液压位置伺服系统的模糊PID控制

液压位置伺服系统的模糊PID控制
液压位置伺服系统的模糊PID控制

液压位置伺服系统的模糊PID控制研究

时间:2009-12-02 10:15:25 来源:自动化博览作者:许建肖维荣

1. 引言

当今,在工业、国防等自动化领域,液压伺服系统以其重量轻、体积小、产生力矩大等优点而得到广泛应用。但由于漏油、油液污染等因素影响,液压伺服系统中普遍存在参数时变、非线性尤其是阀控动力机构流量非线性等现象。随着对控制精度要求的提高,对液压伺服控制技术也提出了越来越高的要求。传统PID控制很难达到满意的控制效果,针对这一问题,近年来出现了许多不同的现代控制策略,如神经网络控制、自适应控制、模糊控制、预测控制等。这些控制方法在理论上取得很大进步,但是在液压伺服控制中还有一些实际问题需要解决[1]。

模糊控制不需要被控对象的精确数学模型,并且可以引入专家经验,因此有较好的实用性。但单独使用模糊控制不易消除稳态误差,且对控制器运算性能要求较高[2],而PID算法简单又可以较好的消除稳态误差。对此,本文采用模糊控制与PID控制结合,利用模糊控制实时修正PID参数,提高了系统的控制精度和鲁棒性,有较好的实用性。

2. 液压位置伺服系统

图1 液压位置伺服系统结构图

如图1所示,该液压位置伺服系统由放大器、电液伺服阀、液压缸、负载以及位置传感器等组成。输入信号经放大后送入电液伺服阀,小功率电信号经由伺服阀转化为阀芯位移信号,然后转换成流量和压力等液压信号,这些信号最后驱动液压缸带动负载完成指定动作。

因电液伺服阀实现了电液信号的转换和液压功率放大两个

功能,故电液伺服阀在伺服系统中起桥梁的作用,是系统的心脏,本文中位置伺服系统采用动铁力矩马达喷嘴挡板式两级电液伺服阀。

根据力矩马达的电压、磁路和运动方程,喷嘴挡板位移与马达的偏角关系以及主阀(对称四通滑阀)的运动方程和流量方程[3],可以推导出电液伺服阀传递函数如下:

式中:ωsv为伺服阀固有频率; ξsv为阻尼比; Kq为伺服阀流量增益,应按实际供油压力下的实际空载流量确定,即

,qn为伺服阀的额定流量,ps为实际供油压力,psn为伺服阀规定阀压降,一般psn=7MPa,In为伺服阀额定电流。

此外,本文中执行器为液压缸,且负载为纯惯量,不考虑机架刚度等因素,由运动方程可以推导出阀控缸传递函数为:

式中:Q0为伺服阀空载流量,,符号含义与前面相同; P为液压缸活塞有效面积; ωh为液压固有频率;ξh为液压阻尼比;

通过上述推导得到液压位置伺服控制系统中液压被控部分

的数学模型(1)(2),然后在使用PID控制的基础上经过模糊控制修正PID的比例、积分和微分三个参数,这样就可以保证系统在不同状况下都处于最优状态,从而提高了系统控制精度、有较好的实时性与鲁棒性。如图2所示为设计的液压位置伺服模糊PID控制系统方框图。

图2 液压位置伺服模糊PID控制系统

液压位置伺服系统的模糊PID控制研究

时间:2009-12-02 10:15:25 来源:自动化博览作者:许建肖维荣

3. 模糊PID控制

本文使用模糊控制方法实现对PID参数的在线调整,模糊控制的输入为误差和误差变化率,输出为PID三个参数的调整量△kp 、△ki和△kd。根据液压位置伺服系统设定的基本论域为[0.6,0.6], 的基本论域为[0.3,0.3],其对应模糊论域均取为

{-3,-2,-1,0,1,2,3},故量化因子现取误差e和误差变化率ec的模糊集E, EC={NB,NM,NS,Z,PB,PM,PB},且其隶属度函数均如图3所示:

图3 误差的隶数函数

模糊控制的输出△kp 、△ki和△kd的模糊论域分别为{-3,-2,-1,0,1,2,3}、{-0.06,

-0.04,-0.02,0,0.02,0.04,0.06}、

{-0.3,-0.2,-0.1,0,0.1,0.2,0.3},并且其模糊集均为

{NB,NM,NS,Z,PB,PM,PB}。三个输出变量的隶属函数同输入误差和误差变化率相同,都用三角函数,在此不一一列出。

在对精确量进行模糊化后,根据各量的模糊集和隶属函数,采用MAX-MIN模糊推理可以分别推导出模糊输出变量△kp 、△ki 和△kd的模糊规则表,其中很重要的一点是必须根据理论知识和工程经验考虑PID三个参数的作用及相互间的关系。

根据表1、2、3的模糊规则推理出的模糊输出量,通过反模糊化即可得到PID三参数的实际精确量,从而实现对PID的在线调整。为实现更好的模糊控制效果,本文使用取中位数的反模糊化方法。

4. MATLAB仿真结果

选取DYC1-40L型电液伺服阀,其参数为:q n=40L/min,实际供油压力

。液压缸参数为:

。在Matlab中利用Simulink建立PID控制与模糊PID控制的阶越响应仿真模型,并加入幅值为1的白噪声干扰来仿真模型的时变。仿真波形如下图:

5.

结论

仿真结果显示,PID设定参数相同的情况下,加入模糊控制实时修正PID的参数,可以更好的控制被控对象。由图4、图5可以看到,PID参数一旦固定,在时变状况下的适用性受到很大制约,而模糊PID通过在线自调整参数,使控制性能一直保持在最优状态下,有更好的控制精度和鲁棒性。此外,在调整模糊控制参数时,应特别重视量化因子与比例因子的作用。

模糊控制理论在自动引导车智能导航中的应用 中英文翻译

Fuzzy Logic Based Autonomous Skid Steering Vehicle Navigation L.Doitsidis,K.P.Valavanis,N.C.Tsourveloudis Technical University of Crete Department of Production Engineering and Management Chania,Crete,Greece GR-73100 {Idoitsidis ,kimonv,nikost}@dpem.tuc.gr Abstract-A two-layer fuzzy logic controller has been designed for 2-D autonomous Navigation of a skid steering vehicle in an obstacle filled environment. The first layer of the Fuzzy controller provides a model for multiple sonar sensor input fusion and it is composed of four individual controllers, each calculating a collision possibility in front, back, left and right directions of movement. The second layer consists of the main controller that performs real-time collision avoidance while calculating the updated course to be applicability and implementation is demonstrated through experimental results and case studies performed o a real mobile robot. Keywords - Skid steering, mobile robots, fuzzy navigation. Ⅰ.INTRODUCTION The exist several proposed solutions to the problem of autonomous mobile robot navigation in 2-D uncertain environments that are based on fuzzy logic[1],[2],evolutionary algorithms [3],as well as methods combining fuzzy logic with genetic algorithms[4] and fuzzy logic with electrostatic potential fields[5]. The paper is the outgrowth of recently published results [9],[10],but it studies 2-D environments navigation and collision avoidance of a skid steering vehicle. Skid steering vehicles are compact, light, require few parts to assemble and exhibit agility from point turning to line driving using only the motions, components, and swept volume needed for straight line driving. Skid steering vehicle motion differs from explicit steering vehicle motion in the way the skid steering vehicle turns. The wheels rotation is limited around one axis and the back of steering wheel results in navigation determined by the speed change in either side of the skid steering vehicle. Same speed in either side results in a straight-line motion. Explicit steering vehicles turn differently since the wheels are moving around two axes. The geometric configuration of a skid steering vehicle in the X-Y plane is shown in Fig1,while a t is the heading angle, W is the robot width, θthe sense of rotation and S1, S2 are the speeds in the either side of the robot. The derived and implemented planner a two-layer fuzzy logic based controller that provides purely” reactive behavior” of the vehicle moving in a 2-D obstacle filled environment, with inputs readings from a ring of 24 sonar sensors and angle errors, and outputs the updated rotational and translational velocities of the vehicle. Ⅱ.DESIGN OF THE FUZZY LOGIC CONTROL SYSTEM

