谈伽罗瓦理论的漏洞

谈伽罗瓦理论的漏洞
谈伽罗瓦理论的漏洞

论伽罗华理论中的漏洞

在百度文库里,仔细阅读了伽罗华理论关于一元五次以上高次方程不能建立一般代数公式的论术,我发现了字里行间隐藏了不少漏洞,总结起来有以下几点

1、用猜想代替证明。

2、错误地理解牛顿对称性多项式定理。

3、站在实数的角度解释问题。

4、忽视方程换元配方可漏解的情况。

首先我们来看看第一个问题

为什么说他是用猜想代替证明,因为他所论术中的预解式根本就是猜想,他用预解式来说明问题,他必须应当说明如果能推导出公式.第一个预解式应当是什么样的结构,并且要证明只能是这样的结构。可是他什么也不清楚.更谈不上是否清楚其他预解是何种结构。就好比皇帝的新装,骗子把新衣说得如何如何美丽一样,可是大家都看不到的。

再谈第二个问题

伽罗华说所有预解式都应当符合牛顿多项式对称性定理。那么我们要问,如果有一种方法可以使方程漏解,变成不再包含所有解的方程,他还会是原来那种对称关系吗?如果你事先就认定所有预解式都必须保持对称性,说明,你未经证明就肯定了方程不会漏解。这也叫证明吗?

接下来谈第三个问题

复数的出现是由于二次及二以上方程出现而出现,可是伽罗华很少分析复数问题。阿贝尔的收剑和发散完全是站在实数角度来分析的,超越实数范围的就认为做不到。如果站在实数范围,一元三次方程也没有一般代数公式呀。因为有很多一元三次方程套用卡丹公式,结果套出了复数.

最后谈第四个问题

我们在解低次方程的时候,常要分析方程漏解的问题。可是到了高次方程伽罗华却只字未提,因为他根本就没有更好的降次方法。那么有人会问高次方程也能做到配方漏解吗?回答是肯定的,但过程是非常复杂的哟。而且是换元进行的哟。现在用事实说明高次方程在扩展到复数范围同样可以做到配方漏解。为简便说明问题,

那么一元五次方程是否也能做到换元配方的办法实现漏解吗?回答是肯定的,现在论证它的可行性。

假设X5+a X4+b X3+c X2+d X+e =0的五个根分别为X1;X2;X3;X4;X5、分别代入方程X11+g X10+hX9+jX8+kX7+m X6+nX5+rX4+sX3+tX2+wX+z=0的左边,每个根代入情况做一个因式,共5个因式相乘,即:

(X111+g X110+h X19+j X18+k X17+m X16+n X15+r X14+s X13+t X12+w X1+z)(X211+g X210+h X29+j X28+k X27+m X26+n X25+r X24+s X23+t X22+w X2+z)(X311+g X310+h X39+j X38+k X37+m X36+n X35+r X34+s X33+t X32+w X3+z)(X411+g X4

10+h X

49+j X

8+k X

7+m X

6+n X

5+r X

4+s X

3+t X

2+w X

+z)(X511+g X510+h X

59+j X

8+k X

7+m X

6+n X

5+r X

4+s X

3+t X

2+w X

+z)

我们知道,只要上面一个因式会是零,那么上面五个因式之积都会是零,方程间必有公共解如果没有一个因式会等于零,它们之积不会是零,二方程间必无公共解。

又由于上式是关于X1;X2;X3;X4;X5对称性多项式,因为任意二根对换位置其值不变,完全符合牛顿对称性多项式定理,所有X1;X2;X3;X4;X5组成的对称群都通过韦达定理

根与系数的关系被a、b、c、d、e必然性代换掉,变成g、h、j、k、m、n、r、s、t、w、z

与a、b、c、d、e的构成值,相当于g、h、j、k、m、n、r、s、t、w、z十一元五次多项式, 其实就是由二方程系数组成的判别式。当它们上术系数关系等于零二方程必存在公共解,否则必无公共解,证明略。

这个判别式我大意把它描术成如下形式来研究:z 5+f(g、h、j、k、m、n、r、s、t、w)z 4+f(g2、g 、h2、h、……、w2、w)z 3+f(g3、g2、g 、h3、h2、h、……w3、w2、w)z 2+f(g4、g3、g2、g 、h4、h3、h2、h、……w4、w3、w2、w)z+f(g5、g4、g3、g2、g 、h5、h4、h3、h2、h、……w5、w4、w3、w2、w)=0;

利用g、h、j、k、m、n、r、s、t、w、可调节的性质在复数范围完全可将上式调试成关于(z+某数)的特殊一元五次方程,大家有疑问吗?

