树形分子改性纳米SiO_2及其在分离蛋白中的应用_曹淑超

树形分子改性纳米SiO_2及其在分离蛋白中的应用_曹淑超
树形分子改性纳米SiO_2及其在分离蛋白中的应用_曹淑超

 第22卷第5期高分子材料科学与工程Vo l.22,N o.5 2006年9月POLYM ER M AT ERIALS SCIENCE AND EN GINEERING Sept.2006树形分子改性纳米SiO2及其在分离蛋白中的应用X

曹淑超,伍 林,毛瑞明,易德莲,秦晓蓉

(武汉科技大学应用化学研究所,湖北武汉430081)

摘要:介绍了在纳米SiO2表面导入氨基作为引发剂,重复进行M ichael加成反应和酰胺化反应,实现了用树形分子改性纳米SiO2的目的。讨论了接枝代数等因素对改性效果的影响,并用红外光谱、热分析、酸碱滴定分析等手段对纳米SiO2的改性效果进行了表征。实验结果表明,随着接枝代数的增多,氨基接枝率增高,改性效果越好。最后采用聚乙二醇-硫酸铵双水相体系,运用改性后的纳米SiO2分离纯化血红蛋白,考察了聚乙二醇浓度、硫酸铵浓度、离子强度、溶液的pH值等因素对蛋白分离纯化的影响,探索出较好的分离纯化条件。

关键词:纳米二氧化硅;表面改性;树形大分子;分离;蛋白

中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2006)05-0225-04

纳米SiO2因在有机相中难分散、易团聚,故其应用受到了限制。而经过改性的纳米SiO2提高了其在聚合物基体中的分散性和相容性,可广泛应用于酶和蛋白质的固定、异相催化等领域[1~3]。

树形分子是一类具有超支化结构的高分子材料,其大小、形状可控,内部有空腔,表面官能团可被修饰。Tsubokaw a等[4]用发散法将聚酰胺类树枝状高分子(PAM AM)接枝到纳米SiO2的表面,经改性后的产品在甲醇和四氢呋喃(T HF)溶液中的分散稳定性大大提高;Alper 研究表明,PA MAM改性的SiO2可以进一步络合铑或钯作为羰基化反应和Heck反应的催化剂;Sakai对PAM AM接枝改性后的SiO2用于高效液相色谱分离的可能性进行了研究。

本实验用树形分子对纳米SiO2进行改性,结果表明:经过改性后的纳米SiO2可以更好地结合酶,使酶传感器的性能得到显著提高;尤其是将其用于分离纯化蛋白,具有相当明显的分离效果,这一点在文献中鲜有报道。1 实验部分

1.1 试剂与仪器

试剂:纳米SiO2(华东理工大学提供)、C-氨基丙基三乙氧基硅烷(APES)、丙烯酸甲酯、乙二胺、甲苯、四氢呋喃、无水甲醇,所用试剂均为分析纯;二次蒸馏水。

仪器:85-1型恒温磁力搅拌器(常州国华电器有限公司产品)、TDL-4型台式离心机(上海安亭科学仪器厂产品)、DZF-6050型真空干燥箱(上海精宏实验设备有限公司产品)、pHS-25型酸度计(上海伟业仪器厂产品)、ST A449/ 6/G型综合热分析仪(德国NETZSCH)、VER-T EX70型傅立叶红外光谱仪(德国Bruker公司)。

1.2 实验步骤

纳米SiO2表面导入氨基及接入树枝状大分子的实验流程见下页。

红外光谱分析样品采用KBr压片,扫描速度3cm-1/s。SiO2上的氨基含量和接枝率的测定方法见文献[3,5~7]。

X收稿日期:2005-07-05;修订日期:2005-10-21

 基金项目:湖北省自然科学基金(2003ABA075)和湖北省科技攻关基金(2003AA303B01)资助项目 联系人:伍 林,主要从事纳米材料领域的研究,E-mail:w ulin65@https://www.360docs.net/doc/a24910461.html,

2 结果与讨论

2.1 经APES 初步改性的纳米SiO 2的红外光谱分析

经APES 初步改性的纳米SiO 2的红外光谱如Fig .1所示。由Fig .1可以看出,在3743cm -1处有一个新的吸收峰,这是氨基的特征吸收波长,在1560cm -1处再次证明了氨基的存在;在2935cm -1处发现有亚甲基的吸收峰,从而证明了APES 接枝到了纳米SiO 2表面。导入到SiO 2表面的氨基的数量,由处理SiO 2的APES 浓度来控制。

2.2 经PAMAM 接枝的纳米SiO 2的红外光谱分析

经PAM AM 接枝后的纳米SiO 2,当树形分子最外层为-NHCH 2CH 2NH 2时称为整代(n .0G ),当最外层为-COOCH 3时称为半代(n.5G)

Fig .1 IR spectra of (a )APES -treated ,and (b )un -treated nano -silica

经0.5G 、1.5G 和3.5G 的PAM AM 树形分子接枝后的纳米SiO 2的红外光谱图见Fig .2。由

Fig .2可以看出,在2954cm -1

处有一吸收峰,这是-CH 3的伸缩振动峰;2844cm -1处为-

CH 2的伸缩振动峰;1735cm -1

处为酯键的吸收峰。显然这些吸收峰随接枝代数的增加而增强。在

1644cm -1

处的吸收峰证明反应物中存在-N H-吸收峰,且这些吸收峰随代数的增加而增强,说明生成物中含有杂质M A 和EDA 。

Fig .2 IR s pectra of nano -s ilica engrafted by PAMAM

of half generation

(a):0.5G PAM AM -engrafted nano-silica;(b):1.5G PAM AM -engrafted nano -silica ;(c ): 3.5G PAM AM -en grafted nano-silica.

