基于FPGA的高速数据采集存储系统的设计

基于FPGA的高速数据采集存储系统的设计
基于FPGA的高速数据采集存储系统的设计

目录

1 绪论 (2)

1.1 课题的研究背景及意义 (3)

1.3 课题的提出与要求 (4)

1.4 整体设计方案 (5)

2 系统硬件设计 (6)

2.1 系统的整体结构 (6)

2.2 模拟信号采集通道的设计 (6)

2.3 数字信号采集通道的设计 (7)

2.4 开关量采集通道的设计 (7)

2.6 A/D转换器的选择 (11)

2.7 中心控制模块的设计 (14)

2.8 存储器模块的设计 (15)

2.8.1FLASH MEMORY的分类及比较 (16)

2.8.2 K9F1G08管脚描述 (17)

2.8.3 K9F1G08内部结构描述 (18)

2.8.4 K9F1G08在系统中的应用 (19)

2.9 本章小结 (19)

3 FPGA 可编程逻辑器件 (20)

3.2.1 可编程逻辑块阵列 (22)

3.2.2 可编程输入/输出块 (22)

3.2.3 互连资源 (22)

3.2.4 时钟电路 (23)

3.3.1 FPGA的通用设计过程 (24)

3.3.2 FPGA时序仿真 (24)

3.3.3 模拟量采集模块的时序仿真 (25)

3.3.4 数字量采集模块的时序仿真 (26)

3.3.5开关量采集模块的时序仿真 (26)

3.3.6 存储器模块的时序仿真 (27)

4结论 (29)

1 绪论

1.1 课题的研究背景及意义

随着科学技术的迅猛发展,新技术革命将把人类由工业化社会推进到信息化社储为主要内容的数据采集测试技术,已形成了一门专门的技术科学。

数据采集系统是计算机、智能仪器与外界物理世界联系的桥梁,是获取信息的重要途径。数据采集技术是信息科学的重要分支,它不仅应用在智能仪器中,而且在现代工业生产、国防军事及科学研究等方面都得到广泛应用,无论是过程控制、状态监测,还是故障诊断、质量检测,都离不开数据采集系统[1]。

数据采集的任务,具体地说,就是采集传感器输出的模拟信号并转换为计算机能识别的数字信号,然后送入计算机或相应的信号处理系统,根据不同需要进行相应的计算和处理,得出所需要的数据。与此同时,将计算机得到的数据进行显示或打印,以便实现对某些物理量的监视,其中的一部分数据还将被控制生产过程中的计算机控制系统用来控制某些物理量。

存储测试系统是一种数据采集系统(DAS),包括数据采集记录硬件和计算机数据分析处理软件;一般情况下,将信息量化采集后先存入系统中的数据存储器,等任务执行完后再进行事后的数据读取和分析;数据采集记录硬件部分在工作完成后进行回收,以便进行数据回读[2]。

一个大型的数据采集系统由以下几个部分组成:数据采集、数据传输、数据存储、数据处理、分析和显示等。数据采集技术的发展离不开传感器和计算机控制技术。网络化测量、采集和控制是其发展的必然趋势。数据采集几乎无孔不入,它已渗透到了地质、医药器械、雷达、通讯、遥感遥测等各个领域,为我们更好的获取信息提供了良好的基础。

目前,数据采集测试技术已经在许多重大武器型号的研究、研制、生产、验收和使用中得到成功应用,并取得了一系列重要科研成果。在航空、航天、机械、电子等多个领域,解决了过去无法解决的重大测试难题,显示出了突出的优越性。

1.2 课题的研究现状及发展前景

近几年,Internet网络飞速发展,各式各样的网概念个技术不断涌现,如电子商务(B2B、B2C等)、对等网络(P2P)、Net、移动电子商务、无所不在的

电子计算等等,他们改变着人们的生活和工作,同时也深刻的影响着工业领域内的各种采集、控制、监控系统的结构和功能。数据采集系统(Date Acquisition System,简称DAS)目前在工业领域应用非常广泛,在工业领域存在大量远程数据采集系统,这些系统支持着工业领域,如电力、军事、通信等各种生产的正常运行。具体应用如水、电、煤气调度SCADA系统,电力变电站综合自动化系统等。在这些数据采集系统中访问装置数据源是必须的功能,数据采集系统是工业控制和监控系统的核心和基础。

数据采集技术是存储测试技术的一个重要组成部分,是以传感器、信号测量与处理、计算机等技术为基础而形成的一门综合应用技术。它研究信息数据的采集、存储、处理及控制等作业,具有很强的使用性。目前,数据采集技术已广泛应用于工业控制系统、数据采集系统、测自动试系统、智能仪器仪表、遥感遥测、通讯设备、机器人、高档家电等方面。可以预见,随着大规模集成电路技术与计算机技术的发展,数据采集技术将在雷达、通信、水声、遥感、地质勘探、无损监测、语音处理、智能仪器、工业自动控制以及生物医学工程众多领域发挥更大的作用。特别是计算机的发展,网络化可以更好地协调工作,增强系统的可靠性,势必推动数据采集在更加广阔的领域应用[3]。

1.3 课题的提出与要求

现在,以PC作为平台发展的数据采集系统已成为当前数据采集技术的重要发展方向。国外很多公司与厂商都投入巨资进行数据采集系统的研制开发与生产销售,其中比较著名的有NEFF、IOTECH、NI、HP、TEK、ZONIC和VMIC等。他们不断推出各种性能优异、种类齐全的产品。现在应用比较广泛的有这么几类采集系统,ISA数据采集系统、PCI数据采集系统、SCXI数据采集系统、便携式数据采集系统以及USB数据采集系统。

目前,虽然市场上有很多不同类型的数据采集产品,但这类产品还存在诸如功能单一、通用性差、操作复杂,并且对测试环境要求较高等问题,这些都限制了其具体应用的范围,这也迫使我们必须从实际出发,设计一套高速的、较为通用的系统,本课题正是基于这一背景下提出来的。

本课题的主要目的就是,设计一个数据采集测试系统,对被测参数进行实时数据采集、存储。该系统完成以下几种信号的采集:

1.六十四路模拟信号,电压范围0~5V

2.八路无源开关量信号。

3.一路数字脉冲信号,信号形式为TTL电平信号或低电平0V、高电平12V 的脉冲信号。

1.4 整体设计方案

根据被测参数要求,提出系统整体设计方案,其系统框图如图1. 1所示。

图 1.1 整体设计方案

整个系统由信号采集模块、存储器模块、中心控制模块、接口电路以及其他

的外围辅助电路组成。

信号采集模块是存储测试中的重要环节,关系着获取信息的质量和采集测试

的精度。模拟信号的采集电路通常由跟随器、模拟开关、A/D转换器、缓冲器等部分组成。被采集的信号经A/D转换成数字信号后存入存储器。电路的整个时序由逻辑控制模块协调控制。数字量和开关量的采集电路同样是在主控制模块的控制下进行的。

主控制模块由FPGA及其外围电路组成。FPGA是控制模块的核心部分。主要完

成A/D转换器的时钟选取、数据的存储计算以及相应的控制逻辑、实现与PC机的通信等控制任务。

微型计算机与I/O设备的接口按照传输数据方式的不同,可分为并行接口和串行口两种。前者使传输数据的各位同时在总线上传输,后者则使数据一位一

位的传输。并行传输又有字并行和字节并行之分,并行接口一般实现的是字节并行传输。本课题采用并口传输方式。

2 系统硬件设计

2.1 系统的整体结构

系统的整体结构如图2.1所示:

图 2.1 系统的整体结构图

2.2 模拟信号采集通道的设计

存储测试系统常常需要多通道同时采集。在此情况下,若是在每个通道都设置一套模拟传输及量化器,是不经济的,有时也是不必要的,特别在有限的体积内有时甚至是不可能的,因此,本系统要根据被测信号的特点与测试要求,模拟信号采集通道采用多路转换器,用最简单的硬件电路完成多路信号的存储测试。模拟信号采集通道的框图如图2.2所示:

图 2.2 模拟信号采集通道图

在本系统中,模拟输入信号的电压范围是0~5V。本课题采用LM324运算放

大器作为电压跟随器,用来稳定输入信号,增加AD9221的输入阻抗。

LM324是四运放集成电路,它采用14脚双列直插塑料封装。内部包含四组

形式完全相同的运算放大器,除电源共用外,四组运放相互独立。LM324四运

放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因

此被广泛应用在各种电路中。

在本系统中,考虑到模拟输入信号有64路,所以采用模拟开关来实现数据

的传输是很有必要的。

2.3 数字信号采集通道的设计

1路数字信号,由于输入是TTL电平信号或低电平0V、高电平12V的脉冲信

号。所以数字信号必须经过电平调整处理,才能够存入存储器(存储器输入电压

为3.3V,后面会有介绍)。下面是一个调压电路:

压大于3.3V,则将AS1输出电压钳制

在3.3V,起到了调压的作用。如果是

低于3.3V,那么电压将不改变。

图2.3 调压电路

2.4 开关量采集通道的设计

开关信号分为有源和无源两种,开关信号需要经过隔离和驱动才能与执行机

相连接。造成执行机构的误动作。开关量隔离的目的在于直接电气联系,以防地

电位差、外界电磁场等干扰因素。在本设计中,采用光电耦合器件作为隔离器件,

74HC14作为驱动器件

2.4.1 开关量隔离电路的设计

光电耦合器件是以光为媒介传输信号的电路,如图2.4所示。发光二极管和光敏三极管封装在同一个管壳内,发光二极管的作用是将电信号转变为光信号,光敏三极管接受光信号再将它转变为电信号。

光电耦合器件的特点是:输出信号与输入信号在电气上完全隔离,抗干扰能力强,隔离电压可达千伏以上。无触点,寿命长,可靠性高。响应速度快,易于TTL电路配合使用。

图2.4 开关量隔离电路

图2.4电路的工作过程如下:当输入为低电平时,流过发光二极管的电流为零,光敏三极管截止,输出为高电平。当输入为高电平时,电流经R71流经发光二极管使其发光,光信号的作用于光敏三极管,使其饱和导通,输出为低电平。所以光电耦合器件兼有反相及电平转换的作用。R71为限流电阻,其阻值决定了发光二极管的导通电流,此电流一般选为数毫安。R72的取值要保证输出的高、低电平要求。光电耦合器件的一个重要参数是电流传输比CTR,当输入为高电平时,须使R72>+V/(CTR*输入电流)才能保证输出为低电平。如果R72选的太大,则输出电压带动拉电流负载的能力减弱,光敏三极管的暗电流也会对输出高电平造成不利影响。因此,需要综合各方面的因素来确定R72的阻值。

2.4.2 开关量驱动电路的设计

开关量驱动电路采用TTL三态门缓冲器,本设计采用74HC14,它的驱动能力要高于一般的TTL电路,如图2.5所示。74HC14是六芯片集成电路,内部包含六组形式完全相同的反相器,除电源共用外,六组反相器相互独立。

74HC14 是施密特输入反相器芯片, 输入电平从

低到高的翻转电平高于从高到低的翻转电平, 使输入

缓慢变化或不太规则变化的边沿整形成陡峭的边沿.

施密特输入只是使得上跳沿和下降沿变得比原始输入信号的上升和下降更加陡

峭一些,也就是在数字电路起整形作用。

图2.5 开关量驱动电路

2.5 模拟开关的选择

模拟开关是数据采集系统中的主要器件之一,它的作用是切换各路输入信号。在测控系统中,被测物理量通常是几个或几十个。为了降低成本和减小体积,系统中通常使用公共的采样保持器、放大器及A/D转换等器件,因此需要使用多路开关轮流把各路被测信号分时地与这些公用器件接通。

多路开关有机械触点式开关和半导体模拟开关。机械触点式开关中最常用的是干簧继电器,它的导通电阻小,但切换速度慢。集成模拟电子开关的体积小,切换速率快,无抖动,耗电小,工作可靠,容易控制。它的缺点是导通电阻较大,输入电压电流容量有限,动态范围小。在较低频段上(f<10MHz)的集成模拟电子开关,通常采用CMOS工艺制成;而在较高频段上(f>10MHz)则采用双极型晶体管工艺技术。集成模拟电子开关在测控技术中得到广泛应用。