基于模糊控制的移动机器人的外文翻译

1998年的IEEE 国际会议上机器人及自动化 Leuven ,比利时1998年5月 一种实用的办法--带拖车移动机器人的反馈控制 F. Lamiraux and J.P. Laumond 拉斯,法国国家科学研究中心 法国图卢兹 {florent ,jpl}@laas.fr 摘要 本文提出了一种有效的方法来控制带拖车移动机器人。轨迹跟踪和路径跟踪这两个问题已经得到解决。接下来的问题是解决迭代轨迹跟踪。并且把扰动考虑到路径跟踪内。移动机器人Hilare的实验结果说明了我们方法的有效性。 1引言 过去的8年,人们对非完整系统的运动控制做了大量的工作。布洛基[2]提出了关于这种系统的一项具有挑战性的任务,配置的稳定性,证明它不能由一个简单的连续状态反馈。作为替代办法随时间变化的反馈[10,4,11,13,14,15,18]或间断反馈[3]也随之被提出。从[5]移动机器人的运动控制的一项调查可以看到。另一方面,非完整系统的轨迹跟踪不符合布洛基的条件,从而使其这一个任务更为轻松。许多著作也已经给出了移动机器人的特殊情况的这一问题[6,7,8,12,16]。 所有这些控制律都是工作在相同的假设下:系统的演变是完全已知和没有扰动使得系统偏离其轨迹。很少有文章在处理移动机器人的控制时考虑到扰动的运动学方程。但是[1]提出了一种有关稳定汽车的配置,有效的矢量控制扰动领域,并且建立在迭代轨迹跟踪的基础上。 存在的障碍使得达到规定路径的任务变得更加困难,因此在执行任务的任何动作之前都需要有一个路径规划。 在本文中,我们在迭代轨迹跟踪的基础上提出了一个健全的方案,使得带拖车的

机器人按照规定路径行走。该轨迹计算由规划的议案所描述[17],从而避免已经提交了输入的障碍物。在下面,我们将不会给出任何有关规划的发展,我们提及这个参考的细节。而且,我们认为,在某一特定轨迹的执行屈服于扰动。我们选择的这些扰动模型是非常简单,非常一般。它存在一些共同点[1]。 本文安排如下:第2节介绍我们的实验系统Hilare及其拖车:两个连接系统将被视为(图1)。第3节处理控制方案及分析的稳定性和鲁棒性。在第4节,我们介绍本实验结果。 图1带拖车的Hilare 2 系统描述 Hilare是一个有两个驱动轮的移动机器人。拖车是被挂在这个机器人上的,确定了两个不同的系统取决于连接设备:在系统A的拖车拴在机器人的车轮轴中心线上方(图1 ,顶端),而对系统B是栓在机器人的车轮轴中心线的后面(图1 ,底部)。A l= 0 。这个系统不过单从控制的角度来看,需要更对B来说是一种特殊情况,其中 r 多的复杂的计算。出于这个原因,我们分开处理挂接系统。两个马达能够控制机器人的线速度和角速度(v r,r ω)。除了这些速度之外,还由传感器测量,而机器人和拖车之间的角度?,由光学编码器给出。机器人的位置和方向(x r,y r,rθ)通过整合前的速度被计算。有了这些批注,控制系统B是:

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

速度控制系统设计外文翻译

译文 流体传动及控制技术已经成为工业自动化的重要技术,是机电一体化技术的核心组成之一。而电液比例控制是该门技术中最具生命力的一个分支。比例元件对介质清洁度要求不高,价廉,所提供的静、动态响应能够满足大部分工业领域的使用要求,在某些方面已经毫不逊色于伺服阀。比例控制技术具有广阔的工业应用前景。但目前在实际工程应用中使用电液比例阀构建闭环控制系统的还不多,其设计理论不够完善,有待进一步的探索,因此,对这种比例闭环控制系统的研究有重要的理论价值和实践意义。本论文以铜电解自动生产线中的主要设备——铣耳机作为研究对象,在分析铣耳机组各构成部件的基础上,首先重点分析了铣耳机的关键零件——铣刀的几何参数、结构及切削性能,并进行了实验。用电液比例方向节流阀、减压阀、直流直线测速传感器等元件设计了电液比例闭环速度控制系统,对铣耳机纵向进给装置的速度进行控制。论文对多个液压阀的复合作用作了理论上的深入分析,着重建立了带压差补偿型的电液比例闭环速度控制系统的数学模型,利用计算机工程软件,研究分析了系统及各个组成环节的静、动态性能,设计了合理的校正器,使设计系统性能更好地满足实际生产需要 水池拖车是做船舶性能试验的基本设备,其作用是拖曳船模或其他模型在试验水池中作匀速运动,以测量速度稳定后的船舶性能相关参数,达到预报和验证船型设计优劣的目的。由于拖车稳速精度直接影响到模型运动速度和试验结果的精度,因而必须配有高精度和抗扰性能良好的车速控制系统,以保证拖车运动的稳速精度。本文完成了对试验水池拖车全数字直流调速控制系统的设计和实现。本文对试验水池拖车工作原理进行了详细的介绍和分析,结合该控制系统性能指标要求,确定采用四台直流电机作为四台车轮的驱动电机。设计了电流环、转速环双闭环的直流调速控制方案,并且采用转矩主从控制模式有效的解决了拖车上四台直流驱动电机理论上的速度同步和负载平衡等问题。由于拖车要经常在轨道上做反复运动,拖动系统必须要采用可逆调速系统,论文中重点研究了逻辑无环流可逆调速系统。大型直流电机调速系统一般采用晶闸管整流技术来实现,本文给出了晶闸管整流装置和直流电机的数学模型,根据此模型分别完成了电流坏和转速环的设计和分析验证。针对该系统中的非线性、时变性和外界扰动等因素,本文将模糊控制和PI控制相结合,设计了模糊自整定PI控制器,并给出了模糊控制的查询表。本文在系统基本构成及工程实现中,介绍了西门子公司生产的SIMOREGDC Master 6RA70全数字直流调速装置,并设计了该调速装置的启动操作步骤及参数设置。完成了该系统的远程监控功能设计,大大方便和简化了对试验水池拖车的控制。对全数字直流调速控制系统进行了EMC设计,提高了系统的抗干扰能力。本文最后通过数字仿真得到了该系统在常规PI控制器和模糊自整定PI控制器下的控制效果,并给出了系统在现场调试运行时的试验结果波形。经过一段时间的试运行工作证明该系统工作良好,达到了预期的设计目的。 提升装置在工业中应用极为普遍,其动力机构多采用电液比例阀或电液伺服阀控制液压马达或液压缸,以阀控马达或阀控缸来实现上升、下降以及速度控制。电液比例控制和电液伺服控制投资成本较高,维护要求高,且提升过程中存在速度误差及抖动现象,影响了正常生产。为满足生产要求,提高生产效率,需要研究一种新的控制方法来解决这些不足。随着科学技术的飞速发展,计算机技术在液压领域中的应用促进了电液数字控制技术的产生和发展,也使液压元件的数字化成为液压技术发展的必然趋势。本文以铅电解残阳极洗涤生产线中的提升装置为研究

