是:可靠性高,重复性好,目的基因的整合效率相对较高,导入基因片段的大 小和类型不受限制,转基因在世代之间可以稳定遗传。该方法也有其缺点,主要体现在导入基 因整合的随机性和不可见性,这样会导致基因表达不稳定及可能出现不希望的插入突变。该方 法成功的范例很多,如:美国科学家Hammer等在1985年获得一批转基因兔、绵羊和猪;荷兰 科学家KrimPenfort等于1991年获得了转基因牛;1985年,我国朱作言院士等成功获得了世 界上首例转基因鱼;由中国农业大学李宁院士领导的课题组于2008年获得了一头导入人CD20 抗体基因的转基因奶牛——贝贝。 有的学者另辟蹊径,创立了精子载体转基因法。该方法是将精子与目的DNA进行预培养后,使精子具有携带目的基因进入卵子的能力,精子与卵子结合后,该基因被整合到受精卵的DNA 中。同显微注射法相比,该方法有几个明显的优点:无需显微注射操作,不会对胚胎造成损伤,整合率高,成本很低,不需要对动物进行胚胎移植手术处理等。但该方法成功率不高、效果不 稳定,有待科研人员进一步探索和改进。与显微注射法相比,该方法成功的例子不多。1989 年意大利Lavitrano等首次报道利用精子载体法获得转基因鼠;1996年意大利Sperandio科 研小组报道了采用该方法生产转基因牛和猪。 谈到病毒,人们往往面容失色,殊不知病毒在科学上有很多妙用。逆转录病毒是一种RNA 病毒,在转基因技术中有着独特的应用。人们将目的基因结合到逆转录病毒上,通过病毒感染 可将目的基因插入到宿主基因组中去。该方法具有可同时感染大量胚胎、不需要昂贵的显微注 射设备等优点,但也存在插入外源DNA大小有限、外源基因易发生重排和丢失、逆转录病毒的 序列可能干扰转基因表达等缺点。应用该方法,美国人Salter等(1987)生产出转基因鸡; 德国学者Hofmann等获得绿色荧光蛋白转基因猪(2003),随后又生产出转基因牛(2005); 来自冷泉港实验室的Michael获得能够发荧光的山羊(2006)。 胚胎干细胞是生命体中保留的未成熟细胞,具有再分化形成其他细胞和组织器官的潜力, 被称为“万能细胞”。利用胚胎干细胞生产转基因动物的原理是将外源基因导入分离好的胚胎 干细胞,然后将转基因的胚胎干细胞注射于受体动物胚胎后,参与宿主的胚胎融合形成嵌合体,从而得到转基因动物。这一方法的优点是可以对胚胎干细胞进行特定选择。缺点是目前只有小 鼠干细胞系比较成熟,而家畜干细胞系还未完全建立,有不少问题尚待解决。 体细胞克隆介导的转基因是动物转基因技术中的“高级版本”。说到体细胞克隆,很多人都会想到一位“动物明星”——多莉羊,它是于1997年由英国Wilmut等获得的杰作。转基因 克隆技术是转基因技术和动物克隆技术的有机结合,其基本原理是将目的基因导入动物体细胞

动物克隆技术的发展和现状(文献综述)