在设计中往往要用到模拟开关,对于不同的用途需要选择不同的模拟开关。在选择时要考虑以下参数:

1、通道数量

通道数量对传输的被测信号的精度和切换速度有直接的影响,因为通道数目越多,寄生电容和泄露电流通常也越大,特别是在使用集成模拟开关时,虽然只有其中一路导通,但由于其他模拟开关断开时(此时处于高阻状态)仍存在漏电流,从而也要对导通的那一路开关产生影响:通道越多,漏电流越大,通道间的干扰也越多。

2、导通电阻

理想的多路开关其导通电阻应为零,断开电阻应为无穷大,但是实际中的模拟开关无法达到这个要求。模拟开关的导通电阻会使信号电压产生跌落,尤其是和低阻抗器件串联使用的时候,因此需要考虑开关电阻。希望导通电阻尽量小。

3、开关时间

由于模拟开关器件中有导通电阻并有寄生电容,这样就会产生一定的导通和关断时间,通常希望器件具有短的开关时间。

4、泄漏电流

指开关断开时的泄漏电流。如果信号源内阻很大,传输的是电流量,此时就更需要考虑它的泄漏电流,一般希望泄漏电流越小越好。另外根据系统实际需要,还要考虑开关的数量、种类(几选一、逻辑控制等)。

5、切换速度

对于传输快速变化的场合,就要求多路开关的切换速度高,当然也要考虑后一段的采样保持和A/D的速度,从而以最优的性价比来选取多路开关的切换速度[4]。

作为多路选择开关,需要多通道快速循环采集。本系统选择了开关速度比较快、泄漏比较小、16选1的模拟选择开关ADG506。 AD0506电压范围宽、功耗低、泄漏小。其主要的参数为:

低泄漏:20pA(典型值)

较低的导通电阻:200

较高的开关速度: 导通200ns、关闭200ns

图2.6为ADG508在系统中的应用。当A6=1时,ADG506开始工作,随着A1、A2、A3和A4的变化,16个通道轮流进行数据采集。A1、A2、A3、A4、A6由FPGA提供。当A6=1时,ADG506停止工作,数据采集结束。

图 2.6 ADG506在系统中的应用

2.6 A/D转换器的选择

随着超大规模集成电路技术的飞速发展和计算技术在工业领域的广泛用,A/D

转换器的新设计思想和制造技术层出不穷。为满足各种不同的检测和控制任务的需要,大量结构不同、性能各异的A/D转换电路应运而生。有传统的并行型、逐次逼

近型、积分型,也有近年来新发展起来的∑一△型和流水线型等,各种类型的ADC各有其优缺点,可满足不同的要求。

2.6.1 模数转换器的分类及其特点

目前,模数转换集成电路主要有以下几种类型:

1、并行比较ADC

并行比较ADC是现今速度最快的模/数转换器,通常称为“闪烁式"ADC。它由电阻分压器、比较器、缓冲器及编码器四部分组成。这种结构ADC的所有位同时转换,其转换时间主要取决于比较器的开关逮度、编码器的传输时间延迟等。增加输出位数对转换时间的影响较小,但随着分辨率的提高,需要高密度的模拟设计,以实现转换所需的大量精密分压电阻和比较器电路。例如,N位ADC需要2n个精密电阻和2(n-1)个并联比较器。这类ADC的优点是:模数转换速度高;缺点是分辨率不高,功耗大,成本高。

2、逐次逼近型

逐次逼近型ADC是应用非常广泛的模/数转换方法,它由比较器、DIA转换器、比较寄存器、时钟发生器以及控制逻辑电路组成。它将采样输入信号与已知电压不断进行比较,然后转换成二进制数。主要通过二分探索法求得一数字码,使其对应的电压最接近于输入电压。这一类型ADC的优点:转换速率比较高,采样速率可达1 MSPS;与其它ADC相比,功耗相当低;转换精度也比较高。在高精度、快速A/D变换中应用最为广泛。

3、积分型ADC

前面所讲到的并行比较ADC和逐次逼近型ADC均属于直接转换ADC,而积分型和后面所讲的压频变换型ADC则属于间接ADC。积分型ADC又称为双斜式ADC。它的基本原理是通过两次积分将输入的模拟电压转换成与其平均值成正比的时

间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,根据时间间隔的值计算出模拟电压的值,从而实现A/D转换。积分型ADC的转换精度只取决于参考电压,因此容易提高它的精度。这类ADC主要应用于低速、精密测量等领域。其优点是:分辨率高、功耗低、成本低。缺点是:转换速率低,转换速率在12位时为100~300SPS.

4、压频变换型ADC

压频变换型ADC是先将输入模拟信号的电压转换成频率与其成正比的脉冲

信号,然后在固定的时间间隔内对此脉冲信号进行计数,计数结果正比于输入模拟电压信号的数字量。从理论上讲,这种ADC的分辨率可以无限增加,只要采样时间足够长,即满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是:精度高、价格低、功耗低。缺点是:类似于积分型ADC,其转换速率受到限制,12位时为100~300SPS。

5、∑--△型ADC

与一般的ADC不同,∑--△型ADC不是直接根据抽样数据的每一个样值的大小进行量化编码,而是根据前一量值与后一量值的差值即所谓的增量的大小来进行量化编码。∑--△型ADC由两部分组成,第一部分为模拟∑--△调制器,第二部分为数字抽取滤波器。由于∑--△具有极高的抽样速率,通常比奈奎斯特抽样频率高出许多倍,因此∑--△转换器又称为过抽样转换器A/D。这一技术的优点:分辨率可高达24位,比积分型及压频变换型ADC的转换速率高,可实现低价格、高分辨率的数据采集。缺点:当高速转换时,需要高阶调制器,在转换速率相同的条件下,比积分型和逐次逼近型ADC的功耗高。

