祝颖丹-汽车工业碳纤维复合材料智能制造及装备技术

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

飞机用复合材料的低成本制造设备及工艺

FORUM 论坛 航空制造技术年第期 飞机用复合材料的低成本制造 设备及工艺 中国航空工业发展研究中心 陈亚莉 本文分析了复合材料低成本制造工艺及设备。指出在 降低复合材料成本方面,制造技术有着广泛机遇,其关键是自动化设备。在低成本工艺方面,非热压罐技术潜力巨大,代表着未来的发展方向。 Low -Cost M anuf act ur i ng Equi pm ent and Pr ocess of Com posi t es f or A i r cr af t 波音787已开始交付用户,A 350的格局已定,A320和波音737将重新换发,F-35正进入20年生产初期。飞机将成为下一个10年制造的主角,且将不再是以金属为主要结构的装备。材料系统的选择以及结构设计业已确定,金属及复合材料之间的平衡也已肯定下来。在这种情况下,制造技术将进一步提高生产效率和降仍有待改进。例如花大量时间来置 入紧固件,由于紧固件类别不同,需要一方面看图纸,在蒙皮上做标记,然后再将紧固件置入蒙皮。 飞机复合材料结构正在开发一系列缩短周期、降低成本的先进技术。例如,从三维设计数据库中自动取出零件的几何尺寸数据是飞机制造商的优先项目。当飞机产量大或要求制造精度高时,需要自动化设备进入生产车间进行铺层、切削加工、钻孔及在生产线上进行检验。 铺层自动化 对于复合材料制造来说,自动化是关键。碳纤维可提供所需的性能改进,但产量必须提高,成本才能降低。波音787、A 350以及F -35投产时就必须提高生产率。随着从手工铺层到自动化铺层,碳纤维在模具上的铺层就成了关键性的推手。 低成本,即使材料及结构方面大的决策已定,在制造方面仍有充分的改进空间。 由于空客及波音已将下一代窄体飞机推迟到2020年以后,复合材料与金属材料之争已冷却下来,即使 这样,先进材料及制造技术的发展仍 有机遇,只是不同飞机的机遇不同罢了。 例如,对于A 320neo 和波音737MAX 这样的飞机,要改变材料的 机遇有限,而结构及技术仍将采用标准形式。但对于A 350-1000以及787-10仍有更多的机遇采用新的制造技术。目前仍处在设计中的波音777X 有可能做更多的变化,例如,采用碳纤维复合材料机翼。这些飞机 在结构及材料决定之后,仍有大量降低及减重以及工艺改进工作。又如,F-35仍在开发中,重点放在制造改进上, 大量的手工劳动以及质量问题 陈亚莉中国航空工业发展研究中心研究员。长期从事航空材料情报研究工作, 曾获先进国防科技情报工作者等称 号。 44 201219

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维复合材料柔性连续抽油杆生产工艺

碳纤维复合材料柔性连续抽油杆生产工艺 ?拉挤成型于1951年首次在美国注册专利,60年代发展很慢,70-80年代进入快速发展阶段。我国起步则较晚,直到90年代随着拉挤专用树脂技术的引进生产才进入快速发展时期。目前,引进及国产拉挤生产线已超过200条。我国发展拉挤与欧美形式相似:先开发形状简单的棒材,然后随着化工防腐、电力、采矿等行业的发展与需求,开发了型材制品,目前这些技术已经比较成熟。 拉挤工艺是一种连续生产复合材料型材的方法,它是将纱架上的无捻玻璃纤维粗纱和其他连续增强材料、聚脂表面毡等进行树脂浸渍,然后通过保持一定截面形状的成型模具,并使其在模内固化成型后连续出模,由此形成拉挤制品的一种自动化生产工艺。 利用拉挤工艺生产的产品其拉伸强度高于普通钢材。表面的富树脂层又使其具有良好的防腐性,故在具有腐蚀性的环境的工程中是取代钢材的最佳产品,广泛应用于交通运输、电工、电气、电气绝缘、化工、矿山、海洋、船艇、腐蚀性环境及生活、民用各个领域。 拉挤成型工艺形式很多,分类方法也很多。如间歇式和连续式,立式和卧式,湿法和干法,履带式牵引和夹持式牵引,模内固化和模内凝胶模外固化,加热方式有电加热、红外加热、高频加热、微波加热或组合式加热等。 拉挤成型典型工艺流程为: 玻璃纤维粗纱排布——浸胶——预成型——挤压模塑及固化——牵引——切割——制品