Fig .3 IR spectra of nano -silica engrafted by PAMAM

of whole generation

(a):1.0G PAM AM -eng rafted nano-silica;(b):3.0G PAM AM -engrafted n ano -s ilica ;(c ): 4.0G PAM AM -engr afted nano-silica.

经1.0G 、3.0G 和4.0G PAM AM 树形分子接枝后的SiO 2的红外光谱图见Fig.3。图中2943cm -1

和1473cm -1

处为-CH 2吸收峰(略有蓝移现象),这些峰随着接枝代数的增加而增强。1644cm -1处为-NH 2的吸收峰,2866cm -1处为-CH 3的对称伸缩振动吸收峰。这些吸收峰随着接枝代数的增加而增强,说明随着接枝代数的增加,树形分子的支链越多,里面包裹的

226

高分子材料科学与工程2006年 

杂质也越多。

2.3 改性纳米SiO 2表面氨基含量的测定结果

经APES 初步改性和第四代接枝纳米SiO 2

的表面氨基含量的测定结果见Fig.4和Fig.5。由Fig .4和Fig .5及公式[8],可以计算出改性后的纳米SiO 2表面的氨基数,结果如Tab.1

Tab .1 Content of amino groups of engrafted nano -silica

Resu ltan t type Primary amine groups content

(mmol /g )

Tertiar y amine grou ps conten t

(mm ol /g )

APES -engrafted nan o-s ilica 4.504.0GPAM AM -en grafted nano-silica

2.44

7.23

Tab .2 Graf ting percentage of nano -silica engraf ted

Grafting type

KH5500.5G 1.0G 1.5G 4.0G Overall grafting percen tage (%) 5.86

15.1131.96131.911075.09Net g rafting percentage (%)

9.25

26.1

126.05

1069.

23

Fig .6 T G curve of nano -silica engrafted

(a ):APES -treated nan o -silica ;(b ):0.5G PA-M AM -engrafted nano-silica;(c): 1.0G PA-M AM -engrafted nano-silica;(d ): 1.5G PA-M AM -engrafted nano -silica ;(e ): 4.0G PA-

M AM -en grafted nano-silica.

由Tab .1可以看出,PAM AM 第四代改性纳米SiO 2的伯胺量比APES 初步改性纳米SiO 2

的伯胺量少,是因为随着接枝代数的增多,氨基接枝率增高,伯胺逐渐转化为叔胺,表明改性效

果越好。

2.4 接枝率的测定结果

经过APES 初步改性纳米SiO 2、0.5G 、1.0G 、1.5G 和4.0G 的纳米SiO 2得到的热重分析结果如Fig .6所示。

纳米SiO 2的总接枝率和净接枝率,由公式[4]计算列于T ab .2。由Tab .2可以看出,第四代的接枝率为1069.23%,高出文献[4]报道的理论接枝率,其中有关原因,结合下一步的实验

研究,另文论述。

2.5 改性纳米SiO 2应用于分离纯化血红蛋白

采用聚乙二醇-硫酸铵双水相体系,将改性后的纳米SiO 2进行了分离纯化血红蛋白的研究,实验对聚乙二醇浓度、硫酸铵浓度、离子强度、溶液的pH 值等因素进行考察。探索出各因素对血红蛋白分离纯化的影响,得到较好的分离纯化条件。实验表明:室温下对血红蛋白的提取率可达70%。达到了预期的分离纯化效果。具

227

 第5期

曹淑超等:树形分子改性纳米S iO 2及其在分离蛋白中的应用

体的实验分析结果和优化条件,另文详述。

3 结论

实验用树形大分子对纳米SiO2进行表面改性,改性结果用红外光谱、热分析仪、酸碱滴定等手段进行分析。树形分子改性纳米SiO2,接枝代数越多,氨基接枝率越高,改性效果越好。用改性后的试样分离纯化血红蛋白,达到较好的分离纯化效果,该分离手段有望应用于其它蛋白的分离纯化。

参考文献:

[1] 郭朝霞(GUO Zh ang-x ia),李莹(LI Ying),于建(YU

Jian).高等学校化学学报(Chemical Journ al of C hinese

Universities),2003,6(24):1139~1141.

[2] 谢海安(XIE Hai-an),戴宏程(DAI Hong-chen g).湖

北化工(C hemical Indus try of Hubei),2001,(5):23~

25.[3] 于欣伟(YU Xin-w ei),陈姚(CHEN Yao).广州大学

学报(自然科学版)(J ou rnal of Guangzhou University (Natural Science Edition)),2002,6:12~16.

