锂电池容量损失分析

锂电池容量损失分析
锂电池容量损失分析

锂离子电池容量损失分析

锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。一、锂离子电池工作原理锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC )、碳酸乙烯酯(EC )、碳酸二乙酯(DEC )、碳酸二甲酯(DMC )和碳酸甲基乙基酯(EMC )等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6和LiCIO4等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下:

正极:LiCoO2充电→←放电Li1-xCoO2+xLi ++xe -20

负极:6C +xLi ++xe -充电→←放电LixC6

总的反应为:6C +LiCoO2充电→←放电Li 1-xCoO 2+Li x C 6

充电时,锂离子从LiCoO2中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给C o3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为C o3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。

二、容量损失原因分析

1.过充电

所谓过充电就是超过规定的充电终止电压(一般为4.2V )而继续充电的过程。在过充的情

况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应;

③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:

Li++e→Li(s)

沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF或其他产物;③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。

LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2y<0.4

同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。

2.电解液分解

电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但还原产生的不溶物对溶剂还原生成物会产生不利影响,而且电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6还原生成LiF、LixPF5-x、PF3O和PF3),同时,钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。工艺中使用碳的类型、电解液成份以及电极或电解液中添加剂都是影响成膜容量损失的因素。电解液中常常会含有氧、

水和二氧化碳等物质。微量的水对石墨电极性能没影响,但水含量过高会生成LiOH(s)和Li2O沉积层,不利于锂离子嵌入,造成不可逆容量损失:H2O+e→OH-+1/2H222

OH-+Li+→LiOH(s)

LiOH+Li++e→Li2O(s)+1/2H2

溶剂中的CO2在负极上能还原生成CO和LiCO3(s):

2CO2+2e+2Li+→Li2CO3+CO

CO会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。

3.自放电

自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,如锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失。自放电程度受正极材料、电池的制作工艺、电解液的性质、温度和时等因素影响。如自放电速率主要因溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命,如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。长时间或经常自放电时,锂有可能沉积在碳上,增大两级间容量不平衡程度。Pistoia等认为自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。

4.电极不稳定性

如上所述,正极活性物质在充电状态下会氧化电解质分解而造成容量损失。另外,影响正极材料溶解的因素还有正极活性物质的结构缺陷,充电电势过高以及正极材料中炭黑的含量。其中电极在充放电循环过程中结构的变化势最重要的因素,锂钴氧化物在完全充电状态下为六方晶体,理论容量的50%放电后生成新相单斜晶体,锂镍氧化物在充放电循环过程中涉及斜方六面体及单斜晶体的变LiyNiO2通常在0.3

5.集流体

铜和铝分别是负极和正极集流体最常用的材料。其中铝箔无论是在空气种还是在电解液中都

比较容易在表面形成氧化物膜,同时,集流体表面全面腐蚀和局部腐蚀(如点蚀)以及粘附性差等原因都会使得电极反应阻力增大,电池内阻增加,导致容量损失和放电效率降低。为了减少这些原因造成的影响,从市场上购得的集流体最好进行预处理(酸-碱浸蚀、耐腐蚀

包覆、导电包覆等),以提高耐腐蚀性与粘附性能。因为集流体表面粘附力太小,电极局部可能会与集流体分开,增加了极化作用,对容量有很大影响。铜集流体在使用过程中腐蚀生成一层绝缘腐蚀产物膜。致使电池内阻增大,循环过程中放电效率下降,造成容量损失。当过放电时,铜箔会发生如下反应:

Cu→Cu++e-所产生的Cu(I)

在充电时会以金属铜的形式结晶沉积在负极表面上,形成铜枝晶,极易穿透隔膜造成短路甚至出现爆炸。特别注意的是在选择负极极片时绝对不允许有掉料露铜的极片存在,否则在露铜处极片容易生成枝晶损坏电池。防止铜集流体溶解最好是放电电压应不低于2.5V。

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

电压法计算锂离子电池容量

电压法计算锂离子电池容量 锂离子电池开路电压与电池容量的对应关系分析 先给出一个表格:如下,百分比是电池的剩余容量,右侧是对应的电池的开路电压(OCV). 100%----4.20V 90%-----4.06V 80%-----3.98V 70%-----3.92V 60%-----3.87V 50%-----3.82V 40%-----3.79V 30%-----3.77V 20%-----3.74V 10%-----3.68V 5%------3.45V 0%------3.00V 以下是这个表格的来龙去脉. 〓〓〓〓〓〓〓〓