注射拉挤成型工艺流程图 拉挤成型设备组成 1、增强材料传送系统:如纱架、毡铺展装置、纱孔等。 2、树脂浸渍:直槽浸渍法最常用,在整个浸渍过程中,纤维和毡排列应十 分整齐。 3、预成型:浸渍过的增强材料穿过预成型装置,以连续方式谨慎地传递, 以便确保它们的相对位置,逐渐接近制品的最终形状,并挤出多余的树脂,然后再进入模具,进行成型固化。 4、模具:模具是在系统确定的条件下进行设计的。根据树脂固化放热曲线 及物料与模具的摩擦性能,将模具分成三个不同的加热区,其温度由树脂系统的性能确定。模具是拉挤成型工艺中最关键的部分,典型模具的长度

2016-2020中国碳纤维复合材料行业发展前景预测分析报告

深圳中企智业投资咨询有限公司

2016-2020年中国碳纤维复合材料行业发展前景 预测分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/a14265709.html, 1

目录 2016-2020年中国碳纤维复合材料行业发展前景预测分析 (3) 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 (3) 一、未来碳纤维复合材料发展分析 (3) 二、未来碳纤维复合材料行业技术开发方向 (3) 2、自动化生产 (3) 3、大规模生产 (3) 4、碳纤维复合材料废旧部件的再生回用技术 (4) 三、总体行业“十三五”整体规划及预测 (4) 第二节2016-2020年中国碳纤维复合材料行业市场前景分析 (4) 一、产品差异化是企业发展的方向 (4) 二、渠道重心下沉 (5) 2

2016-2020年中国碳纤维复合材料行业发展前景预测分析 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 一、未来碳纤维复合材料发展分析 碳纤维复合材料作为新兴的非金属材料具有广阔的应用前景。首先其广泛的应用于航空、航天等军事领域,并随着在军事领域应用的不断深入,相关的制造及使用技术日臻成熟,从而带动了碳纤维复合材料在民用领域应用的极大发展,主要应用在机械电子、建筑材料、文体、化工、医疗等方面,并正在快速的取代传统金属材料成为结构用材的首选。 二、未来碳纤维复合材料行业技术开发方向 1、3D打印成型技术 3D打印技术技术是有望成为高效低成本制备各种碳纤维复合材料结构部件的创新工艺,为此近年来企业界、大学、科研院所、政府机构等,都在安排研发和改进3D打印技术,并取得了产业化成果。以往制备塑料和金属的3D打印机部件,能耗较高,尺寸有限,而应用于碳纤维复合材料时,不仅部件强度与刚性可提高,还可提高导热性和降低热膨胀系数,因此无需使用炉子,可消除所有尺寸限制。 2、自动化生产 汽车生产厂家现都采用机器人组装相对小和固定形状的部件,但这些机器人并不能加工大型碳纤维复合材料部件,因为这些部件缺乏形状固定性,因而多采用手铺制造和热压罐固化。如何加工大型碳纤维复合材料是未来重要的技术开发方向之一。 3、大规模生产 5年前日本公司在市场上导入了“Sereebo”长碳纤维增强热塑性树脂(CFRTP),并与GM汽车公司等合作开发其潜在市场。其中碳纤维的分布和取向是可控的,基材的各向同性可保持到最终部件,成型时间只有60s,它比铝合金轻20%~30%,并具有更好的耐疲劳性和抗冲击性而价格略高些,适用于汽车结 3