[4] Ts ubokaw a N,Ichioka H,Satoh T,et al.Reactive&

Fun ctional Polym ers.1998,37:75~82.

[5] 李莹(LI Yin g),于建(YU J ian),郭朝霞(GUO Zao-

x ia).塑料工业(China Plastics Industry),2004,8

(32):23~26.

[6] 郭今心(GUO J in-xing),孟昭力(M ENG Zh ao-li),王

慧才(W ANG Hui-cai).山东医科大学学报(Acta A-cademiae M edicinae Shandong),1999,4(37):346~350.

[7] 蒲陆梅(PU Lu-mei),莫尊理(M O Zh un-li),高锦章

(GAP Jing-zh ang),等.甘肃农业大学学报(Journ al of

Gansu Ag ricultu ral Un iversity),2000,3(35):298~300.

[8] 崔艳霞(CUI Yan-xia).北京理工大学学位论文(De-

gree T hes is of Beijing Ins titu te of Tech nology),2003.

Modification of Silicon Dioxide with Dendrimer and

Application to Isolation-Purification Albumen

CA O Shu-chao,WU Lin,M AO Rui-ming,YI De-lian,QIN Xiao-rong

(App lied Chemistry R esearch Institute,W uhan Univer sity o f Science

and T echnology.W uhan,H ubei,430081)

ABSTRACT:Amino gro ups as an initiato r site,the silica surface w as achieved by the tr eatment of the silica w ith C-amino pro pyltr iethoxy silane.Dendr im er was pro pagated from silica surface by r e-peating tw o processes:Michael and amidation of the resulting esters w ith ethy lenediamine.T he paper discussed separately throug h g rafted generation.The effect o f the surface m odificatio n of silicon diox ide w as characterized by the FT-IR,T G,acid-basetitr ation,etc.T he percentage of gr afting increased w ith increasing gener ation.M odificatio n of silico n diox ide w as applied to iso-late and pur ify albumen in the PEG/(NH4)2SO4two phase sy stem.The concentration of PEG,the co ncentratio n of(NH4)2SO4,io n intensity and pH of solutio n w ere studied emphatically.And the appropriate separation co nditions w ere deter mined.