一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流量的统计.即库仑计(coulomb count). ★要想获得锂离子电池的电量使用的正确情况,只有用库仑计.就象大家家里面的水量计量用的水表的作用原理.要计算流经的电荷的多少才能获得锂

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

2017年废旧锂电池回收利用市场分析报告

2017年废旧锂电池回收利用市场分析报告

目录 第一节废旧锂电池的资源性和对环境的危害性逐步得到重视 (6) 一、动力锂电池的需求量和报废量不断增长 (6) 二、废弃动力锂电池具有显著的资源性,其中钴和锂潜在价值最高 (12) 三、废弃动力电池威胁环境和人类健康,影响社会可持续发展 (24) 第二节动力锂电池回收渠道及商业模式分析 (26) 一、目前以小作坊回收渠道为主,随规模扩大必将走向规范化 (26) 二、发达国家电池回收产业以市场调节为主、政府约束为辅 (28) 1、德国:政府立法回收,生产者承担主要责任,设立基金完善回收体系市场 化建设 (28) 2、日本:生产方式逐步转变为“循环再利用”模式,企业作为先锋参与到电 池回收中 (29) 3、美国:市场调节为主,政府通过制定环境保护标准对其进行约束管理,辅 助执行废旧动力电池的回收 (30) 三、我国明确采用生产者责任延伸制度,随政策不断完善,产业正逐步走向规范化 (31) 四、商业模式比较:构建经济激励下的生产者回收体系 (33) 第三节废旧锂离子电池的资源化技术:湿法回收技术为主 (38) 一、锂离子电池回收技术概况 (38) 二、国内外企业动力电池回收的技术路线和趋势:湿法工艺和高温热解为主流 42 第四节锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流 (44) 第五节部分相关企业分析 (49) 一、赣锋锂业:锂产品龙头企业,同行业具有废料提锂能力唯一企业 (49) 二、杉杉股份:积极布局动力电池回收和梯次利用,打造全生命周期运营闭环 49 三、格林美:专业废旧电池回收企业,依托汽车拆解基地抢占动力电池回收先机 (49) 四、比亚迪:与锂电回收龙头格林美合作,强强联手打造回收再利用闭环 (50) 五、超威动力:发展智能化电池回收,回收率可达百分之百 (50) 六、骆驼股份:正在进行资质申请 (51)

正极材料理论容量计算

锂离子电池正极材料理论电容量的计算 常常看见文献上说该材料的理论电容量是多少mA h/g 下面给出理论计算方法: 1mol正极材料Li离子完全脱嵌时转移的电量为96500C(96500C/mol是法拉第常数) 由单位知mAh/g指每克电极材料理论上放出的电量:1mA·h=1×(10^-3)安培×3600秒=3.6C 以磷酸锂铁电池LiFePO4为例: LiFePO4的分子量是157.756g/mol, 所以他的理论电容量是 96500/157.756/3.6=170 mA h/g 关于法拉第常数 法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214×1023mol-1与元电荷e=1.602176×10-19 C的积。尤其在确定一个物质带有多少离子或者电子时这个常数非常重要。法拉第常数以麦可·法拉第命名,法拉第的研究工作对这个常数的确定有决定性的意义。 一般认为此值是96485.3383±0.0083C/mol,此值是由美国国家标准局所依据的电解实验得到的,也被认为最具有权威性。 最早法拉第常数是在推导阿伏伽德罗数时通过测量电镀时的电流强度和电镀沉积下来的银的量计算出来的。 在物理学和化学,尤其在电化学中法拉第常数是一个重要的常数。它是一个基本常数,其值只随其单位变化。在电解、电镀、燃料电池和电池等涉及到物质与它们的电荷的工艺中法拉第常数都是一个非常重要的常数。因此它也是一个非常重要的技术常数。 在计算每摩尔物质的能量变化时也需要法拉第常数,一个例子是计算一摩尔电子在电压变化时获得或者释放出的能量。在实际应用中法拉第常数用来计算一般的反应系数,比如将电压演算为自由能。 如何计算电池材料的理论容量值 C=26.8nm/M,n是电子数,m是活性物质质量,M是活性物质的分子量 电池的化成,有的采用常温化成,有的采用高温化成,这两种化成的优缺点:主要区别应该是SEI膜的厚度和致密程度吧,高温化成形成的SEI较厚但不致密,消耗的锂比较多,常温或低温形成的较薄切致密。 电池配方: 负极配方:CMS:CMC:SBR:Super-P=94.5:2.25:2.25:1 电解液:1M-LiPF6 EC/DMC/EMC 负极设计比容量:300mAh/g 正极设计比容量:140mAh/g 充放电制度:1)恒流充电(1C,4.2V) 2)恒压充电(4.2V,20mA) 3)静置(10min) 4)恒流放电(1C,3.0V) 5)静置(10min) 6)循环(350周)