航空航天领域先进复合材料制造技术进展

专题研究 Feature 72 纺织导报 China Textile Leader · 2018 产业用纺织品专刊 参考文献 [1] 李俊宁,胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术 研究进展[J]. 宇航材料工艺,2011,41(6):10-13. [2] GRITSEVICH I V, DOMBROVSKII L A, NENAROKOMOV A V. Heat transfer by radiation in vacuum shield insulation of spacecrafts [J]. Thermal Processes in Engineering, 2013, 5(1): 12-21. [3] 沈学霖,朱光明,杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程,2016,32(10):164-169. [4] KIM J, LEE J H, SONG T H. Vacuum insulation properties of phe-nolic foam[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5343-5349. [5] BHEEKHUN N, ABU TALIB A R, HASSAN M R. Aerogels in aerospace: An overview[J]. Advances in Materials Science and En-gineering, 2013, 406065. [6] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A stra-tegy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.[7] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Com-munications, 2014, 5: 5802. [8] GBEWONYO S, CARPENTER A W, GAUSE C B, et al. Low th-ermal conductivity carbon fibrous composite nanomaterial enab-led by multi-scale porous structure[J]. Materials & Design, 2017, 134: 218-225. [9] ZHENG H, SHAN H, BAI Y, et al. Assembly of silica aerogels wi-thin silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015, 5(111): 91813-91820. [10] SHAN H, WANG X, SHI F, et al. Hierarchical porous structured SiO 2/SnO 2 nanofibrous membrane with superb flexibility for mole-cular filtration[J]. Acs Applied Materials & Interfaces, 2017, 9(22): 18966-18976. [11] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angew Chem-Int Edit, 2014, 53(39): 10394-10397. [12] SI Y, WANG X, DOU L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4(4): eaas8925. 机梯度隔热、舱室隔热保暖等领域。 纳米纤维材料虽然具有良好的隔热性能和弹性,但其拉伸、剪切性能仍需大幅提升以满足实际应用需求。同时,现有纳米纤维气凝胶的孔径较大,导致其热对流效应明显,特别是在高温环境下,因此需在保证其力学性能未大幅下降的前提下进一步减小纳米纤维气凝胶的孔径,提升材料的隔热性能,最终实现其在航空航天热防护领域的特效应用。 图 1 民用飞机结构复合材料用量的变化 1970年 1980年 1990年 2000年 2010年 空客A350:52% 波音787:50%空客A380:25%空客A340:13%波音777:11%波音757:4%波音767:4% 复合材料用量/% 尾翼应用复合材料 外翼、机身应用复合材料 A350 A380 A340中央翼应用复合材料 次承力结构应用复合材料 50403020100 波音787 波音777 波音757/767 复合材料自20世纪60年代问世以来迅速发展,由于具有高比刚度、高比强度、性能可设计、抗疲劳性和耐腐蚀性等优点,越来越广泛地应用于各类航空航天飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。同时,复合材料的应用部位已由飞机的非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量成为航空器先进性的重要标志。本文重点阐述航空航天领域最为广泛应用的碳纤维增强树脂基先进复合材料的应用概况、制造技术及未来发展方向。 1 先进复合材料在航空航天领域的应用概况 先进复合材料在航空航天领域的应用始于军用飞 机,是为满足其对高机动性、超音速巡航及隐身等要求而不惜成本开始采用的。近年来由于结构轻量化的要求,民用飞机在复合材料用量方面也呈现增长的趋势。图 1 为商用飞机中复合材料用量占结构重量比例的增加趋势。以1990年研制的波音777为例,在其机体结构中,复合材料仅占11%,而且主要用于飞机辅件,如尾翼和操纵面等。到了2009年波音787首飞时,复合材料的使用出现了质的飞跃,其用量已占到结构重量的50%(图 2),而空客A350的复合材料用量更是达到了52%(图 3),不仅复合材料占比激增,而且复合材料大量应用于 碳纤维复合材料层压板碳纤维夹芯复合材料玻璃纤维复合材料铝 铝/钢/钛复合材料 其他5% 钢10% 钛15%铝20% 复合材料50% 图 2 波音787的复合材料用量

航空复合材料项目立项申请报告 (1)

航空复合材料项目立项申请报告 规划设计/投资方案/产业运营

航空复合材料项目立项申请报告 碳纤复合材料最大的优点是轻质、高强,航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件,同铝合金相比,减重效果可达20-40%,体现出巨大的节能效益。 该航空复合材料项目计划总投资10580.16万元,其中:固定资产投资7957.92万元,占项目总投资的75.22%;流动资金2622.24万元,占项目总投资的24.78%。 达产年营业收入22100.00万元,总成本费用17586.14万元,税金及附加196.99万元,利润总额4513.86万元,利税总额5333.45万元,税后净利润3385.39万元,达产年纳税总额1948.05万元;达产年投资利润率42.66%,投资利税率50.41%,投资回报率32.00%,全部投资回收期4.63年,提供就业职位418个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