Keywords:nano-silicon;surface mo dification;dendrimer;isolation;albumen

228高分子材料科学与工程2006年 

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

纳米二氧化硅表面改性及其 补强天然胶乳研究

万方数据

万方数据

万方数据

纳米二氧化硅表面改性及其补强天然胶乳研究 作者:邱权芳, 彭政, 罗勇悦, 李永振, Qiu Quanfang, Peng Zheng, Luo Yongyue, Li Yongzhen 作者单位: 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2009,36(11) 被引用次数:0次 相似文献(10条) 1.期刊论文邱权芳.彭政.罗勇悦.李永振.Qiu Quanfang.Peng Zheng.Luo Yongyue.Li Yongzhen"胶乳共混法"制备天然橡胶/二氧化硅纳米复合材料及其性能-广东化工2009,36(4) 采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100 nm之间,得到的胶膜力学性能有很大的提高. 2.期刊论文魏福庆.李志君.殷茜.邵月君.段宏义.Wei Fuqing.Li Zhijun.Yin Qian.Shao Yuejun.Duan Hongyi纳米SiO2对天然橡胶/聚丙烯共混型热塑性弹性体的改性-合成橡胶工业2006,29(3) 在双辊电热式塑炼机上采用动态硫化法制备了天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPV).考察了纳米SiO2的加入顺序及其用量对NR/PP TPV力学性能的影响,研究了纳米SiO2填充改性TPV的耐溶剂性能和耐热变形性能,并用扫描电镜(SEM)观察了其两相结构和断面形貌.结果表明,纳米SiO2先与NR混炼均匀,再加入小料和硫黄所得的NR母炼胶与PP制备的TPV力学性能较好,且最佳的纳米SiO2加入量为3份;纳米SiO2改性的NR/PP TPV具有良好的耐溶剂性能和耐热变形性能;纳米SiO2提高了NR与PP相间结合强度. 3.期刊论文李志君.魏福庆.LI Zhijun.WEI Fuqing接枝和交联对纳米SiO2改性NR/PP共混型热塑弹性体的影响-高分子学报2006(1) 动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体"就地"熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2 TPE的力学性能、耐溶剂性能和耐热变形性能最佳 .MAH/St/DCP"就地"接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善. 4.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu NR-g-(GMA-co-St)与nano-SiO2协同增强增韧PVC的研究-弹性体2009,19(2) 研究了甲基丙烯酸缩水甘油酯(GMA)/苯乙烯(St)多单体熔融接枝天然橡胶(NR)[NR-g-(GMA-co-St)]与nano-SiO2协同增强增韧PVC的力学性能,并通过SEM、TG-DTG表征了改性PVC的相结构及耐热分解性能.结果表明,当NR-g-(GMA-co-St)和nano-SiO2的质量分数分别为5%和3%时,相界面的结合强度明显提高,达到较好的协同增强增韧效果;与未改性PVC相比,增强增韧PVC的缺口冲击强度和断裂拉伸强度分别提高了78.9%和50.5%,并且具有较好的耐热分解性能. 5.期刊论文李志君.魏福庆NR-g-(MAH-co-St)对纳米SiO2改性NR/PP共混型热塑性弹性体的影响-弹性体 2004,14(6) 研究了马来酸酐/苯乙烯(MAH/St)多单体熔融接枝NR[NR-g-(MAH-co-St)]对纳米SiO2改性天然橡胶/聚丙烯动态硫化共混型热塑性弹性体(NR/PP TPV)力学性能的影响;采用SEM分析了TPV的断面形貌.结果表明:纳米SiO2的质量分数为0.03时,NR-g-(MAH-co-St)通过改善纳米SiO2分散的均匀性和细化交联NR分散相,使NR与PP两相的相容性得到明显改善,两相界面结合强度明显提高,NR/PP/纳米SiO2 TPV的力学性能提高. 6.会议论文鹿海华.刘岚.罗远芳.贾德民胶粉中原位生成SiO2及其在天然胶的应用研究2007 通过溶胶-凝胶法在胶粉中原位生成纳米SiO2网络,利用傅立叶变换红外(FTIR)、热重分析(TGA)等技术,证实了溶胶-凝胶反应中在胶粉表面过渡层中原位生成了约3%~5%wt的-O-Si-O-类似SiO2的网络结构;改性胶粉表现出更好的热稳定性,失重5%对应的温度提高了72.4℃.将50份改性胶粉添加到天然橡胶(NR)中,考察了反应前驱体及有机硅氧烷用量等对NR/改性胶粉复合材料性能的影响。研究发现,NR/改性胶粉复合材料仍具有较好的力学性能及动态性能。 7.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu原位接枝NR与nano-SiO2协同增韧PVC的研究-塑料2009,38(3) 研究了原位接枝NR与nano-SiO2协同增韧PVC的力学性能和耐溶剂性,通过SEM表征了增韧PVC的相结构.结果表明:当原位接枝NR和nano-SiO2的质量分数分别为5%和3%时,与未增韧PVC相比,相界面的结合强度明显提高,增韧PVC的缺口冲击强度和拉伸强度分别提高了102%和35.11%,并且具有较好的耐溶剂性能,达到较好的协同增韧增强效果. 8.会议论文李志君.魏福庆.符新NR/PP共混型热塑性弹性体的改性技术2004 动态硫化制备NR/PP/纳米SiO2共混型热塑性弹性体(TPV).通过力学性能的测定,确定了TPV的最佳加工工艺条件;研究了纳米SiO2改性和马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝、交联改性对TPV力学性能、耐溶剂性能和耐热性能的影响.结果表明:MAH/St/DCP"就地"接枝、交联改性NR/PP/纳米SiO2TPV的力学性能最好,耐溶剂性能和热稳定性最佳.纳米SiO2的最佳质量分数为0.03;MAH/St/DCP的最佳质量分数为3.75/1.875/0.375. 9.期刊论文魏福庆.刘义.王卓妮.殷茜.李志君.林秀娟.Wei Fuqing.Liu Yi.Wang Zhuoni.Yin Qian.Li Zhijun. Lin Xiujuan马来酸酐和苯乙烯接枝改性对天然橡胶/聚丙烯共混物物理机械性能的影响-合成橡胶工业 2007,30(1) 用动态硫化法制备了天然橡胶(NR)/聚丙烯(PP)热塑性弹性体(TPV).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝交联改性及纳米二氧化硅用量对NR/PP TPV物理机械性能的影响,讨论了NR/PP TPV的重复加工性能.结果表明,当MAH/St/DCP用量为3.750/1.875/0.375质量份、纳

碳纳米管的应用领域—陶瓷

引言 纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。碳纳米管的发现是碳团簇领域的又一重大科研成果。在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的 应用前景。可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。 原子形成的石墨烯片卷成的无缝、中空的管体。碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。

1、CNTs陶瓷复合材料着重的研究工作: 1.1 CNTs在基体中的均匀分散技术 只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。球磨混合、超声混合、使用表面活性剂、原位合成是目前报道的提高分散均匀性的方法。其中,原位合成可以制备出分散均匀且体积含量高的CNTs陶瓷复合材料,值得深入研究; 1.2 CNTs陶瓷复合材料的致密化技术。 足够的致密度是获得高力学性能CNTs陶瓷复合材料的前提,目前报道的致密化技术大都是高温高压烧结技术,它不仅会破坏CNTs的结构,减少CNTs的数量,而且当CNTs体积含量较高,分散均匀性较差时,高温高压烧结技术很难获得高致密度,从而严重削弱CNTs的增强效果和功能特性。虽然已有利用SPS技术制备出高致密度CNTs陶瓷复合材料的报道,但开发低温无压致密化技术的需求依然迫切; 1.3 CNTs基体界面结构设计与控制。 CNTs是一种纳米尺度的增强相,具有独特的表面特性和非常大的比表面积,这就决定了CNTs与基体的接触面积很大,界面结构也与众不同。因此,界面结构对CNTs陶瓷复合材料性能有着非常大的影响,当CNTs体积含量较高时,这种影响程度就更大了。从这个意义上说,从原子尺度上研究CNTs与基体之间的界面结构及其对复合材料性能的影响,以及通过CNTs表面处理等手段进行界面结构设计与控制将是今后工作的重点; 1.4 CNTs陶瓷复合材料微观结构研究。 从目前研究情况看,往往只单纯考虑CNTs含量与复合材料性能的关系,而没有从CNTs和基体相互协同的角度考虑问题,忽略了基体结构以及CNTs结构对性能的影响,从而引起一些错误结论。今后应注意研究CNTs 结构在制备过程中的变化以及由于CNTs引入而引起的基体结构的变化;