调试过程如下:将上式在横坐标上移动f(g、h、j、k、m、n、r、s、t、w)/5变成:【z+ f(g、h、j、k、m、n、r、s、t、w)/5】5+f1(g2、g 、h2、h、……、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】3+f1(g3、g2、g 、h3、h2、h、……w3、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】2+ f1(g4、g3、g2、g 、h4、h3、h2、h、……w4、w3、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】+ f1(g5、

g4、g3、g2、g 、h5、h4、h3、h2、h、……w5、w4、w3、w2、w)=0;

………………《1式》;这也做得到

由于X5+PX3+(P2/5)X+q=0的方程都可采用X3+PX+q=0类似推导公式的方法,推导过程如下:设X=u+v 代入方程,则方程变成:

(u+v)5+P(u+v)3+(P2/5)(u+v)+q=0 ;

而(u+v)5= u5+v5+5uv(u3+v3)+10u2v2(u+v)= u5+v5+5uv【u3+v3+3uv(u+v)-3uv (u+v)】+10u2v2(u+v)= u5+v5+5uv【u+v】3-5u2v2(u+v)

所以(u+v)5+P(u+v)3+(P2/5)(u+v)+q=0 可变成:

u5+v5+5uv【u+v】3-5u2v2(u+v)+p(u+v)3+(P2/5)(u+v)+q=0 ;

u5+v5+(5uv+p)【u+v】3 -(5u2v2-P2/5)(u+v)+q=0 ;

又设uv=-p/5代入上式得:

u5+v5 +q=0 ;

解方程组:uv=-p/5和u5+v5 +q=0可分别求出u和v ,所以X=u+v 可求出。

分析X5+PX3+(P2/5)X+q=0可解性得出一条规律,凡是未知数5次方项系数为1;而4次方项系数及2次方项系数均为零;同时3次方项系数的平方等于5倍的1次方项系数时,都可用上面的方法推出公式。

因此我们只要把【z+ f(g、h、j、k、m、n、r、s、t、w)/5】5+f1(g2、g 、h2、h、……、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】3+f1(g3、g2、g 、h3、h2、h、……w3、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】2+ f1(g4、g3、g 2、g 、h4、h3、h2、h、……w4、w3、w2、w)【z+ f(g、h、j、k、m、n、r、s、t、w)/5】+ f1(g5、g4、g3、g2、g 、h5、h4、h3、h2、h、……w5、w4、w3、w2、w)=0;………………《1式》;

中【z+ f(g、h、j、k、m、n、r、s、t、w)/5】当成X;

又设【f1(g2、g 、h2、h、……、w2、w)】2=5【f1(g4、g3、g2、g 、h4、h3、h2、h、……w4、w3、w2、w)】…………《2式》;

f1(g3、g2、g 、h3、h2、h、……w3、w2、w)=0…………《3式》;

《2式》和《3式》组成的是多元高次方程组,多余很多变量,如果能利用对多余的变量j、k、m、n、r、s、t、w进行有效设值,使《3式》变成:

【f2(g、h)】3-【f3(h)】3 =0 …………《4式》

《2式》化成f4(g4、g3、g2、g 、h4、h3、h2、h)=0…………《5式》

解《4式》和《5式》组成的方程组就可解出g、h的值了。如何对j、k、m、n、r、s、t、w 取值,《3式》才会变成《4式》的形式呢?我是这样做的:

把《3式》化成:

g3+f5(h、j、k、m、n、r、s、t、w)g2+f6(h2、h、j2、j、……、w2、w)g+f7(h3、h2、h、j3、j2、j、……w3、w2、w)=0…………《6式》;

又在横坐标上移动f5(h、j、k、m、n、r、s、t、w)/3变成:

【g+f5(h、j、k、m、n、r、s、t、w)/3】3+【f8(h2、h、j2、j、……、w2、w)】【g+f5

(h、j、k、m、n、r、s、t、w)/3】-f9(h3、h2、h、j3、j2、j、……w3、w2、w)=0…………

《7式》

为了把g全配方在一个立方括号内,取

【f8(h2、h、j2、j、……、w2、w)】=0…………《8式》

就达到目的了。则《7式》变成:

【g+f5(h、j、k、m、n、r、s、t、w)/3】3-f9(h3、h2、h、j3、j2、j、……w3、w2、w)=0…………《9式》

由于【f8(h2、h、j2、j、……、w2、w)】=0…………《8式》是方次为二次方的多元函数,对其中任意一个变量我们都可将它配方在一个括号里,先把h配成在一个括号里变成:f10(h、j、k、m、n、r、s、t、w)2-f11(j2、j、k2、k、……、w2、w)=0……《10式》

再在f11(j2、j、k2、k、……、w2、w)中把j全配方在一个括号中则《10式》变成:

f10(h、j、k、m、n、r、s、t、w)2-f12(j、k、m、n、r、s、t、w)2+f13(k2、k、m2、m……、w2、w)=0……《11式》

这样一直配方后变成:

f10(h、j、k、m、n、r、s、t、w)2-f12(j、k、m、n、r、s、t、w)2+f14(k、m、n、r、s、t、w)2-f15(m、n、r、s、t、w)2+f16(n、r、s、t、w)2-f17(r、s、t、w)2+f18(s、t、w)2-f19(t、w)2+f20(w)2-已知数=0……《12式》

现在我们可以对多余变量设值了:

取f10(h、j、k、m、n、r、s、t)2-f12(j、k、m、n、r、s、t)2=0……《13式》f14(k、m、n、r、s、t)2-f15(m、n、r、s、t)2=0……《14式》

f16(n、r、s、t)2-f17(r、s、t)2=0……《15式》

f18(s、t)2-f19(t)2=0……《16式》

结合《12式》可可推出;f20(w)2-已知数=0……《17式》;

W可计算出。

很显然由《13式》、《14式》、《15式》、《16式》、组成的方程组移项开方根可化成多元

一次方程组即:(w已成已知数下面省略描述)

f21(h、j、k、m、n、r、s、t)=0……《18式》

f22(k、m、n、r、s、t)=0……《19式》

f23(n、r、s、t)=0……《20式》

f24(s、t)=0……《21式》

通过上术方程组《18式》、《19式》、《20式》、《21式》可用h、j、k、s来表示m、n、r、t;

所以《9式》可写成只有g、h、j、k、s为变量的函数式了即:

【g+f5(h、j、k、s、)/3】3-f9(h3、h2、h、j3、j2、j、k3、k2、k、s3、s2、s、)=0……《22式》

《2式》也可写成只有g、h、j、k、s为变量的函数式了即:

f25【g4、g3、g2、g、h4、h3、h2、h、j4、j3、j2、j、k4、k3、k2、k、s4、s3、s2、s】=0……《23式》

我想把f9(h3、h2、h、j3、j2、j、k3、k2、k、s3、s2、s、)中的h全配方在一个括号里看能否可以做到不,《22式》除以h3项的系数则可写成

f26【g+f5(h、j、k、s、)/3】3-【h+f27(j、k、s、)/3】3+f28(j2、j、

k2、k、s2、s)【h+f27(j、k、s、)/3】+f29(j3、j2、j、k3、k2、k、s3、s2、s、)=0……《24式》

只要取f28(j2、j、k2、k、s2、s)=0;……《25式》时

h便全配方在【h+f26(j、k、s、/3】3内。

同理由于《25式》是多元二次函数,其中任意一个变量都可配方在一个括号之内,三个变量可以配成在三个括号之内,可写成如下形式:

f27(j、k、s、)2-f28(k、s)2+f29(s)2-常数项=0;……《26式》

取f27(j、k、s、)2-f28(k、s)2=0;……《27式》

自然f29(s)2-常数项=0;……《28式》

由《28式》解出s代入《26式》,通过《26式》,可用j表示k;分别用s求出和k被表示情况代入《24式》中

《24式》可化成只有三个变量的函数了即:

f25【g+f5(h、j、)/3】3-【h+f26(j、)/3】3+f28(j3、j2、j、)=0;……《29式》

又分别用s的求出和k被j表示情况代入《23式》,《23式》可化成:

f29【g4、g3、g2、g、h4、h3、h2、h、j4、j3、j2、j、、】=0……《30式》

又取f28(j3、j2、j、)=0;……《31式》解出j;代入《29式》、《30式》

分别得:

f30【g、h】3-f31【h】3=0;……《32式》

f32【g4、g3、g2、g、h4、h3、h2、h】=0……《33式》

解《32式》、《33式》组成的方程组可求出g和h;