航空复合材料项目立项申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

先进树脂基复合材料制造技术综述

先进树脂基复合材料制造技术综述单位:西北工业大学机电学院作者:阎龙史耀耀段继豪 树脂基复合材料以其比强度和比刚度高、可设计性强、抗疲劳断裂性能好、耐腐蚀、结构尺寸稳定性好以及便于大面积整体成型的独特优点在飞机上得到了大量应用,可实现飞机结构相应减重25%~30%[1-2]。此外,通过复合材料结构/ 材料/ 工艺综合研究和材料/ 工艺/ 设计/ 电子/ 气动等学科交叉,深层次开发复合材料结构与功能可设计性潜力,可进一步提高飞机的综合性能。早在20世纪80 年代,人们就预测到2000 年飞机的绝大部分结构将采用复合材料,甚至出现全复合材料飞机。然而,到目前为止,这一预言尚未实现,其主要原因是复合材料构件的成本还远远高于铝合金构件,高成本阻碍了复合材料技术在航空航天等领域的更广泛应用[1]。因此,在已有主要材料体系基础上开发先进的低成本制造技术成为当今复合材料界的共识。目前可降低复合材料制造成本的主要技术途径有:复合材料低温固化技术、复合材料RTM 成型技术、自动缠绕与铺放技术、复合材料电子束固化技术、复合材料结构修理技术[1]。 复合材料低温固化技术 复合材料低温固化技术通常指固化温度小于100℃,可以在自由状态下进行高温后处理的复合材料相关制造技术[1]。发展复合材料构件的低温固化技术,可以大大降低由昂贵模具、高能耗设备以及高性能工艺辅料等带来的高费用。此外,低温固化复合材料构件的尺寸精度高,固化残余应力低,适于制备大型和形状复杂的复合材料构件,也可用于复合材料工装材料以及复合材料结构件的修补等。复合材料低温固化技术是低成本制造技术的重要组成部分。 复合材料低温固化技术的研究始于20 世纪70 年代,ACG 公司于1975 首先发展了第一个低温固化树脂体系LTM10。到20 世纪80 年代中期,低温固化复合材料开始应用于工装领域。20 世纪90 年代早期,低温固化复合材料首次用于航空结构件,如1985 年洛克希德·马丁公司采用LTM45 低温固化体系制备了UAV构件;1986 年NASA 和McDonel-Douglas 公司使用LTM10 体系/ 真空袋成型技术制造了X36 无人战斗机和UAV 的外蒙皮。国内关于低温固化复合材料研究的起步较晚,北京航空材料研究所成功研制出70℃固化,80~100℃使用的LT-01 碳纤维增强复合材料树脂体系,并用于制造大型运输机复合材料腹鳍。表1 所示为碳纤维增强LT-01 复合材料体系力学性能[1]。