6、流水线型ADC

流水线型ADC (pipeline)又称为子区式ADC,它由若干级级联电路组成,每一级包括一个采样/保持放大器、一个低分辨率的ADC和DAC以及一个求和电路,其中求和电路还包括可提供增益的级间放大器。快速精确的n位转换器分成两段以上的子区(流水线)来完成。流水线ADC不但简化了电路设计,还具有如下优点:每一级的冗余位优化了重叠误差的纠正,具有良好的线性和低失调性;每一级具有独立的采样/保持放大器,前一级电路的采样/保持可以释放出来用于处理下一次采样,因此允许流水线各级同时对多个采样进行处理,从而提高了信号的处理

速度,多级转换提高了ADC的分辨率。由此可见这种类型的ADC不仅转换速度较高,而且分辨率也比较高[5]。

2.6.2 模数转换器的主要参数

无论我们选择那种A/D转换器,都必须考虑以下几个主要性能指标:

1、分辨率(resolution):

分辨率表示A/D转换器输出数字量变化一个相邻数码,所需输入模拟电压的变化量。其值定义为满刻度电压与2N之比,其中N为ADC的位数。例如设A/D

转换器的位数为n,满量程电压为FSR,则A/D转换器的分辨率定义为:分辨率

=FSR/2N。另外可以用百分数来表示分辨率,此时的分辨率成为相对分辨率。公式为: 相对分辨率=分辨率/FSR·100%。例如一个满量程电压为10V的12位A/D 转换器,能够分辨模拟输入电压变化的最小值为2.44mV,相对分辨率为:0.0244%.

2、量程:量程就是指转换器所能转换模拟信号的电压范围。

3、绝对误差:

绝对误差定义为对应于输出数码的实际模拟输入电压与理想模拟输入电压

之差。绝对误差一般在±1/2LSB范围内。绝对误差包括增益误差、偏移误差、非线性误差,也包括量化误差。

4、量化误差:

量化误差是由ADC的有限分辨率引起的误差。在ADC的转移特性曲线中,不计其它误差的情况下,一个分辨率有限的ADC的阶梯状转移特性曲线与具有无限分辨率的ADC转移特性曲线最大偏差,称之为量化误差。

5、偏移误差:

偏移误差是指最低有效位为“1”状态时的实际输入电压与理论输入电压之差,这一差值电压称作偏移电压,一般以满量程电压值的百分数表示。

6、转换速率:

转换速率是指能够重复进行数据转换的速度,即每秒钟转换的次数。[11]

本系统中,A/D转换器选用了AD9221。 AD9221是一种低功耗、12位分辨率、1.5M最高转换速率的A/D转换器。该转换器内部包含有12位的量化器、宽带采样保持电路、可编程电压基准源,采用单电源+5V供电,可以根据用户配置,信号以单端方式输入或是以差分方式输入。输出为并行接口,兼容TTL电平。由图

2.5可以看出,AD9220属于子区式模/数转换器结构,并且采用了数字校正技术,AD公司称之为多级差分管线结构(Multistage differential pipeline architecture)。由于采用了这样的结构,AD9220可以在1.5Msps时提供11.3

为有效位数(ENOBS),信号/(噪声+失真)比为70dB[6]。

图2.7 AD9221内部结构图

2.6.3 AD9221在系统中的应用

模拟信号从数据输入端VINA输入,经过模数转换,输出12位的数字信号。图2.6为AD9221的通用接法。图中AIN是经调整过的模拟信号,AD9221采用单通道输入,信号从VINA端输入。AD9221的时钟端CLK由FPGA控制提供。

图2.8 AD9221在系统中的应用

2.7 中心控制模块的设计

中心控制模块由FPGA及其外围电路组成,主要用来对整个电路的时钟信号进行控制,保证数据的正确存入与读出。其结构框图如图2.7所示

图2.9 中心控制模块的结构框图

现场可编程门阵列(FPGA)是近十年加入到用户可编程技术行列中的器件。它由逻辑功能块排列成阵列组成,并由可编程的内部连线连接这些逻辑功能块来实现不同的设计,可编程门阵列在器件的选择和内部的互连上提供了更大的自由度。FPGA 可以达到比PLD 更高的集成度,但具有更复杂的布线结构和逻辑实现。PLD 与FPGA 之间的主要差别是PLD 通过修改具有固定内连电路的逻辑功能来进行编程,而FPGA 是通过修改一根或多根分隔宏单元的基本功能块的内连线的布线来进行编程。因此,FPGA 既有门阵列的高逻辑密度和通用性,又有可编程逻辑器件的用户可编程特性,而且它更接近PCB 的设计模式。采用FPGA 的优点是:在实现系统小型化、集成化和高可靠性的同时,减少了风险,降低了成本,缩短了周期[7]。

FPGA 的开发可以用硬件描述语言(HDL)编程,然后在开发平台上进行验证,最后由EDA 工具自动实现设计;也可以在开发平台中用原理图的设计方式,像PCB 设计方式一样的设计FPGA 芯片中的硬件电路。

本设计中,采用Xilinx 公司生产的Spartan XCS05系列的芯片XC2S50作为CPU,XC18V01_PC20 作为EPROM,TPS70358作为供电芯片,详细介绍见第三章。

2.8 存储器模块的设计

FLASH MEMORY(闪速存储器)是一类非易失性存储器NVM(Non Volatile Memory)即使在供电电源关闭后仍能保持片内信息;而诸如DRAM、SRAM 这类易失性存储器,当供电电源关闭时片内信息随即丢失。FLASH MEMORY集其它类非易失性存储器的特点:与EPROM相比较,闪速存储器具有明显的优势—在系统电可擦除和可重复编程而不需要特殊的高电压(某些第一代闪速存储器也要求高电压来完成擦除或编程操作);与EEPROM相比较,闪速存储器具有成本低密度大的特点。其独特的性能使其广泛的运用与各个领域,包括嵌入式系统,如PC

及外设、电信交换机、蜂窝电话、网络互连设备、仪器仪表和汽车器件,同时还包括新兴的语音、图像、数据存储类产品,如数字相机、数字录音机和个人数字助理(PDA)[8]。

本系统采用存储芯片K9F1G08来进行数据的存储。K9F1G08是一种容量为128M×8Bit的FLASH存储器,采用NAND闪存技术工艺完成。具有不挥发、低功耗、擦写速度快等特点,并且在掉电后信息不丢失,采用单电源3.3V供电。2.8.1FLASH MEMORY的分类及比较