动物克隆技术的发展和现状 ——动物遗传工程文献综述

动物克隆技术的发展和现状 摘要:本文简要概述了克隆的概念,全面综述了国内外动物克隆技术及其原理、研究进展和现状,并根据当前克隆技术理论和实践,对该技术的应用和价值进行综述和讨论。 关键词:动物克隆;核移植;体细胞克隆 动物克隆技术,又称动物核移植或无性繁殖技术。它是通过特殊的人工手段,对动物特定发育阶段的核供体(如胚胎分裂球或体细胞核)及其相关的核受体(如去核的原核胚或成熟的卵母细胞),不经有性繁殖,进行体外重构,并通过胚胎移植,从而达到扩大同基因型动物种群的目的。 动物克隆技术在畜牧业生产、医药生产和疾病治疗、生物学基础理论研究以及野生濒危动物的拯救和保护等诸多领域发挥着巨大作用。 1 动物克隆技术的发展 1.1 国外克隆技术的发展: 早在1938年,Spemann就通过蝾螈胚胎分割实验证明了自己的核移植设想。 1952年,Briggs和King将青蛙卵进行核移植,获得重组胚并发育形成小蝌蚪,20世纪六七十年代两栖类、鱼类也相继克隆成功[1]。 1996年,Hoppes克隆小鼠成功标志首例哺乳动物克隆成功[2]。随后,他采用显微去核和病毒介导相继获得克隆羊、克隆兔、克隆猪[3,4]。 1996年,美国克隆猴获得成功,这是人类首次灵长类克隆成功,并引发克隆人与伦理争论[5]。 1997年,克隆绵阳“多莉”的诞生,标志体细胞克隆进入了一个新时代。 1998年,Wilmut等利用核移植和转基因技术,成功地获得了转基因克隆绵阳。 1999年,华裔科学家赖良学等通过基因敲除和体细胞克隆技术相结合,成功获得“基因敲除”克隆猪。 2002年,华裔科学家杨向中宣布成功获得具有两种人类凝血因子的“双基因”克隆猪。 1.2 国内克隆技术的发展 我国的动物克隆技术相对发展比较晚,但几年发展速度较快并且受到国际同行的高度肯定和认可。无论是在同种动物的胚胎细胞克隆、同种动物的体细胞克隆还是异种动物的克隆方面都有很大进步。 同种动物胚胎细胞克隆:1972年,童第周利用核移植技术首次获得了克隆黑斑鲤鱼。1990年,张涌等由同一个胚胎经过多代克隆之后,分别移植于几个羊受体内获得了45只克隆羊。1993年,王斌和范必勤等通过胚胎细胞核移植得到了3只克隆兔。1995年,邹贤刚和杜森进行了山羊继代研究,得到了4只克隆羊。1997年,陆长富和卢光秀等供货的了6只核移植仔鼠。1998年,杜森等用羊胎儿成纤维细胞获得2头克隆山羊。 同种动物体细胞克隆:2002年10月16日中午,中国第一头利用玻璃化冷冻技术培育出的体细胞克隆牛在山东省梁山县诞生;2005年,我国第一头体细胞克隆猪诞生。2013年,一胎8头体细胞克隆小猪在南京农业大学诞生,这是江苏省首例利用徒手克隆核移植技术生产的克隆猪;2013年,世界首例体细胞克隆山羊“元元”在杨凌西北农林科技大学诞生,这一重大科技事件的发生,标志着我国在世界克隆技术领域占据领先地位。

基因工程与克隆技术讲义答案复习进程

基因工程与克隆技术 讲义答案

基因工程与克隆技术 考点1 基因工程 1.(2015·浙江10月选考,节选)答案:限制性核酸内切酶 2.(2016·浙江4月选考,节选) 答案:(1)逆转录重组DNA分子农杆菌 B (2)摇床维持渗透压 3.(2018·浙江4月选考,节选)回答与基因工程和植物克隆有关的 问题: (1)将含某抗虫基因的载体和含卡那霉素抗性基因的载体pBI121均用限制性核酸内切酶EcoRⅠ酶切,在切口处形 成。选取含抗虫基因的DNA片段与切割后的pBI121用DNA连接酶连接,在两个片段相邻处形 成,获得重组质粒。 (2)已知用CaCl2处理细菌,会改变其某些生理状态。取CaCl2处理过的农杆菌与重组质粒在离心管内进行混合等操作,使重组质粒进入农杆菌,完成实验。在离心管中加入液体培养基,置于摇床慢速培养一段时间,其目的 是 , 从而表达卡那霉素抗性基因,并大量增殖。 解析:(1)EcoRⅠ酶切目的基因和载体,在切口处形成粘性末端;DNA连接酶使具有相同粘性末端的两个片段形成磷酸二酯键,能获得重组 质粒。 (2)目的基因进入受体细胞内并在受体细胞内维持稳定和表达的过程,称为转化。经转化的农杆菌,在离心管中加入液体培养基,置于摇床慢速培养一段时间,以使CaCl2处理过的农杆菌恢复细胞的正常状态。 答案:(1)粘性末端磷酸二酯键 (2)转化使CaCl2处理过的农杆菌恢复细胞的正常状态 1.基因工程的工具 2.基因工程的原理与操作步骤 (1)基因工程的原理 ①基本原理:让人们感兴趣的基因(即目的基因)在宿主细胞中稳定和高效地表达。 ②基本要素:多种工具酶、目的基因、载体和宿主细胞等。 (2)基因工程的基本操作步骤 3.形成重组DNA分子 (1)单酶切法

相关文档
最新文档