模糊控制理论外文文献翻译

模糊控制理论 概述 模糊逻辑广泛适用于机械控制。这个词本身激发一个一定的怀疑,试探相当于“仓促的逻辑”或“虚假的逻辑”,但“模糊”不是指一个部分缺乏严格性的方法,而这样的事实,即逻辑涉及能处理的概念,不能被表达为“对”或“否”,而是因为“部分真实”。虽然遗传算法和神经网络可以执行一样模糊逻辑在很多情况下,模糊逻辑的优点是解决这个问题的方法,能够被铸造方面接线员能了解,以便他们的经验,可用于设计的控制器。这让它更容易完成机械化已成功由人执行。 历史以及应用 模糊逻辑首先被提出是有Lotfi在加州大学伯克利分校在1965年的一篇论文。他阐述了他的观点在1973年的一篇论文的概念,介绍了语言变量”,在这篇文章中相当于一个变量定义为一个模糊集合。其他研究打乱了,第二次工业应用中,水泥窑建在丹麦,即将到来的在线1975。 模糊系统在很大程度上在美国被忽略了,因为他们更多关注的是人工智能,一个被过分吹嘘的领域,尤其是在1980年中期年代,导致在诚信缺失的商业领域。 然而日本人对这个却没有偏见和忽略,模糊系统引发日立的Seiji Yasunobu和Soji Yasunobu Miyamoto的兴趣。,他于1985年的模拟,证明了模糊控制系统对仙台铁路的控制的优越性。他们的想法是被接受了,并将模糊系统用来控制加速、制动、和停车,当线于1987年开业。 1987年另一项促进模糊系统的兴趣。在一个国际会议在东京的模糊研究那一年,Yamakawa论证<使用模糊控制,通过一系列简单的专用模糊逻辑芯片,在一个“倒立摆“实验。这是一个经典的控制问题,在这一过程中,车辆努力保持杆安装在顶部用铰链正直来回移动。 这次展示给观察者家们留下了深刻的印象,以及后来的实验,他登上一Yamakawa酒杯包含水或甚至一只活老鼠的顶部的钟摆。该系统在两种情况下,保持稳定。Yamakawa最终继续组织自己的fuzzy-systems研究实验室帮助利用自己的专利在田地里的时候。

伺服三环结构框图及其控制模式

伺服三环结构框图及其控制模式 1、伺服三环框图 2、C为控制器,A+B是驱动器,伺服电机为执行原件,编码器为检测反馈元件; 3、A框到B框的蓝色信号线里,就是调节控制频率、电压的信号,速度环、电流环的调解器都是频率f 电压U调节器; 4、C框为控制器,相当PLC的作用,通过计数器知道伺服当前位置,并根据当期位置输出:启动、减速、匀速、减速、停车等指令; 5、A+B就是驱动器,相当变频器,通过调节频率f电压U,控制伺服的速度、电流和启动停止! 6、伺服电源线上的电流互感器表示电流检测原件,将检测结果回馈给电流环的输入端与给定电流比较,构成电流闭环; 7、编码器检测的脉冲频率数的微分,就是检测脉冲的频率,这个频率就是电机的转速的大小,反馈到速度环的输入端与给定速度比较,构成速度环; 8、编码器检测的脉冲数,表示电机的位移量,与给定指令脉冲数比较,确定判断伺服当前位置,相当于PLC里一个由计数器构成的逻辑判断功能,他不是一个自动控制PID闭环;

1、运动控制的三环; 2、变频器,即驱动器,有电流环和速度环; 3、控制器,即PLC,由计数器构成的位置环,该环不是PID闭环! 4、所谓速度环、电流环就是伺服电机调速电路的速度环、电流环,速度环控制期间,电机为硬特性;电流环控制期间电机呈软铁性! 5、所有伺服,伺服电机的控制就是一个“电机调速电路”,可以是交流电机的变频调速电路,也可以是直流电机的调速电路; 6、那么电机的启动、加速、匀速、减速、停车指令,由位置环产生,或者说由PLC构成的控制器产生; 1、这个图中,是说伺服指令脉冲数(位置)、指令脉冲频率(速度)给定的方式; 2、举例说电子凸轮给定方式、位置给定方式等; 3、所有伺服,不管他是什么型号,什么厂家、国家,伺服的速度环、电流环都在伺服电机的调速电路上! 4、如果是交流电机,肯定是在变频调速电路上!如果是直流电机肯定在直流调压调速电路上!