大豆分离蛋白改性的研究进展

基金项目:国家自然科学基金资助项目(20704044); 作者简介:李海萍(1984-),女,硕士研究生; 3通讯联系人,E 2mail :cesyjz @https://www.360docs.net/doc/a24910461.html,. 大豆分离蛋白改性的研究进展 李海萍,易菊珍3 (中山大学化学与化学工程学院高分子研究所,广州 510275) 摘要:首先介绍了大豆分离蛋白的基本组成与结构,然后分别从化学改性、酶改性和物理改性三个方面对 大豆分离蛋白改性进行了综述。其中,在化学改性方面,针对大豆分离蛋白中含有的氨基、羧基、巯基等不同活性基团的改性原理及研究现状进行了介绍。在酶改性方面,主要介绍了谷胺酰胺转胺酶、木瓜蛋白酶等对大豆分离蛋白的改性作用。在物理改性方面,介绍了共混、加热改性等目前研究较多的方法。通过化学、物理和酶等方法等来引起分子结构的微变化,可使人们获得各种符合预期的性能优良的产品,开发其在医药、化工等领域的应用潜力。 关键词:大豆分离蛋白;结构;改性 引言近年来,由于全球石油危机及环境污染问题,以石油为原料、不可降解的聚合物材料的广泛使用引起 了大家的担忧[1],而且塑料垃圾掩埋后,有毒单体和小分子低聚物的释放又会污染地下水资源 ,给人类和 生物体健康构成威胁。因此,人们致力于研究通过可再生农作物开发环境友好、可生物降解的材料。大豆分离蛋白(s oybean protein is olate ,SPI )是一种重要的植物蛋白,是每年都可进行大量种植的可再生资源,而且具有无毒、可降解等优点,在材料领域具有广泛的应用前景。大豆蛋白包含多种功能团,如氨基、羟基、巯基、酚基、羧基等。这些活性基团可作为化学改性或交联的位点,来合成各种功能可与以石油为原料的材料相当或更优的新型聚合物。因此,本文介绍了大豆分离蛋白的基本组成与结构,并对基于大豆分离蛋白功能基团的改性研究进行了综述。 1 大豆分离蛋白的基本组成及结构 大豆分离蛋白(S oybean Protein Is olate ,SPI )是以低变性脱脂豆粕为原料,采用现代化的加工技术制取的一种蛋白质含量较高的功能性食品添加剂或食品原料。其主要组成元素为C 、H 、O 、N 、S 和P ,还含有少量的Zn 、Mg 、Fe 和Cu 。大豆分离蛋白中蛋白质含量高达90%以上,含有多种人体必需氨基酸,其主要 氨基酸含量如表1所示[2]。 SPI 主要包括β 2大豆伴球蛋白(7S 球蛋白,β2conglycinin )和大豆球蛋白(11S 球蛋白,glycinin )两种成分[3]。其中β2大豆伴球蛋白是由α’2(69kDa )、β2(68kDa )和β2(42kDa )三种亚基组成的分子量约为~180kDa 的三聚体糖蛋白,三种亚基分子量不同文献报道有所差别[4]。大豆球蛋白是由五种分子量为54kDa ~64kDa 的亚基(G 12G 5)组成的分子量约为~320kDa 的六角形化合物。各个亚基的基本结构通式为A 2SS 2B ,其中A 表示分子量为34~44kDa 的酸性多肽,B 表示分子量约为20kDa 的碱性多肽,A 和B 由 二硫键(SS )连接。Utsumi [5]、Maruyama 等[6]利用基因重组技术并通过X 射线晶体衍射法推导出大豆球蛋 白和β2大豆伴球蛋白结构模型,如图1所示。

纳米氧化锌综述

纳米氧化锌综述 概述 纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 纳米氧化锌的性质 纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。 纳米氧化锌的制备 1.纳米氧化锌的液相化学制备技术 除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。 1.1化学沉淀法 1.1.1直接沉淀法 直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。将沉淀物送入烘箱烘干,烘干的草酸锌粉末置洗净坩埚中,在箱式电阻炉中反应,制得氧化锌晶体。 1.1.2 均匀沉淀法 均匀沉淀法是将反应物之一通过化学反应缓慢释放出来并导致沉淀反应发生的技术,因此混合反应物溶液沉淀反应并不立即发生。其特点是避免了直接沉淀法中的局部过浓,从而大大降低沉淀反应的过饱和度。洪若瑜等[4]采用连续微波加热用硫酸锌和尿素制备了粒径为8~30nm的纳米氧化锌。 1.2溶胶-凝胶法 溶胶-凝胶法是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应处理得到所需纳米粉体,方法多采用有机溶剂。该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。溶液的pH值、浓度、反应时间及温度均是影响溶胶-凝胶质量的主要因素。 Tianbao Du等[5]采用溶胶-凝胶浸渍涂布技术制备了氧化锌半导体薄膜,他 们以耐热玻璃为模板,在不断搅拌中把模板加入Zn( CH 3C00) 2 /乙醇溶液中,取出