在1984年,东芝公司的发明人Fujio Masuoka 首先提出了快速闪存存储器(此处简称闪存)的概念。与传统电脑内存不同,闪存的特点是非易失性(也就是所存储的数据在主机掉电后不会丢失),其记录速度也非常快。目前市场上的flash从结构上大体可以分为AND、NAND、NOR等几种。

Intel是世界上第一个生产闪存并将其投放市场的公司。1988年,公司推出了一款256K bit闪存芯片。它如同鞋盒一样大小,并被内嵌于一个录音机里。后来,Intel发明的这类闪存被统称为NOR闪存。它结合EPROM(可擦除可编程只读存储器)和EEPROM(电可擦除可编程只读存储器)两项技术,并拥有一个SRAM 接口。

第二种闪存称为NAND闪存。它由日立公司于1989年研制,并被认为是NOR 闪存的理想替代者。NAND闪存的写周期比NOR闪存短十倍,它的保存与删除处理的速度也相对较快。NAND的存储单元只有NOR的一半,在更小的存储空间中NAND获得了更好的性能。鉴于NAND出色的表现,它常常被应用于诸如CompactFlash、SmartMedia、 SD、 MMC、 XD、 and PC cards、USB sticks等存储卡上。二十多年的发展过程中,Flash Memory技术经过了多次变革和发展。但其变化的总体趋势一直都是:存储容量越来越大、数据读写速度越来越快、性能价格比越来越高。

第三种是AND 闪存。AND 技术是Hitachi 公司的专利技术。Hitachi和Mitsubishi共同支持AND技术的FLASH MEMORY。AND技术与NAND 一样采用“大多数完好的存储器”概念,目前,在数据和文档存储领域中是另一种占重要地位的闪速存储器技术。该公司生产的芯片尺寸更小、存储容量更大、功耗更低,一般用于智能电话、个人数字助理、掌上电脑、数字相机、便携式摄像机、便携式

音乐播放机等。

NOR结构的特点为相对电压低、随机读取快、功耗低、稳定性高,而NAND 和AND的特点为容量大、回写速度快、芯片面积小,且可在芯片内执行(XIP,eXecute In Place),这样应该程序可以直接在flash内存内运行,不必再把代码读到系统RAM中。现在,NOR和NAND FLASH的应用最为广泛,在CompactFlash、Secure Digital、PC Cards、MMC存储卡以及USB闪盘存储器市场都占用较大的份额。

NAND结构能提供极高的单元密度,并且写入和擦除的速度也很快,是高数据存储密度的最佳选择。

NOR和NAND两种结构性能上的异同步如下:

● NOR的读速度比NAND稍快一些。

● NAND的写入速度比NOR快很多。

● NAND的擦除速度远比NOR快。

● NAND的擦除单元更小,相应的擦除电路也更加简单。

● NAND闪存中每个块的最大擦写次数量约万次,而NOR的擦写次数是十万次。

此外,NAND的实际应用方式要比NOR复杂得多。NOR可以直接使用,并在上面直接运行代码。而NAND需要I/O接口,因此使用时需要驱动程序。不过当今流行的操作系统对NAND Flash都有支持,如风河(拥有VxWorks系统)、微软(拥有WinCE系统)等公司都采用了TrueFFS驱动,此外,Linux内核也提供了对NAND Flash的支持[9]。

2.8.2 K9F1G08管脚描述

CLE:命令锁存使能。其为高时,命令通过I/O口线在WE信号的上升沿被锁入命令寄存器。

ALE:地址锁存使能。当其为高时,地址在WE信号的上升沿被锁入地址寄存器;当其为低时,锁定输入数据。

CE:片使能。读操作期间,CE变高,器件转入standby模式;编程或擦除期间,器件处于忙状态时,CE高将被忽略。

WE:写使能。命令、地址和数据在WE信号的上升沿被锁定。

RE:读使能。下降沿有效。WP:写保护。在电源电压过渡期间,使WP为低电平时,可产生写/擦除保护。

R/B:操作状态指示。为低电平时,指示正在编程或读操作中,操作结束后变成高,开路输出。

I/O口:(I/O0~I/O7)三态。输入命令、地址和数据以及读操作时输出数据。

2.8.3 K9F1G08内部结构描述

K9F1G08有65536行(页)乘以2112×8列阵列一共组成1056M存储器,多余的64列位于列地址2048~2111。一个2112字节的高速缓冲存储器彼此间是连续相接的,这些存储器被连接到记忆单元阵列,在页读取和编程运行的过程中,为

I/O缓冲器和记忆单元之间的数据转移提供中间机构。记忆阵列由32个单元组成,这些连续的单元组成了NAND结构,每32个单元属于不同的的页。一块由2个NAND结构链组成,而一个NAND由32个单元组成,总共1081344个NAND单元组成了一块。编程和独操作是以页为基础进行,而块擦除是以块为基础进行。这些记忆阵列由1024个分别有128K字节的块组成,它表明,在K9F1G08逐个位的擦除操作是被禁止的。[10]组织结构如图2.11所示:

图 2.11 K9F1G08组织结构图

K9F1GO8已经形成多元的8个I/O端口,这样的安排极大地减少了管脚数,并且允许系统升级为了将来操作一致性的扩展。在WE和CE处于低电平期间,指令、地址、数据被写通过I/O端口,它们都在WE的上升沿到来时被锁存。通过I/O管脚,CLE和ALE常用来实现各自的指令和地址功能。有一些要求一个

总线周期,例如,重设指令读指令等仅要求一个总线周期。而另一些指令,像页读取和编程及块擦除要求两个周期,一个周期为了建立而另一个周期是执行操作。128字节的物理空间要求28个地址,因此,要求4个周期为地址的建立,两个周期是列地址,两个周期是行地址。页读取和编程同样需要四个地址周期跟随指令要求输入。然而,在块擦除操作中,仅仅两个行地址周期被使用,依靠写入特殊的指令进入指令寄存器,器件操作才被选中。