中航高科南通民用复合材料生产线建成投产将降低高性能碳纤维复合材料成本

塑一料一工一业 2019年一 一 我国年产4000万t废塑料目前仅有34家规范企业 1月3日?按照?废塑料综合利用行 业规范条件?二 ?轮胎翻新行业准入条 件?二?废轮胎综合利用行业准入条件?及相关公告管理办法的要求?工信部公示了第二批符合废塑料二废矿物油二建 筑垃圾二废旧轮胎综合利用行业规范条件的企业名单? ?废塑料综合利用行业规范条件?规 定了三大类企业准入门槛?这些门槛的设置能有效地清除一些不合规范的企业?每年有3月31日和9月30日两次申请机会? ?规范条件?具有白名单性质?而不是强制?通过评审的企业可以称得上是行业模范?规范化企业在税收二科研二产业发展方面容易得到政策倾斜?例如?现在大气治理越来越严格?雾霾严重的情况下会采取错峰生产二乃至停产等措施?但对规范化企业有可能不受此类措施的约束? 企业准入门槛高 1.PET再生瓶片类新建企业:年废塑料处理能力不低于30000t?已建企业则不低于20000t? 2.废塑料破碎二清洗二分选类新建企业:年废塑料处理能力不低于30000t?已建企业不低于20000t? 3.塑料再生造粒类新建企业:年废 塑料处理能力不低于5000t?已建企业不低于3000t? 资源综合利用及能耗1.塑料再生加工相关生产环节的综合电耗低于500kW h/t废塑料? 2.PET再生瓶片类企业与废塑料破 碎二清洗二分选类企业的综合新水消耗低于1 5t/t废塑料?塑料再生造粒类企业的综合新水消耗低于0 2t/t废塑料? 工艺与装备 1.PET再生瓶片类企业?应实现自 动进料二自动包装与加工过程的自动控制? 2.废塑料破碎二清洗二分选类企业?应采用自动化处理设备和设施? 3.塑料再生造粒类企业?应具有与 加工利用能力相适应的预处理设备和造粒设备? 目前的规范化企业并不多?按照这个标准?提高废塑料行业的整体水平?树立标杆?获得后续政策支持?但实际上?该政策只利于龙头企业投资这一领域?小作坊模式将会在环保整治浪潮中被淘汰? 我国每年产生的塑料废弃物接近 4000万t?再生利用量超过2000万t?从 事废塑料回收和加工利用企业数以万计?遍布全国各地?然而仅有34家废塑料综合利用规范企业?难道其余的企业都是不规范的?难道其余的废塑料企业就是传说中的小二散二乱二污的废塑料作坊吗? 答案:当然不是!这个行业一定有几百家甚至更多的规范企业! 这些企业不同于四处污染的废塑料小作坊?不是环保督查的重点对象?多数企业进行环保技术二设备升级改造?部分企业根据原料情况阶段性生产?产量约为20%~50%产能?探索自建国内回收体系?加大原料来源?探索新型集成型园区建设?全球投资力度加大?寻找新的海外加工基地?如东南亚二东欧二东非二部分发达国家和地区等? 中航高科南通民用复合材料生产线建成投产一将降低高性能碳纤维 复合材料成本 1月11日?中航高科与航空工业复 材共同建设的南通民用复合材料生产线建成投产?继南通大尺寸蜂窝生产线之后?该生产线的建成投产促进了航空工业复材民用复合材料产业发展二推动公司在成为国内领先的民用复合材料供应商的道路上又迈出了坚实一步? 中航高科民用复合材料生产线建成投产?将显著降低高性能碳纤维复合材料成本?大幅提升复合材料构件的制造效率?为实现高效成型碳纤维复合材料大规模应用创造了条件?为把中航高科打造成具有国际竞争力的航空新材料和高端智能装备制造企业做出了新贡献? 深材科技推出纳米改性聚氨酯 环氧树脂系新产品 深材科技公司推出甲基四氢苯酐二 甲基六氢苯酐专用(高玻璃化转变温度Tg二高机械性能二高导热系数)纳米改性聚氨酯环氧树脂系? 甲基四氢苯酐二甲基六氢苯酐是常用的酸酐固化剂?主要与双酚A型环氧树脂配合使用?二者生成的固化物具有高Tg二高机械性能二高导热系数等优点?但最大的缺点是太脆?限制了其在很多领域的应用?导致一些企业只能以牺牲产品品质为代价?来应对市场的需求?为进一步改善部分性能?一些企业会在环氧树脂里添加不同增韧剂?虽然韧性得到了提高?但Tg值却有不同程度下降二机械性能相应减弱二导热系数也不太理想? 深材团队从2016年开始深入研究甲基四氢苯酐二甲基六氢苯酐与环氧树脂完全固化后太脆这一最大缺点?经过两年多时间数千次研发测试?于2018年10月成功推出行业领先产品:纳米改性聚氨酯环氧树脂系(SC ̄1288N二SC ̄1288P二SC ̄1288CF)?该产品与甲基四氢苯酐二甲基六氢苯酐配合使用生成的固化物具备高Tg二高机械性能二高导热系数的特点?问世以来已有多家企业批量购买? 测试综合力学性能均有不同程度提高? 茂名石化:全密度装置提前完成 全年产量任务 截至2018年12月25日?茂名石化化工分部全密度装置累计生产聚乙烯产品14 5万t?提前6天完成全年目标产量?为做好装置的安全稳定生产?车间强化生产管理?加强专业检查与考核力度?各专业组每天下现场?查DCS操作记录?发现问题及时处理?强化 三大纪律 管理和操作培训?提高员工责任意识及操作技能?杜绝 一伸手 操作带来的生产波动?强化设备巡检维护?做好 计划性 维修?确保设备运行达到最佳状态? 面对日益激烈的市场竞争环境?全密度车间在做好通用料生产的同时?坚持以客户需求为导向?贴近市场?积极开发生产适销对路的新产品?先后开发了柔性CPE薄膜料PE ̄LF234PB二人造草线型聚乙烯树脂PE ̄LT272等5个牌号的新产品?其中人造草线型聚乙烯树脂更是填补了国内空白? 841

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

相关文档
最新文档