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

锂电池随使用而最大容量下降的原因

锂电池随着使用次数增加而最大容量下降 将分为内因和外因来说: 1.内因 (1)在电极方面,反复充放电使电极活性表面积减少,电流密度提高,极化增大;活性材料的结构发 生变化;活性颗粒的电接触变差,甚至脱落;电极材料(包括集流体)腐蚀; 现阶段常用电池负极为石墨,正极是LiCoO2,LiFePO4以及LiMn2O4等,电池放点初期电解液会在电 极表面形成一层SEI(固态电解质)膜,其成分主要是ROCO2Li(EC和PC环状碳酸酯还原产物)、ROCO2Li和ROLi(DEC和DMC等链状碳酸酯的还原产物)、Li2CO3(残余水和ROCO2Li反应产物),若用LiPF6时,残余的HF会与SEI中ROCO2Li,使SEI中主要是LiF和ROLi。 SEI是Li+导体,脱嵌锂时碳电极体积变化很小,但即使很小,其产生的内应力也会使负极破裂,暴露 出来新的碳表面再与溶剂反应形成新的SEI膜,这样就造成了锂离子和电解液的损耗,同时,正极材料 活性物质膨胀超过一定程度也会形成无法修复的永久性结构触损耗,这样正极和负极的不断损耗造成了 容量的不断衰减;再者,增加的SEI膜会造成界面的电阻层架,使电化学反应极化电位升高,造成电池 性能衰减 在电极中,随着充放电反应的进行,黏结剂的性能也会逐步下降,,黏结强度降低,使电极材料脱落; 铜箔和铝箔是常用的负极和正极集流体,两者都容易发生腐蚀,腐蚀产物聚集在集流体表面成膜,增加 内阻,铜离子还能形成枝晶,穿透隔膜,使电池失效。 (2)在电解质溶液方面,电解液或导电盐分解导致其电导率下降,分解物造成界面钝化; 锂离子电池液体电解质一般由溶质(如LiPF6、LiBF4、LiClO4等锂盐)、溶剂和特种添加剂构成。电 解质具有良好的离子导电性和电子绝缘性,在正负极之间起着输送离子传导电流的作用。锂离子电池在 第一次充放电、过充和过放时以及长期循环之后,电解质会发生降解作用,并伴有气体产生,气体的组 成较为复杂,还无法通过某种反应在电池内加以消除。随着电池充放电次数的增加。由于电极材料氧化 腐蚀会消耗掉一部分电解液,导致电解液缺乏,极片不能完全清润到电解液,从而电化学反应的不完全,使得电池容量达不到设计要求。 (3)隔膜阻塞或损坏,电池内部短路等 隔膜的作用是将电池正负极分开防止两极直接短路。在锂离子电池循环过程中,隔膜逐渐干涸失效是电 池早期性能衰退的一个重要原因。这主要是由于隔膜中电解液变干使溶液电阻增大,隔膜电化学稳定 性和机械性能,以及对电解质浸润性在反复充电过程中变差造成的。由于隔膜的干涸,电池的欧姆内阻 增大,导致放电不完全,电池反复受到大容量过充,电池容量无法回复到初始状态,大大降低了电池的 放电容量和使用寿命。 2.外因 (1)快速充放电 快速充电时,电流密度过大,负极严重极化,,锂的沉积会更明显,使在铜箔与碳类活性物质边界处的铜 箔脆化,极易产生裂缝。电芯自发卷绕受到固定空间的限制,铜箔无法自由伸展产生压力,在压力的作 用下,原有的裂缝扩散生长,因扩展空间不够,铜箔发生断裂。 (2)温度 在明显高于室温的情况下,有机电解质的热稳定性成为首先要考虑的问题,这全要包括有机电解质自身 热稳定性以及电极隋机电解质相互作用的热稳定性两个方面。一般认为,正极/有机电解质的反应对铿 离子电池安全性的影响是主要因素。因为正极、电解质的反应动力学非常快,故控制着整个电池耐热