由于《28式》求出了s;《31式》求出了j;

又将g、h、j、s的求出代入《27式》可求出k;

再加上《17》式求出了W;

把g、h、s、j、k、W的求出代入由《18式》、《19式》、《20式》、《21式》组成的方程组,或者从h、j、k、s所表示的m、n、r、t的表示式中求出m、n、r、t的值。

把g、h、s、j、k、W、m、n、r、t的求出代入《1式》中,变成关于求

【z+ f(g、h、j、k、m、n、r、s、t、w)/5】的特殊可解的一元五次方程;因为g、h、s、j、k、W、m、n、r、t的求出可以满足方程四次方项系数和平方项系数等于零,立方项系数的平方等于五倍于一次方项系数,这种特殊可解的方程。以上的做法都无理由做不到的.

由于一元十次方程系数的求出都是从所有解中选择一个解的,不包含所有,因此得出这个方程不可能包含一元五次方程的所有解,它除以一元五次方程必有余数。因此辗转二方程可求出这个公共解。

“数学”简介含义起源 历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其

代数史

代数史 代数是慷慨的,它提供给人们的常常比人们要求的还要多。 达朗贝尔 过去的三个世纪中,代数在两条轨道上延续:一条是走向更高层的抽象理论,另一条是走向具象的计算方法。 约翰.塔巴克 前言 1.重视难点。 数学的难点表现在什么地方?表现在如下三个方面: 其一是概念,数学概念是从实际事物中抽象出来的,含义精确。正确地学好概念是学好数学的关键。 另一个难点是符号。可以说,数学是符号的科学。其深远意义还在于,它为其他科学,如物理学、化学等科学提供了简明语言。数学符号的作用在于它们给出了抽象概念的简单的具体化身,而且还给出了非常简单的实现各种运算的可能性。 第三难点是抽象。数学的抽象远远超过其他科学,数学的抽象度是逐步提高的。 在教学中,我们应当突出重点,分散难点,或化解难点,以利学生的理解。 2.传授理解。 对代数学来说,理解什么?我们认为,有两件事情是重要的:一件是理解代数的基本思想,一件是掌握代数的基本方法。 我们知道,代数是研究“运算”的科学。运算有两层含义:一是运算对象,一是运算或变换的规则。但是,运算对象在不断扩充,运算的含义也在变化和加深。 §1. 中学代数的主要内容 中学代数主要完成了那些成果呢? 1.从数值运算过渡到符号运算。算术的特点是数值运算,代数的特点是符号运算。中学代数实现了从数值运算到符号运算的过渡,沿着抽象思维的道路走上了数学的更高级的阶段。但是,在中学代数中,符号代表的仍然是数。 2.二元、三元一次线性方程组的解。三元一次线性方程组的一般形式是333322221111dzcybxadzcybxadzcybxa=++=++=++ 为了求解线性方程组,我们采用逐次消去一些未知量的方法以简化方程组,这就是实施了下面的变换: 1)互换两个方程的位置; 2)把某一方程两边同乘一常数; 3)某一方程加上另一方程的常数倍。 这些变换称为初等变换。这样,在代数里第一次出现了变换的概念。一个简单而重要的事实是,线性方程组经过一系列初等变换,变成一个新的方程组,新的方程组与原方程组同解,即,在初等变换下,方程组的解保持不变,或者说,解是初等变换下的不变量。由此,代数方程组给两个重要的概念:变换与不变量。 由线性方程组的理论自然地引出了2、3阶矩阵和2、3阶行列式的概念,这2

著名数学定理

著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174. 阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如, 任意给定二次方程ax 2 +bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++???++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10??? 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都 无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦 给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此. 阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -= ,又有 ??? ? ??r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系. 艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式 ()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0, 1,...,n -1);p2 不整除a 0 ,那么f (x )在有理数域上是不可约的. 奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的 任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路 . 阿基米德折弦定理