模糊控制外文翻译

基于模糊控制的matlab simulink仿真 摘要:为提高工业上所需温度的控制精度,在本文中详细介绍如何设计模糊控制器,以及如何在在MA TLAB中建立模型,并使用模糊工具箱和SIMULINK在Matlab中实现参数的计算机模拟控制系统。在该系统中,通过采用模糊控制算法对温度实现了很好的控制,并且该系统正处于实际工业电阻炉温度控制的应用和试行阶段,也达到了满意的控制效果。实践表明,模糊控制方法提高了控制的实时性,稳定性和精确度,并且实现了操作过程的简化,对于工程实际应用具有较强的借鉴意义。 关键词:模糊控制,SIMULINK,MATLAB,仿真 1介绍系统 MATLAB / Simulink是一种世界通用的科学计算和仿真的语言, Simulink则是一个以系统级仿真环境为基础的系统框图和程序框图,这个环境提供了很多的专业模块库:如CDMA参考仿真、数字信号处理器(DSP)模块库等。它是一个动态的系统建模,仿真和仿真结果具有以下特点: (1)调用代理模块框图是连接到系统的工程,使建模和仿真系统的框图,更全面,研究信息系统具有高的开放性。 (2)使用户可以自由修改模块的参数,并可以无限的使用所有的MATLAB分析工具,因此MATLAB具有高互动性。 (3)仿真结果可以几乎跟在实验室里显示的图形或数据是一样的。 模糊逻辑控制、自动化的发展和它们未来的发展策略,是一种智能控制系统,已经受到了极大的关注。它使用语言规则和模糊集进行模糊推理。为了解决复杂的系统,包括非线性、不确定性和精确的数学模型难以建立的问题,就可以采用模糊控制技术,目前,此技术被广泛使用。温度控制通常采用传统的PID控制算法,但是控制效果较不明显的。当情况的变化时将改变系统参数,PID参数也需要及时调整,否则会产生更糟糕的动态特性,使控制精度下降。当温度偏差太大时,容易导致积分饱和的现象,导致控制时间太久和其他的问题。在同一时间,模糊工具箱和SIMULINK在用MATLAB来实现参数控制系统的计算机仿真技术,能提高效率和系统设计的精度。 整个系统以AT89S51单片机为核心、以温度数据采集电路,过零检测和触发电路、键盘和显示电路、记忆电路(CF卡)、声光报警电路、复位电路等组成硬件部分,还有相应的控制软件等构成了完整电阻炉温度控制系统,其系统框图如图1-1所示。

常规PID和模糊PID算法的分析比较外文文献翻译、中英文翻译、外文翻译

常规PID和模糊PID算法的分析比较 摘要:模糊PID控制器实际上跟传统的PID控制器有很大联系。区别在于传统的控制器的控制前提必须是熟悉控制对象的模型结构,而模糊控制器因为它的非线性特性,所以控制性能优于传统PID控制器。对于时变系统,如果能够很好地采用模糊控制器进行调节,其控制结果的稳定性和活力性都会有改善。但是,如果调节效果不好,执行器会因为周期振荡影响使用寿命,特别是调节器是阀门的场合,就必须考虑这个问题。为了解决这个问题,出现了很多模糊控制的分析方法。本文提出的方法采用一个固定的初始域,这样相当程度上简化了模糊控制的设定问题以及实现。文中分析了振荡的原因并分析如何抑制这种振荡的各种方法,最后,还给出一种方案,通过减少隶属函数的数量以及改善解模糊化的方法缩短控制信号计算时间,有效的改善了控制的实时性。 1 引言 模糊控制器的一个主要缺陷就是调整的参数太多。特别是参数设定的时候,因为没有相关的书参考,所以它的给定非常困难。众所周知,优化方法的收敛性跟它的初始化设定有很大关联,如果模糊控制器的初始域是固定的,那么它的控制就明显的简化了。而且我们要控制的参数大多有其实际的物理意义,所以模糊控制器完全可以利用PID算法的控制规律进行近似的调整。也就是说最简单的模糊PID控制器就是同时采用几种基本模糊控制算法(P+I+D或者PI+D),控制过程中它会根据控制要求,做出适当的选择,保证在处理跟踪以抗阶跃干扰问题上,其控制性能接近于任何一种PID控制。假设模糊集的初始域是对称的,两个调节器的参数采用Ziegler-Nichols方法。 为了改善上述设计的模糊控制器,我们有必要考模糊控制器的参数问题,有两种方法可以采纳,一种采用手动的方法改变,另一种就是采用一些相关的优化算法。其中遗传算法就是一种。控制器采用的参数不同,其收敛的优化值也会不一样。这些参数包括模糊集的分布,模糊集的个数,映射规则,基本模糊控制器的参数和不同的算法组合等。要注意的是在优化前必须选定模糊推理及解模糊的方法。很明显,优化过程很耗时,更有甚者,有些优化方法要已知系统的精确模型,但是实际过程中难以得到系统的精确模型,所以在大多数情况下,这些优化算法不能直接应用在实际过程。也就是说模型不精确直接影响优化成败。模糊控制的主要思想就是针对那些传递函数未知的或者结构难以辨识的系统进行控制,这也是模糊控制的性能为什么优于传统方法的原因。同时,把模糊控制和传统的PID控制算法结合起来,更能体现这种算法的优点,因为它大大简化实际过程的调整。 图1 隶属函数图图2映射规则图参数集的启发式优化法也适用于模糊PI控制器,它采用固定的定义域,其参数的选取和