最全最经典的电池容量衰减原因总结

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 0本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;【电源网】【李伟善】【阮艳莉】 ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 【电源网】【李伟善】【阮艳莉】 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2: LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】 (2)λ-MnO2锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g)【李伟善】【黄可龙】 3、电解液在过充时氧化反应 当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。【电源网】【黄可龙】【阮艳莉】 影响氧化速率因素: 正极材料表面积大小【电源网】【黄可龙】 集电体材料【电源网】【黄可龙】 所添加的导电剂(炭黑等)【电源网】【黄可龙】

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

新能源电池回收行业分析报告

新能源电池回收行业分析报告

目录索引 一、政策未雨绸缪,2018年市场启动 (4) 二、梯次利用+拆解利用酝酿电池回收广阔市场 (6) 2.1规模化、体系化、商业化亟待完善 (6) 2.2梯次与拆解利用齐头并进 (6) 2.3蓄势待发直指未来五年巨大市场空间 (9) 三、电池厂布局提速,变现渠道价值 (11) 四、相关标的:提前布局蓝海,卡位细分领域 (14) 4.1东方精工:立足P ACK建立回收渠道优势 (14) 4.2天奇股份:整合回收设备产业链 (15) 4.3格林美:再生资源龙头企业 (16) 4.4湖南邦普:深耕电池回收,稳居同业第一 (17) 五、投资建议 (17) 六、风险提示 (18)

图表索引 图1:动力电池回收产业链 (6) 图2:动力电池梯次利用途径 (6) 图3:湿法回收锂和铁的工艺流程 (7) 图4:固相法再生磷酸铁锂工艺流程 (7) 图5:动力电池回收行业产业链布局 (11) 图6:第三方回收系商业模式 (11) 图7:2016年电池回收市场份额 (12) 图8:锂电材料系商业模式 (12) 图9:动力电池系商业模式 (14) 图10:普莱德产业链布局 (14) 图11:天奇股份主营业务 (15) 图12:邦普集团主营业务 (17) 表1:动力锂电池主要回收资源及污染来源 (4) 表2:我国电池回收相关的主要政策 (4) 表3:我国动力电池报废量预测 (5) 表4:钴、镍、锰及其混合物回收工艺 (8) 表5:动力电池市场空间测算 (9) 表6:动力电池回收市场空间测算 (10) 表7:动力电池企业布局电池回收 (13) 表8:天奇股份电池回收业务布局 (15) 表9:格林美电池回收业务布局 (16)

2018年锂电池回收市场分析报告

2018年锂电池回收市场分析报告 2018年1月

目录 一、锂电池回收市场已处于爆发前夜,预计2020年市场规模将达到156亿元 (5) 1、锂电池回收兼具环保性和经济性,是构筑产业链闭环的关键 (5) 2、政策框架明确,细则不断落实推动回收市场发展 (7) 3、动力电池首批退役潮将至,预计2020年市场整体规模将达156亿元 (9) 二、商业模式已具雏形,三元电池的资源化回收或将成主角 (12) 1、“回收网络+专业化处理”的框架性商业模式正在不断优化 (12) 2、动力电池生产者在磷酸铁锂的梯次利用领域具有“先天优势” (16) (1)离散整合技术 (18) (2)全生命周期追溯技术 (18) 3、三元电池的资源化回收综合效益高,需求放量后将成为市场主角 (20) 三、专业化处理企业优势显著,能延伸至三元材料者盈利更强 (22) 1、湿法技术日渐成为主流,多种技术发展综合提高回收效率 (22) 2、专业化处理回收企业在资源化回收领域具有多方面优势 (25) 3、具备三元材料及前驱体生产能力的专业化处理企业盈利能力更强 (27) 四、相关企业简析 (29) 1、芳源环保:掌握三元材料前驱体技术,实现对松下供货 (30) 2、西恩科技:三废资源综合利用服务商,主打电池级硫酸镍 (31) 3、金源新材:湿法资源回收技术成熟,钴产品质量高标 (32) 五、主要风险 (33) 1、政策落地不达预期 .......................................................................................... 33 33 2、梯次利用经济效益偏低 .................................................................................. 33 3、竞争加剧破坏行业生态 ..................................................................................