2.8.4 K9F1G08在系统中的应用

在FPGA的控制作用下,数据存入FLASH中。对于模拟信号,由传感器采集到的信号经A/D转换后,暂存于FLASH内部的FIFO中,再送入FLASH存储器中。对于数字量和开关量,经信号调理后,经FPGA内部编程串并转换后,暂存于FPGA内部的FIFO中,再送入FLASH存储器中。如图2.10所示:

图 2.10 K9F1G08在系统中的应用

2.9 本章小结

本章主要讲述了所设计的通用数据采集系统的硬件电路的设计,整个系统由四个部分组成,分别是采集部分、控制部分、存储部分、接口部分。采集到的信号形式有模拟量、数字量、开关量三种,每种信号都有其对应的信号处理电路。模拟量要经过A/D转换为数字量后才能存入FLASH存储器中。数字量要经过电平转换和FPGA内部串并编程后才能存入FLASH存储器中。开关量要经过隔离、驱动和FPGA内部串并编程后才能存入FLASH存储器中。其中,模拟通道的选择、A/D转换、FLASH存储器的读、写、擦除都是在FPGA控制下完成的。

3 FPGA 可编程逻辑器件

本设计由于需要用到大量的控制信号,而且又是以计算机为平台,所以系统中有大量的数字逻辑电路。如果采用传统的数字逻辑芯片来设计电路的话,既增加了电路板的面积,而且也增加了电路的不可靠性,另外调试也不方便。为了解决这些问题,可以借助于近年来迅速发展的大规模可编程专用集成电路----现场可编程门阵列(FPGA )。用一片FPGA就可以代替许多分立器件,从而大大简化了电路板的复杂程度。下面介绍一下它的结构、特点以及设计方法。

3.1 FPGA简介

在可编程逻辑器件芯片内部,按一定的排列方式集成了大量的门和触发器等基本逻辑元件。使用者可利用特定的计算机开发工具(软件包和硬件电路、编程电缆)对其进行加工,即按设计要求将这些芯片内部的元件连接起来(此过程称为编程或设置),使之实现完成某个数字逻辑电路或系统的功能,成为一个可在实际电子系统中使用的专用集成电路(ASIC)随着集成电路工艺的日臻完善,集成度急剧攀升,功能日益强大。可编程逻辑器件广阔的应用前景备受业内人士的瞩目。由于其内部结构的不同,目前应用较广泛的有CPLD和FPGA。

目前,很多学校和公司都开发了可编程逻辑器件实验板,这些实验板上采用了如下几个公司的产品:

Xilinx 公司主要产品为FPGA和CPLD,目前各学校和公司制做实验板的

PLC的高速数据采集分析与记录工具介绍

PLC的高速数据采集分析与记录工具 在工业现场,设备调试时经常遇到需要对PLC各种变量捕捉分析,优化控制时序,检查动作过程是否准确等情况;在设备运行时又需要对设备的运行状态进行全方位的监控和记录,方便设备故障后,故障过程的重现与故障原因的分析,尤其一些控制逻辑复杂的设备,这种需求更加突出。 在一般情况下,SCADA监控软件的趋势记录就可以满足需求,但是SCADA在趋势与记录上存在很大的劣势,比如,采集数据量大的系统(系统本身庞大,需要采集的数据点多),采集速度要求高的系统(系统本身运行快,要求最大程度复现控制器内逻辑与数据的处理过程,如西门子TDC等),这些情况下,单纯的依靠SCADA已经无法满足我们的需要,那么就需要专用的数据采集分析与记录工具帮我们完成。 下面是对PLC的一些数据采集与记录工具的介绍。 1)、iba公司的PDA 既然要说数据采集记录工具,首先要提的当然是强大的PDA,软件本身支持很多驱动,可以选择带硬件支持的版本,一般采用控制器连接iba公司的模块,模块通过光纤连接工控机的配置方法,能够最大限度提高速度,当然也有纯软件的版本,这个软件在钢铁行业应用的比较多,如轧制过程的数据采集记录。(不过,这个软件的价格我只能呵呵了),软件截图:

2)、AUTEM公司的PLC-ANALYZER pro 关于此软件,同样提供多种驱动。支持的PLC-Driver有Siemens SIMATIC S7 / C7 / M7, SAIA xx7, VIPA, SIMATIC S5, Siemens LOGO!, SINUMERIK, SIMOTION, BOSCH, CoDeSys, PILZ, Phoenix, Jetter, Allen-Bradley, GE Fanuc, HITACHI, OMRON, Mitsubishi, Schneider, AUTEM AD_USB-Box?, Beckhoff TwinCat等,对于西门子的PLC,支持 MPI/PROFIBUS/ETHERNET等,但是在软件的实际使用时你会发现,软件功能较PDA逊色不少。软件截图:

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。 图一高速数据采集卡MR-HA-250M 高速数据采集卡MR-HA-250M模块参数: ●输入接口: 连接器:SSMC; 输入方式:AC或DC耦合; 通道数量:8通道,可同步32通道 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-250M

●ADC模块: 高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS) 图三高速数据采集卡MR-HA-250M动态性能 ●时钟管理模块: 高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。 ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。 ●FIFO模式 高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。 图四高速数据采集卡MR-HA-250M

基于TLC549的数据采集系统设计

基于TLC549的数据采集系统设计 Time:2009-09-22 11:14:00 Author: Source:电子元器件应用 杨来侠,万建军 (西安科技大学,陕西西安710054) 0 引言 现代自动控制系统中需要测量和控制的参数往往都是连续变化的模拟信号,如温度,压力,流量,速度等。这些物理量和控制参数往往都是连续变化的电压和电流,因此,必须将其变换成数字量(即需经模,数转换),才能被数字计算机所识别。这些数字量在计算机内经过运算处理,可以得到一个数字形式的控制量,将这些控制量经过数/模转换器,变成模拟电压或电流信号,再送到执行机构去驱动相应的设备动作,即可实现对生产过程的自动控制。 1 TLC549的主要特点和工作原理 l.l TLC549的主要特点 TLC549是采用IinCMOSTM技术并以开关电容逐次逼近原理工作的8位串行A/D7芯片,可与通用微处理器、控制器通过I/O CLOCK、CS、DATA OUT三条口线进行串行接口。TLC549具有4MHz的片内系统时钟和软、硬件控制电路,转换时间最长为17μs,允许的最高转换速率为40000次/s。总失调误差最大为±0.5LSB,典型功耗值为6 mW。TLC549采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,由于其VREF-接地时,(VREF+)-(VREF-)≥1 V,故可用于较小信号的采样,此外,该芯片还单电源3~6v的供电范围。总之,TLC549具有控制口线少,时序简单,转换速度快,功耗低,价格便宜等特 点,适用于低功耗袖珍仪器上的单路A/D采样,也可将多个器件并联使用。TLC549的内部结构框图和管脚名称如图1所示。 1.2 TLC549的极限参数,