运动伺服三环控制系统

伺服电机三环控制系统 运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID 调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环 的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度 环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 谈谈PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有

液压伺服系统(DOC)

液压伺服系统 液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 一、液压伺服系统的基本组成 液压伺服系统无论多么复杂,都是由一些基本元件组成的。如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。 (1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。外界能源可以是机械的、电气的、液压的或它们的组合形式。 (2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。它具有放大、比较等几种功能,如滑阀等。 (3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。 (4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。 (5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。 二、液压伺服系统的分类 液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。 电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 如图是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作用是将小功率的电信号转换为阀的运动,以控制流向液压动力机构的流量和压力。因此,电液伺服阀既是电液转换元件又是功率放大元件,它的性能对系统的特性影响很大,是电液伺服系统中的关键元件。液压动力机构由液压控制元件、执行机构和控制对象组成。液压控制元件常采用液压控制阀或伺服变量泵。常用的液压执行机构有液压缸和液压马达。液压动力机构的动态特性在很大程度上决定了电液伺服系统的性能。 为改善系统性能,电液伺服系统常采用串联滞后校正来提高低频增益,降低系统的稳态误差。此外,采用加速度或压力负反馈校正则是提高阻尼性能而又不降低效率的有效办法。

LED点阵显示屏中英文对照外文翻译文献

LED点阵显示屏中英文对照外文翻译文献(文档含英文原文和中文翻译)

译文: 基于AT89C52单片机的LED显示屏控制系统的设计 摘要这篇文章介绍了基于AT89C52单片机的LED点阵显示屏的软件和硬件开发过程。使用一个简单的外部电路来控制像素是32×192的显示屏。用动态扫描,显示屏可以显示6个32×32的点阵汉字。显示屏也可以分为两个小的显示屏,它可以显示24个像素是16×16的汉字。可以通过修改代码来改变显示的内容和字符的滚动功能,而且可以根据需要调整字符的滚速或者暂停滚动。中文字符代码存储在外部存储寄存器中,内存的大小由需要显示的汉字个数决定。这种显示屏具有体积小,硬件和电路结构简单的优点。 关键词发光二极管汉字显示AT89C52单片机 1.导言 随着LED显示屏不断改善和美化人们的生活环境,LED显示屏已经成为城市明亮化,现代化、信息化的一项重要标志。在大的购物商场,火车站,码头,地铁,大量的管理窗口等,我们经常可以看到LED灯光。LED商业已成为一个快速增长的新产业,拥有巨大的市场空间和光明前景。文章,图片,动画和视频通过LED发光显示,并且内容可以变换。一些显示设备的模块化结构,通常有显示模块,控制系统和电源系统。显示模块是由LED管组成的点阵结构,进行发光显示,可以显示文章,图片,视频等。控制系统可以控制区域里LED的亮灭,电源系统为显示屏提供电压和电流。用电脑,取出字符字节,传送到微控制器,然后送到LED点阵显示屏上进行显示,很多室内和室外显示屏都是通过这个方法进行显示的。按显示的内容区分,LED点阵屏的显示可分为图形显示、图片显示和视频显示三个部分。与图片显示屏比较,不管是单色或者彩色的图形显示屏,都没有灰色色差,所以,图形显示不能反映丰富的色彩。视频显示屏不但可以显示运动、清楚和全彩的图像,也可以显示电视和计算机信号。虽然三者