《数学史概论》课程标准

《数学史概论》课程标准 课程名称:数学史概论 课程类型:A类 课程编码:0702033280 适用专业及层次:数学计算机系教育专业、专科层次 课程总学时:32学时,其中理论28学时,其他4学时。 课程总学分:2 一、课程的性质、目的与任务 1.本课程的性质:专业选修课 2.课程目的与任务:本课程是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。因此,它是培养学生素质以及了解数学发展历史的重要途径,本课程对提升学生的数学文化素养有着重要的意义。 通过教学使学生了解本课程的性质、地位和意义,知道这门课程的研究对象、范围,以及它与所学数学知识的联系,了解数学史在自然科学技术史中的地位和作用,全面提升专业素养;理解数学史的理论、思想和方法。培养学生综合运用数学理论和方法分析问题、解决问题的能力,提高学生的整体素质;通过数学史的学习,使学生认识到要解决实际问题,自己所学知识远远不够,学而后知不足,激发学生强烈的学习愿望和求知欲。 3.课程与其它课程的联系:《数学史概论》是数学教育专业的选修课程。数学史是人类文明史的重要组成部分,本课程不仅与数学专业的基础课程及自然科学有直接联系,也与人文历史等学科领域密切相关,所以也可作为其他专业的拓展课程,借以提高学生的整体素养。 二、教学内容、教学要求及教学重难点 本课程由六个专题组成,内容应反映出数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法。教学内容可参考标准给出的可供选择的专题,并在此基础上可根据学生的知识结构及相关课程设置可相应增减专题的内容,如三次数学危机、数学的严格性与三个数学学派、从透视学到射影几

伽罗瓦理论1

伽罗瓦理论---域的扩张与分裂域 命题1.如果k 域,(())I p x =,()p x ∈[]k x ,则[]k x I 是域iff ()p x 在[]k x 中不可约. Proof: 假设()p x 不可约,我们证[]k x I 是域。任取[]k x I 中的非零元()f x I +,只需找到其逆即可。由于()f x I +非零,则()f x ?I ,即|p f /,又()p x 不可约, 故(,)1p f =,从而存在,[]s t k x ∈使得1sf tp +=,为此我们有1sf tp I -=∈ 即()()1s I f I sf I I ++=+=+,这说明1()f I s I -+=+。由()f x I +的任意性知[]k x I 是域。 另一方面假设[]k x I 是域。假设()f x 可约,(此处用()f x 代替()p x )。则()f x 在[]k x 中有分解式()()()f x g x h x =,且deg()deg(),deg()deg()g f h f <<。 下面说明,g I h I ++是[]k x I 中非零元,否则(())g I f x ∈= 则有|f g ,即deg()deg()f g ≤,这与deg()deg()g f <矛盾,故,g I h I ++是[]k x I 中非零元。 注意到()()g I h I f I I ++=+=,即,g I h I ++是 []k x I 的零因子,这与假设[]k x I 是域矛盾(域是整环,无零因子)。# 命题2.设k 是域,()p x ∈[]k x 是d 次首一不可约多项式(monic irreducible ), 设[]k x K I =,其中(())I p x =,且设x I K β=+∈. (i) K 是域,且{,}k a I a k '=+∈是同构于k 的K 的子域,因此K 可以看做是域k 的扩张. (ii) β是()p x 在K 中的根. (iii)如果()[]g x k x ∈,且β是()g x 的根,则|p g . (iv) ()p x 是[]k x 中唯一的以β为根的首一不可约多项式.