一种高速数据采集记录装置的设计

一种高速数据采集记录装置的设计 【摘要】文章介绍了一种基于Flash的高速数据采集记录装置的实现方案;文中采用了Flash高速存储技术与FPGA的二级缓冲技术,提高了存储速度,突破存储芯片的瓶颈,成功实现了数据存储速率与传输速率完美的匹配;同时通过设计合理的电路降低了存储模块的功耗,利用可靠的通信协议,有效保证了信号数据的可靠接收和存储。 【关键词】数据记录仪;Flash;高速存储 1.系统方案设计 本文设计的数据记录系统由以下几部分组成:两台完全相同的数据记录仪、一个地面综合测试台、上位机、配套软件以及配套电缆。主要用于记录由雷达系统产生的视频回波、图像及遥测三路LVDS高速信号。系统工作时,由雷达系统首先发来启动记录信号,使已处于采集状态的两台记录仪同时工作,二者互为备份。地面测试台产生的模拟信号供记录仪存储,同时可以控制记录仪进入不同的工作状态,通过内置的USB接口读取记录仪的数据;上位机通过USB电缆与地面测试台相接,对回读的数据进行分析,同时验证记录仪是否正常工作。 2.系统硬件设计 该系统采用隔离变压器隔离接收三路LVDS数据,使得隔离前后的电路没有电气连接特性,然后再将隔离后的信号传送给存储模块;经过存储模块的均衡、解串后传给FPGA中心控制器,最后存入两片Flash中。 遥测系统输出的三路数据都有各自的启动记录信号。当记录仪接收到启动控制信号,开始记录对应路的数据,并存储到相应的存储模块中。飞行试验完毕后,可以利用备用读数电缆,将各个存储模块中数据通过测试台上传至上位机中进行分析,以便对记录仪的存储功能进行验证。在飞行模式下记录仪的供电由雷达系统完成。 记录仪由三个存储模块和一个接口模块组成。存储模块主要接收遥测系统的视频回波、图像及遥测三路LVDS信号,并对其中的有效数据进行实时存储。该模块主要包括以下几个部分:中心逻辑控制芯片FPGA、配置芯片PROM、LVDS 电缆均衡器、LVDS解串芯片、存储芯片Flash、电源模块以及60MHz晶振等[1]。如图2.1所示: 接口模块主要包括LVDS高速读数接口、RS-422长线接口、视频及图像遥测雷达信号输入接口、各个存储模块的LVDS输入接口以及数据上传和指令下发接口。高速读数接口与地面测试台主控卡的相应接口连接,通过LVDS接口高速读取其中的数据;422长线接口通过双绞线电缆与地面测试台连接,主要实现记录仪与地面测试台之间的通信。

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

基于文件系统的高速数据记录系统

收稿日期:2009-06-11 作者简介:王超(1985 ),男,博士生,E mail:w angchao1125@https://www.360docs.net/doc/aa3495444.html,;刘伟(1976 ),男,博士,讲师,E mail:eliuw ei@https://www.360docs.net/doc/aa3495444.html,. 第30卷 第5期2010年5月北京理工大学学报 T r ansactio ns of Beijing Institute of T echnolo gy V ol.30 N o.5M ay 2010 基于文件系统的高速数据记录系统 王超, 刘伟 (北京理工大学信息与电子学院,北京 100081) 摘 要:针对高速数据记录系统中记录过程和文件化过程的带宽不匹配问题,分析了影响文件化带宽的因素,提出了一种更具有灵活性和实用性的基于文件系统的记录方法.用该方法建立了文件系统框架,将存储空间划分为连续的管理信息区和数据区,记录过程中顺序记录数据到数据区,记录结束后修改管理信息区.在保证不影响系统记录带宽的前提下,该方法改善了文件化过程的带宽,实现了记录数据的高速文件化.关键词:数据记录;文件化;文件系统;F AT 32 中图分类号:T P 311 52 文献标志码:A 文章编号:1001 0645(2010)05 0543 05 File System Based High Speed Data Recording System WANG Chao, LIU Wei (Scho ol o f Informat ion and Electr onics,Beijing Inst itut e o f T echno lo gy ,Beijing 100081,China) Abstract :Aim ing at the bandw idth mism atch betw een r ecord pro cess and convert pr ocess in hig h speed data r ecording system ,factors that affect convert pr ocess bandw idth are analyzed,and a more flex ible and practical data reco rding method based on file system is proposed.The method divides storag e m em ory into consecutive information manag em ent space and data sto rag e space by establishment of file sy stem in advance.In reco rd pro cess,data is r ecorded in data sto rag e space consecutively and in co nvert process,info rmatio n manag em ent space is m odified.Thus,w ithout decreasing reco rd bandw idth,the method could im pro ve the bandw idth in conv er t process to achieve high speed file conversion. Key words :data recording;conv ert pro cess;file system;FAT 32 随着电子信息产业的迅速发展,高速数据记录系统越来越广泛地应用在各个领域,例如导弹跟踪、高分辨雷达成像、高能物理、电波天文学以及航空航天测试等.这些应用领域要求数据必须快速、可靠地记录在存储设备中,用作后续的分析和使用. 高速数据存储系统需要依托磁盘的海量存储能力以及高速的读写带宽.磁存储技术由最初16 7MB/s 存储带宽,528MB 容量的IDE 磁盘发展到如今拥有超过1T B 容量,300MB/s 带宽的SAT A 磁盘.主要用于工业级存储的SCSI 技术标准也从最初10M B/s 的传输带宽发展到U ltra320SCSI 标准支持的320M B/s 的传输带宽.新一代的存储技 术如串行SCSI (SAS)以及面向光纤网络存储的存储局域网络(SAN),这些都为高速数据存储技术带来了新的发展. 1 问题的提出 传统的数据记录系统直接以文件形式记录数据.文件形式的数据可以在操作系统下方便灵活地访问.但是受到文件系统对文件的管理约束,记录过程中数据不一定连续存储在磁盘连续的逻辑块地址上,磁头在不连续逻辑块地址间的切换会降低磁盘的记录效率[1] .因此直接文件形式的记录在方便进行数据访问的同时约束了系统的记录带宽.为了