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要 求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。 如果上位控制器(在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的四种方案:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。 随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。)有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的

模糊控制 英文文献

CONTROL, PID CONTROL, AND ADVANCED FUZZY CONTROL FOR SIMULATING A NUCLEAR REACTOR OPERATION XIAOZHONG LI and DA RUAN* elgian Nuclear Research Centre (SCKoCEN Boeretang 200, 8-2400 Mol, Belgium (Received 15 March 1999) Based on the background of fuzzy control applications to the first nuclear reactor in Belgium (BRI) at the Belgian Nuclear Research Centre (SCK.CEN), we have made a real fuzzy logic control demo model. The demo model is suitable for us to test and com- pare some new algorithms of fuzzy control and intelligent systems, which is advantageous because it is always difficult and time-consuming, due to safety aspects, to do all experiments in a real nuclear environment. In this paper, we first report briefly on the construction of the demo model, and then introduce the results of a fuzzy control, a proportional-integral-derivative (PID) control and an advanced fuzzy control, in which the advanced fuzzy control is a fuzzy control with an adaptive function that can Self-regulate the fuzzy control rules. Afterwards, we present a comparative study of those three methods. The results have shown that fuzzy control has more advantages in terms of flexibility, robustness, and easily updated facilities with respect to the PID control of the demo model, but that PID control has much higher regulation resolution due to its integration term. The adaptive fuzzy control can dynamically adjust the rule base, therefore it is more robust and suitable to those very uncertain occasions. Keywords: Fuzzy control; PID control; fuzzy adaptive control; nuclear reactor I INTRODUCTION Today the techniques of fuzzy logic control are very mature in most engineering areas, but not in nuclear engineering, though some research has been done (Bernard, 1988; Hah and Lee, 1994; Lin et al. 1997; Matsuoka, 1990). The main reason is that it is impossible to do experiments in nuclear engineering as easily as in other industrial areas. For example, a reactor is usually not available to any individual. Even for specialists in nuclear engineering, an official licence for doing any on-line test is necessary. That is why we are still

三环控制原理

三环控制原理 1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。。。1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。。。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。。。 2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,。。。这个环节最大的好处就是被调量最后是没有残差的。。。 3、PI(比例积分)就是综合P和I的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。。。 4、单独的D(微分)就是根据差值的方向和大小进行调节的,调节器的输出与差值对于时间的导数成正比,微分环节只能起到辅助的调节作用,它可以与其他调节结合成PD和PID调节。。。它的好处是可以根据被调节量(差值)的变化速度来进行调节,而不要等到出现了很大的偏差后才开始动作,其实就是赋予了调节器以某种程度上的预见性,可以增加系统对微小变化的响应特性。。。 5、PID综合作用可以使系统更加准确稳定的达到控制的期望。。。 伺服的电流环的PID常数一般都是在驱动器内部设定好的,操作使用者不需要更改。。。 速度环主要进行PI(比例和积分),比例就是增益,所以我们要对速度增益和速度积分时间常数进行合适的调节才能达到理想效果。。。 位置环主要进行P(比例)调节。。。对此我们只要设定位置环的比例增益就好了。。。 位置环、速度环的参数调节没有什么固定的数值,要根据外部负载的机械传动连接方式、负载的运动方式、负载惯量、对速度、加速度要求以及电机本身的转子惯量和输出惯量等等很多条件来决定,调节的简单方法是在根据外部负载的情况进行大体经验的范围内将增益参数从小往大调,积分时间常数从大往小调,以不出现震动超调的稳态值为最佳值进行设定。。。 当进行位置模式需要调节位置环时,最好先调节速度环(此时位置环的比例增益设定在经验值的最小值),调节速度环稳定后,在调节位置环增益,适量逐步增加,位置环的响应最好比速度环慢一点,不然也容易出现速度震荡。。。

相关文档
最新文档