铅酸蓄电池锂电池等电池容量衰减原因

铅酸蓄电池锂电池等电池容量衰减原因 电池的能量存储可以分为三个虚拟区域,即可填充的空白区、提供能量的可用区以及由于使用和老化作用造成的闲置不可用区域,或者说是岩石区,如图1所示。 电池能量存储虚拟区域示意图 电池从制造完成时就开始衰减,一个新电池须提供100%的容量,但大多数使用中的电池组是达不到的。

随着电池的可用区域缩小,可填充的能量降低,充电时间逐渐缩短。在大多数情况下,由于周期循环和老化的原因,电池容量呈线性衰减。此外,深度放电给电池造成的压力大于不完全放电,因此最好不要把电池电量全部耗尽,而是经常性充电。对于镍基电池以及作为校准部件的智能电池则应周期性深度放电,这有助于消除镍基电池的“记忆效应”。镍基锂电池在容量衰减到80%之前可以完全充放电循环300~500周。 充放电循环并不是容量衰减的唯一原因,高温下存储锂电池也会导致容量衰减。一个充满电的锂电池在40℃(104°F)保存一年而不使用的情况下会造成35%的容量损失。超快速充放对电池也是有害的,会使电池寿命减少一半,这对于单体锂电池是非常明显的。电池组比能量高,但由于单体电池的差异而显得特别微妙。 设备的规格参数往往基于新电池,但这仅仅是初试阶段的短暂现象,而不能维持太长的时间。就像一个体育运动员,成绩会随着时间的推移而逐渐下降,并且如果任其发展,将会最终导致电池相关的故障。 电池需要经常计算其容量衰减和最终寿命。容量衰减到80%就需要更换电池组,电池组的最终寿命极限应根据应用的不同、用户的喜好以及公司的保障而改变。由于机械故障比较罕见,容量衰减便成了最终替代计划的一个最佳指标,这一指标可以通过对现役电池每三个月进行一次容量核实来完成。此外,充电器充电运行状态表征的技术也在研发中。 除了与老化相关的衰减,硫酸盐化和板栅腐蚀是铅酸蓄电池衰减的主要影响因素。硫酸盐化是指电池停留在较低倍率充电时,在阴极极板上形成的薄膜层。如果发现及时,可以通过均衡充电来消除这一状况。板栅腐蚀可以通过改善充电状态或采用优化的浮动充电方法来减弱。 镍基电池,所谓的不可用岩石区通常是由于活性物质晶体的形成而引起,也被称为“记忆效应”。深度充放电循环的方法常常可以使电池容量恢复到全满。周期性的放电也可以控制结晶过程,避免对隔膜的危害。 锂离子电池的老化是内部物质的氧化,是使用和老化过程中的一部分,并且是自然发生且不可逆转的。 原标题:铅酸蓄电池锂电池等电池容量衰减原因

动力电池容量损失原因分析

动力电池容量损失原因分析 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应;③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于 4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 2.电解液分解 电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但还原产生的不溶物对溶剂还原生成物会产生不利影响,而且电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3),同时,钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。工艺中使用碳的类型、电解液成份以及电极或电解液中添加剂都是影响成膜容量损失的因素。电解液中常常会含有氧、水和二氧化碳等物质。微量的水对石墨电极性能没影响,但水含量过高会生成LiOH(s)和Li2O 沉积层,不利于锂离子嵌入,造成不可逆容量损失:H2O+e→OH-+1/2H222 OH-+Li+→LiOH(s)LiOH+Li++e→Li2O(s)+1/2H2 溶剂中的CO2 在负极上能还原生成CO 和LiCO3(s):2CO2+2e+2Li+→Li2CO3+CO CO 会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。 3.自放电 自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,如锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失。自放电程度受正极材料、电池的制作工艺、电解液的性质、温度和时等因素影响。如自放电速率主要因溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命,如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。长时间或经常自放电时,锂有可能沉积在碳上,增大两级间容量不平衡程度。Pistoia等认为自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。 4.电极不稳定性 如上所述,正极活性物质在充电状态下会氧化电解质分解而造成容量损失。另外,影响正极材料溶解的因