碳纳米管的表面改性 [兼容模式]

碳纳米管的表面改性

1、碳纳米管的简单介绍 碳纳米管是由碳六边形的石墨烯片同轴排列、两端被像富勒烯结构的端帽封口而形成一个微小的管,直径从几个埃到十几个纳米,长度可以到达几个厘米。碳纳米管有单壁碳纳米管和多壁碳纳米管两种主要类型 单壁碳纳米管多壁碳纳米管

CNT的优良性能 ?独特的分子结构:具有显著的电子特性,是构建下一代电子器件和网络颇具吸引力的材料 ?非凡的抗张强度:可用于制造CNT加强纤维和用作聚合物添加剂 ?在分析化学领域的应用包括制作各种特定用途的生物/化学传感器及纳米探针(例如,用作原子力显微镜探针尖,在体检测的生物探针等) 高的比表面积和极强的吸附性碳纳米管作为储?高的比表面积和极强的吸附性:碳纳米管作为储氢、储能材料

CNT 的局限性 ?在电子线路的微型化方面,因为CNT 是极端疏水的,并形成不溶的集合体,很难组装成有用的结构 ?由于CNT 的化学惰性,连接纳米簇之前要首先对其表面进行活化和分散。 ?制备、处理或操作这种纳米工程组分或共聚物时 制备、处理或操作这种纳米程组分或共聚物时,需要先分散和溶解CNT,但CNT 在一般有机溶剂和水中是不溶的。? CNT 的许多潜在应用都需要了解它的光激发态的性能,但CNT 在溶剂中的不溶性限制了对其的定量研究。

2、碳纳米管的表面改性 ?共价功能化:一般采用的手段是用浓酸氧化开口,截成短管,使末端或(和)侧壁的缺陷位 点带上羧基,然后再进行修饰 1)端口功能化 Chen等[1]利用氧化开口的SWNT与SOCl2反应,再与十八胺反应,将长的脂肪链连接到CNT上,实现了CNT在有机溶剂中的溶解。溶解的CNT与卡宾试剂进行溶液反应,实现了管壁卡宾功能化,开辟了碳管管壁的液相化学 Liu等[2]同样是利用氧化开口的SWNT,通过酰化胺化反应将NH2(CH2)11SH接到碳管的端口,进一步实现了金纳米颗粒的固定; 进步实现了金纳米颗粒的固定 Nguyen等[ 3 ]构置垂直排列的CNT阵列纳米电极平台,采用在CNT间隙填充旋压玻璃( spin on glass, SOG)的方法,进行端口选择性氧化、继而采用碳化二亚胺辅助活(spin on glass SOG)进行端口选择性氧化继而采用碳化二亚胺辅助活 化法,实现了CNT阵列的端口核酸功能化

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

纳米二氧化硅修饰-改性文献总结

一、单分散纳米二氧化硅微球的制备及羧基化改性赵存挺,冯新星,吴芳,陈建勇2009年第 11期(40)卷 采用改进工艺条件的St ber法制备纳米SiO2微球 用KH-550硅烷偶联剂和丁二酸酐对纳米二氧化硅表面羧基化改性。结果表明,纳米二氧化硅表面成功接枝了羧基官能团。 2.1主要试剂 正硅酸乙酯(TEOS,AR);无水乙醇(AR);氨水,含量为25%~28%;去离子水;硅烷偶联剂KH-550, 纯度≥95%;丁二酸酐(AR)。 2.2二氧化硅微球的制备 将一定量无水乙醇、去离子水和氨水混合磁力搅拌约20min成均匀溶液。将4ml正硅酸乙酯分散在20ml无水乙醇中,磁力搅拌约30min混合成均匀溶液。然后将上面两种溶液混合在100ml单口烧瓶中,在一定温度下恒温磁力搅拌5h即生成二氧化硅微球溶胶。小球经多次醇洗离心分离后,即得SiO2小球样品。 2.3二氧化硅微球表面羧基化改性 将等摩尔的KH-550和丁二酸酐均匀分散在一定量的DMF中,一定温度下磁力搅拌3h后,往该