单路数据采集系统设计

1 引言 1.1 数据采集系统的意义 数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。本设计采用A/D转换器和51单片机组成数据采集系统,该设计具有结构简单、操作方便、高性价比、具有显示、记录存储功能,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、回放过程的信号可以直观的观察。它与有线数传相比主要有布线成本低、安装简便、便于移动等性能。 经调查,目前数据采集器的市场需求量大,以数据采集器为核心构成的小系统应用广泛,因此开发高性能的数据采集器具有良好的市场前景。随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一时间段内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,提高产品的合格率,产生良好的经济效益。随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。单片机构成的数据采集处理系统适用于各种现场自动化监测及控制,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、等优点。1.2 数据采集系统的主要功能 数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。比如条码机、扫描仪等都是数据采集工具。 数据处理系统是指运用计算机处理信息而构成的系统。其主要功能是将输入的数据信息进行加工、整理,计算各种分析指标,变为易于被人们所接受的信息形式,并将处理后的信息进行有序贮存,随时通过外部设备输给信息使用者。

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

一种新的基于ARM的数据采集系统设计

?应用技术研究? 一种新的基于AR M 的数据采集系统设计 罗 浩 1a,2 ,谢华成 1b (1.信阳师范学院a .物理电子工程学院; b.网络信息与计算中心,河南信阳464000; 2.华中科技大学电子系,湖北武汉430074) 摘 要:给出了一种新的基于AR M 的数据采集系统硬件和软件设计方案1硬件主要由微处理器芯片 S3C44BOX 、US B 接口芯片I SP1362、AD 转换芯片AD7829等构成1系统能实现8路同时采集,单路采集速率100ks p s,且通过设置Device 和Host 两种模式,可在无PC 机的情况下进行数据采样与存储,从而实现了脱机式 应用1 关键词:数据采集;US B;S3C44B0X;AD7829;I SP1362 中图分类号:TP273 文献标识码:A 文章编号:100320972(2006)022******* 0 引言 数据采集是测控系统中的核心单元之一,目前常用的 数据采集方式是A /D 卡和422、485等总线板卡[1],这类方 式的数据采集过程必须依赖PC 机完成,不便野外应用;故研制能够实现脱离PC 机进行数据采集的数据采集卡具有实际意义1 本文提出的基于AR M 的数据采集系统设计方案,以 S3C44B0X 为主控制器,控制AD7829进行数据采集,并控 制US B 接口芯片(I SP1362)进行数据传输1本设计综合利用了S3C44B0X 的高性能、低成本和能耗省的特点,设计了 US B 数据通信的Device 模式和Host 模式,在没有PC 机的 情况下,工作在Host 模式,可以直接与外存储器相连进行脱机式数据采集,实现了脱机式应用1 1 硬件设计 1.1 方案选择 目前,对于US B Host 的开发方式主要有两种选择:一种是选用集成了US B 接口的单片机,比如Cyp ress 公司生产的EZ -US B 系列,I ntel 的8X930AX 系列等1此种开发工具虽然编程简单,但需要购置专门的开发系统,投资较大;另一种是选择普通的单片机或嵌入式微处理器,加专用的US B 接口芯片进行开发1后者不需要购买新的开发系统,节省投资1因此我们采用了第二种方案进行开发1 为了便于开发和扩展Device 、Host 模式,选择了较新且易于开发的US B 接口芯片I SP1362;且为了满足8路采集, AD 转换芯片选择了AD7829;适于I SP1362的开发,其主控 器芯片选择了高性能、低功耗的AR M 芯片S3C44BOX 1三星的S3C44B0X 是为手持设备和通用设备而设计的一款16/32位R I SC 结构的低成本高性能的单片机1为了降低产品的总体成本,S3C44B0X 还提供了如下的配置: 8K B 高速缓存(cache )、可配置的片内SRAM 、LC D 控制器、 两路带握手功能的UART (通用串行口)、4路DMA 控制器、系统管理功能(片选逻辑,FP /E DO /S DRAM 控制器)、5路带P WM 的定时计数器、I/O 接口,RTC (时钟)、8路10位ADC 、II C 总线、II S 总线、同步SI O 接口和为系统提供时钟而设的P LL 倍频电路[2]1 系统分为四大部分:8路AD 转换,US B 接口,AR M 主控器以及S DRAM (2M )、Flash (2M )1AD7829构成的模数转换(8路模拟输入、8位数字输出),在S3C44B0X 控制下完成数据采集,再通过US B 接口传输到外存储器1如图11 图1 系统结构框图 F i g .1The syste m structure d i a gram S3C44B0X 自身虽集成有8路10位ADC,但没有采样 保持电路,其内部集成的A /D 转换只能输入0~100Hz 的模拟信号,因此我们需要对其进行扩展1AD7829作为A /D 转换,S3C44B0X 作为控制器,利用S3C44B0X 的P D 口为双向口来进行扩展,以S3C44B0X 的P D 口发出脉冲作为 AD7829的CONVEST 的负脉冲,进行模数转换,同时能够  收稿日期:2005211230  基金项目:湖北省重大科技攻关项目(2002AA101C39 )  作者简介:罗 浩(19702),男,河南信阳人,讲师,在读硕士研究生,主要从事电子技术方向研究1 3 02信阳师范学院学报(自然科学版)Journal of Xinyang Nor mal University 第19卷 第2期 2006年4月 (Natural Science Editi on )Vol .19No .2Ap r .2006

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

相关文档
最新文档