中国废旧锂电池回收利用市场分析报告

中国废旧锂电池回收利用市场分析报告

目录 第一节废旧锂电池的资源性和对环境的危害性逐步得到重视 (6) 一、动力锂电池的需求量和报废量不断增长 (6) 二、废弃动力锂电池具有显著的资源性,其中钴和锂潜在价值最高 (12) 三、废弃动力电池威胁环境和人类健康,影响社会可持续发展 (24) 第二节动力锂电池回收渠道及商业模式分析 (26) 一、目前以小作坊回收渠道为主,随规模扩大必将走向规范化 (26) 二、发达国家电池回收产业以市场调节为主、政府约束为辅 (28) 1、德国:政府立法回收,生产者承担主要责任,设立基金完善回收体系市场 化建设 (28) 2、日本:生产方式逐步转变为“循环再利用”模式,企业作为先锋参与到电 池回收中 (29) 3、美国:市场调节为主,政府通过制定环境保护标准对其进行约束管理,辅 助执行废旧动力电池的回收 (30) 三、我国明确采用生产者责任延伸制度,随政策不断完善,产业正逐步走向规范化 (31) 四、商业模式比较:构建经济激励下的生产者回收体系 (33) 第三节废旧锂离子电池的资源化技术:湿法回收技术为主 (38) 一、锂离子电池回收技术概况 (38) 二、国内外企业动力电池回收的技术路线和趋势:湿法工艺和高温热解为主流 42 第四节锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流 (44) 第五节部分相关企业分析 (49) 一、赣锋锂业:锂产品龙头企业,同行业具有废料提锂能力唯一企业 (49) 二、杉杉股份:积极布局动力电池回收和梯次利用,打造全生命周期运营闭环 49 三、格林美:专业废旧电池回收企业,依托汽车拆解基地抢占动力电池回收先机 (49) 四、比亚迪:与锂电回收龙头格林美合作,强强联手打造回收再利用闭环 (50) 五、超威动力:发展智能化电池回收,回收率可达百分之百 (50) 六、骆驼股份:正在进行资质申请 (51)

锂电池的国家标准

1、锂离子电池标称电压 3.7V(3.6V),充电截止电压 4.2V(4.1V,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂 离子二次电池) 2、对锂离子电池充电要求(GB/T18287 2000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电 池端电压达到 4.2V(4.1V),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当 减小到0.01C时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA,注意是mA而不是mAh,0.01C就是10mA。)当然,规范的表示方式是0.01C5A,我这里简化了。 3、为什么认为0.01C为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的0.01C有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到0.01C,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到0.01C,质量不好的电池,等下去也无意义) 4、怎样区别电池是 4.1V还是 4.2V:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是 4.1V和 4.2V通用的,比如A&TB(东芝),国内厂家基本是 4.2V,但也有例外,比如天津力神是 4.1V(但目前也是按 4.2V了)。 5、把4.1V的电芯充电到 4.2V会怎么样:会使电池容量提高,感觉很好用,待机时间增加,但会减短电池的使用寿命。比如 原来500次,减少到300次。同样道理,把 4.2V的电芯过充,也会减短寿命。锂离子电芯是很娇嫩的。 6、既然电池内有保护板,我们是否就可以放心了呢:不是,因为保护板的截止参数是 4.35V(这还是好的,差的要 4.4到4.5V), 保护板是应付万一的,假如每次都过充,电池也会很快衰减的。 7、多大的充电电流算是合适的:理论上越小对电池越有好处。但你总不能为了一块电池充电等3天吧。国标规定的低倍率充 电是0.2C(仲裁充电制式),还以上面的1000mAh容量的电池为例,就是200mA,那么我们可以估计出这只电池5个多小时可以 充饱。(容量mAh=电流mA×时间h) 国家技术监督部门鉴定锂电容量,是以1C的高倍率充电,以0.2C的低倍率放电,以时间计算出容量值,试验次数5次,有1次容量达到试验结束。(就是有5次机会,如果第一次试验就合格了,后面的4次不做)检测之前允许有一次预循环,就是以1C 恒流充电至 4.2V即停止,而没有后面的恒压到0.01C的过程,更没有14小时。 8、锂离子电池能承受多大的充电电流:厂家试验时可以很高,但国标高倍率规定为1C,还以上面的电池为例,1个多小时即可充满。这么大的充电电流,电池能承受吗?对于目前的锂离子电芯,是小意思而已。目前没有对充电器的国家标准,所执行的是 邮电部行业标准YD/T998 1999/2,里面规定了充电器的电流不得大于1C。 9、寿命是怎样规定的:简单说是指电池经过N次1C充、1C放电后,容量下降到70%,此时的N就是寿命。并不是说300 次还可以用,301次就不能用了。国标规定寿命不得小于300次。我们平时使用的条件没有检测时这么严酷,寿命会更长。

相关文档
最新文档