体系中加入经过超声分散的约20ml二氧化硅的DMF悬浊液,同时加入2ml去离子水。 在相同温度下继续磁力搅拌5h后,用超高速离心机分离出纳米二氧化硅,多次醇洗离心分离后,即得到羧基化改性后的纳米二氧化硅。改性的纳米SiO2标为样品S1,未改性的标为S0。 SiO2表面羧基的引入不仅提高了纳米粒子与基体的界面相容性,更重要的是羧基宽广的反应范围和易于离子化的特性赋予了纳米粒子很高的反应活性,使之可以广泛地应用于纳米粒子自组装[5]、高分子材料改性剂、水处理剂、催化剂和蛋白质载体、微胶囊包埋等领域[6] 二、二氯二甲基硅烷改性纳米二氧化硅工艺研究唐洪波李萌马冰洁精细石油化工 第24卷第6期2007年11月 以纳米二氧化硅为原料,乙醇为溶剂,二甲基二氯硅烷为改性剂,水为改性助剂,较佳工艺条件为:二甲基二氯硅烷用量15%,预处理温度120℃,预处理时间50min,回流温度130℃,回流时间50min,水用量4%。 称取纳米二氧化硅29置于三口瓶中,搅拌,加热至一定温度,并恒温。另称取一定量乙醇置于三口瓶中,配制成纳米二氧化硅质量分数为4.8%的乳液,继续搅拌分散10min后,一次性加人全部改性剂二甲基二氯硅烷,同时缓慢滴加一定量的改性助剂,当改性助剂加完后,升温至回流温度。反应结束后,将悬浮液用乙醇离心洗涤3一4次,经干燥至恒重即得产物。 3、氟烷基改性的二氧化硅纳米球的制备与应用研究郭庆中,周书祥,伍双全,喻湘华有机硅 材料, 2009, 23(4): 238~241 以浓氨水为催化剂、正硅酸乙酯(TEOS)为原料,通过种子生长法制得二氧化硅纳米球;进一步以十三氟辛基三乙氧基硅烷(F-8261)对二氧化硅纳米球的表面进行改性,得到氟烷基改性二氧化硅纳米球。利用IR、UV、TEM等手段对氟烷基改性纳米球进行了表征。有机基多为甲基或长碳链烷基,究其本质是亲油性的 1·5 mL TEOS、1·7 mL浓氨水(25% ~28% )、1mL去离子水和50 mL乙醇加入到250 mL的圆底烧瓶中,在40℃下缓慢搅拌3 h;然后再加入1mLTEOS,继续搅拌水解3 h;离心,水洗至pH=7,

大豆分离蛋白在肉制品中应用

大豆蛋白在肉制品加工中可采取以下添加方法。 1.复水法 将大豆组织蛋白与一定比例的水混合,经过浸泡软化后随原料绞碎,大豆蛋白在肉制品中分布均匀、口感良好。 2.糊剂法 糊剂法又称凝胶化法。将大豆分离蛋白与一定量的水制成糊剂〔以1:(35)的比例〕,经充分搅拌使其水化,使用时按配方要求添加到肉馅中。 3.乳化法 将大豆分离蛋白与配方中的一部分脂肪和水制成预乳化液。采用冷乳化法时,大豆蛋白、脂肪和水的比例为1:5:5,也可以加入85℃预煮过的猪皮。采用热乳化法时,大豆分离蛋白与猪皮、水和脂肪的比例为1:2:6:6 4.干粉法 干粉法只有采用鲜肉为原料时才适用。在斩拌时,将大豆分离蛋白以干粉状态先于脂肪加入,其操作程序为:瘦肉+蛋白(1份)+水(5份)+其他。 5.注射法 将5%的大豆分离蛋白分散于火腿发色及调味液中,然后用盐水注射器注入肉块中进行腌制,火腿得率可增加20%,并可以缩短腌制时间,这种明显的效果来源于大豆蛋白质的持水性和凝胶性。 大豆蛋白在肉制品加工中的应用须注意以下几点: ①大豆蛋白制品应经脱腥处理,除去豆腥味,以免影响肉制品风味。 ②由于大豆蛋白的使用,适当减少了瘦肉用量,增加了肥肉用量,在一定程度上要影响产品的颜色,可以用血或允许使用的色素予以补充。此外,可以添加少量肉味料(肉味香精),以增加产品的肉香味。 ③在灌肠制品生产中,一般使用碱性磷酸盐(STP),在使用大豆分离蛋白时,最好使用酸性磷酸盐(ASP)而酸性磷酸盐会降低肉结合水的能力,所以使用ASP时,最好同时加入葡萄糖酸内酯(GDL),以缓冲ASP的作用。 ④大豆分离蛋白对盐和调味料有一定的覆盖作用,因此调味料宜最后加入,并根据情况调制盐的用量。 在使用斩拌机(或搅拌机)时要把大豆分离蛋白充分斩拌,斩拌至浓绸发亮,使其充分发挥乳化的效果。在斩拌机中乳化时,应加冰屑降低肉温,以增强乳化效果,提高产品质量。

大豆分离蛋白的主要工艺流程

1 大豆分离蛋白的主要技术性能指标 水份:≤6% 干基粗蛋白:≥90% 水溶氮指数:≥60% TPC:≤10000个 大肠杆菌:0个 色泽:浅黄/乳白 气滋味:具有分离蛋白特有的气滋味 PH值:6.8~7.2 密度:过200目筛95%,过270目筛 90% 产品的功能特性将根据不同应用领域来确认 乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。 高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。 高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。 2 大豆分离蛋白工艺流程 低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装 3 工艺简要描述: 萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。 分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维

(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。 酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。 分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。 水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。 分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。 中和:加入碱入中和罐,使凝乳的PH调整到7。 杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌 干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。 筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。 超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。 筛选:对产品进行进一步筛选。 喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。 金属检测:对产品进行金属检测。 包装:检测后的产品进行自动包装系统,按规定的重量进行包装。

纳米氧化锌

纳米氧化锌材料 摘要:综述了纳米氧化锌的性能。描述了纳米氧化锌的制备研究, 随着科技的发展, 许多新的手段引入到了纳米氧化锌的合成工艺中弥补相互之间的不足。 关键词:纳米氧化锌,性能,制备,应用 1.纳米氧化锌的性能 1.1紫外线屏蔽 在整个紫外光区( 200~ 400 nm) ,氧化锌对光的吸收能力比氧化钛强。纳米氧化锌的有效作用时间长, 对紫外屏蔽的波段长, 对长波紫外线和中波紫外线均有屏蔽作用, 能透过可见光, 有很高的化学稳定性和热稳定性。它可用于制备抗紫外线、耐光老化性能好的涂料及其它的高分子材料。在乳胶漆中使用纳米氧化锌可以增大乳胶漆对紫外线辐射的抵抗力, 减弱乳胶漆对潮湿环境条件的敏感性,提高耐老化性。同时,氧化锌能够散射光线,使乳胶漆的遮盖力得到一定程度的改善。1.2补强性 一般的无机填料填充于聚合物中时具有如下缺点: 使用量大, 不能兼顾刚性、耐热性、尺寸稳定性和韧性同时提高。而在聚合物中添加少量的纳米粒子, 就可以使基体树脂的力学性能( 拉伸强度、弯曲强度、冲击强度、断裂伸长率等) 得到显著的提高, 并克服了以上提及的一般无机材料的缺点。 1.3抗菌、除臭性 氧化锌是传统无机抗菌材料, 在与细菌接触时, 锌离子缓慢释放出来。由于锌离子具有氧化还原性, 它能与细胞膜及膜蛋白结合, 并与其结构中有机物的巯基、羧基、羟基反应, 破坏其结构, 进入细胞后破坏电子传递系统的酶, 并与- SH 基反应, 达到抗菌的目的。在杀灭细菌之后, 锌离子可以从细胞内游离出来, 重复上述过程。氧化锌纳米粉末因为粒径小, 表面原子数量大大超过传统粒子, 表面原子由于缺少邻近的配位原子而具有很高的能量, 所以可增强氧化锌的亲和力, 提高抗菌效率。 1.4阻燃性 氧化锌可作为一种阻燃增效剂。它多数是和其它的增效剂或阻燃剂协同使用, 其增效作用与硼酸锌类似。ZnO 一般可作为PVC 的紫外吸收剂, 但其对PVC 的热稳定性有不利的影响, 因此在配方中一般采用的含量不高。在电缆涂层中使用纳米

纳米二氧化硅表面改性条件优化

纳米二氧化硅表面改性条件优化 【摘要】引入微波有机合成技术对纳米SiO2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米SiO2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。实验得出的纳米SiO2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320W,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。 【关键词】纳米二氧化硅;表面处理;微波 对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。 纳米SiO2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。由于纳米SiO2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。 目前,对纳米SiO2的改性方法有多种,通常采用的是硅烷偶联剂法。硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。 微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。 本文作者采用微波法对纳米SiO2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米SiO2进行了表征。 1 实验部分 1.1 主要试剂与仪器 纳米二氧化硅:粒径<100nm,购自海川化工有限公司,硅烷偶联剂SCA-1603:分析纯,哈尔滨化工研究所实验厂产品;浓硫酸:分析纯,购自莱

碳纳米管的改性

1.碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层; 碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO。和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和H。()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化过的碳纳米管在10 g/i。SnCl:·2H。O十40 g/I,Hcl溶液中进行敏化处理40 min;3)用敏化后的碳纳米管在0,5 g/i,PdC[z+0.25 mI。HCI溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2.碳纳米管因其优异的力学、物理性能,是一种理想的复合材料增强体,但其与基体金属的润湿性较差.通过对镀钴前碳纳米管的微波、氧化、敏化和活化处理,改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点,成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与 金属基体的界面结合力.并用XRD、TEM对镀钴后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别用4mol/L的NaOH溶液、浓HCl和浓HNO<,3>进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步提高碳纳米管的纯度。浓HNO<,3>处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)、羧基(—COOH)等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCl<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOH溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7.通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOH对碳纳米管进 行预处理,通过SEM、DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03的混酸处理法与HN03处理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HlR的对比分析,后者对碳纳米管的改性效果好于前者。TG、TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT) (直径l0nm或40nm)置于1:3混合的HNO3/H2SO4溶液中,60℃下超声3h。倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22μm聚碳酸酯微孔滤膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COOH)粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V)对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1)将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2)将酰氯基团与乙二胺

相关文档
最新文档