经典数学史论文

通过对《数学史与数学文化》这门课程一个多月的学习,我对数学史有了进一步的了解,对数学的发展有了更加理性的认识。数学史是一部大百科全书,是一场精彩纷呈的电影,是科技发展的生命历程!它饱含着无数个前辈伟大的数学家的杰出贡献,又为那些愿意为数学历史写下新篇章的后来者铺好了道路! 法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这们学科的历史和现状”尽管我们反复强调学习知识的意义,但是如果没有适当的历史叙述,那么这些知识的来龙去脉对于学生来说仍然是感到费解的.对于学习数学的学生来说,一些课程所介绍的通常是一些似乎没有什么关系的数学片段,而历史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们跟数学思想的主干也联系起来.因此数学学习中,应在学习数学知识的同时,把一些重要的数学史料结合起来,更能掌握数学发展的基本规律,了解数学的基本思想,同时我们还可以看到数学发展的曲折,数学家们所经历的艰苦漫长的道路.数学史中那些能够深深感动我们、惊心动魄、引人入胜的例子不胜枚举.从而激发我们学习数学的积极性和创造性。那样的话,我们不仅获得真知灼见,还将获得顽强学习的勇气,进而塑造完善的人格. 1.数学史料对理解数学发展的作用 (1)数学发展到今天,已经延伸出上百个分支,但它毕竟是一个整体,并且有它自己的重大问题和目标.如果一些分支专题对于数学的心脏无所贡献,它们就不会开花结果,一些被分裂的学科就面临着这种危险.如由于在工业技术上的极大应用,哈密顿四元法曾传播很广,风行一时,但不久后,四元法就不再使用了.如同Hilbert说的:“数学是一个有机体,它的生命力的一个必要条件是所有各部分的不可分离的结合.” (2)数学课程所介绍的似乎是一些没有什么关系的数学片段.历史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们和数学思想的主干也联系起来.数学史既可以展示数学发展的总体过程,又详加介绍各学科的具体发展过程,把握数学这一发展过程可使我们视野开阔,深刻理解数学的本质,以便在今后的学习中能高瞻远瞩.把握数学这一发展过程,还可以加深对所学知识的理解.正如无理数是由于度量问题而产生的,它的发现导致几何学在一定时期内独立于算术孤立发展;求极大、极小问题、求曲线长等问题的研究,直接促使牛顿、莱布尼兹发明微积分.微积分产生后,出现了许多分支,如常微分方程、偏微分方程;分析学中的“病态”函数给勒贝格以启发,后来勒贝格创立了测度论;著名数学家康托因研究分析学问题而发明朴素集合论,朴素集合论又包含悖论.因此,集合论应运而生.深刻地理解数学史的内容,才能了解数学发展的基本进程. (3)通常的数学课程直接给出一个系统的逻辑叙述,使我们产生这样的印象:数学家们几乎理所当然地从定理到定理,数学家们能克服任何困难,并且这些课程完全经过锤炼,己成定局.我们可能被湮没在成串的定理中,特别是当我们刚开始学习这些课程的时候.历史却形成对比,它教导我们,一个科目的发展是由汇集不同方面的成果,点滴积累而成的.我们也知道,常常需要几十年,甚至几百年的努力才能迈出有意义的几步.不但这些科目并非天衣无缝,就是那些已经取得的成就,也常常只是一个开始,许多缺陷有待填补,或者真正重要的扩展还有待创造.今天的小学生都知道阿拉伯数字为1、2、3、4、5、6、7、8、9、0,

伽罗瓦理论的理解

要点: Galois关于代数方程根式可解等价于它的Galois群可解这一定理的证明思路。(1)存在性证明与数的计算相分离;如极限值、代数学基本定理、方程的根;

(2)三次方程根的置换群和五次方程根的置换群有什么不同?3个根共有3!=6个可能的置换,5个根共有5!=120个可能的置换。为什么说方程的可解性可以在根的置换群的某些性质中有所反映? (3)方程的对称性质与有无求根公式有关系吗? (4)GALOIS定理是通过研究根式扩张和根对称性得出来的结果.问题是怎样求一个多项式方程的GALOIS群?怎样判断GALOIS群是否可解?为什么一般的五次以上方程GALOIS群不可解,但是某些特殊的五次以上方程有根式解?x^n-1=0可用根式解,它的n个根是? (5)假设一个多项式方程有根式解,发现了有根式的情况下,各个根的对称性要满足一定关系.五次以上的方程这个关系不一定满足.那么这个关系是什么呢? (6)阿贝尔定理:如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数. (7)怎样构造任意次数的代数可解的方程?怎样判定已知方程是否可用根式求解?怎样全部刻画可用根式求解的方程的特性? (8)一个方程究竟有多少个根?如何预知方程的正、负、复根的个数?方程的根与系数的关系如何?方程是否一定有根式解存在? (9)方程本身蕴涵的代数结构: 方程根的置换群中某些置换组成的子群被伽罗瓦称之为方程的群(伽罗瓦群),伽罗瓦群就是由方程的根的置换群中这样一些置换构成的子群。那么某些置换是哪些置换呢? 四次方程x^4+p*x^2+q=0的四个根的系数在方程的基本域F中有两个关系成立:x1+x2=0,x3+x4=0.在方程根的所有24=4!个可能置换中,下面8个置换 E=(1),E1=(12),E2=(34),E3=(12)(34),E4=(13)(24),E5=(1423),E6=(1324),E7= (14)(23)都能使上述两个关系在F中保持成立,并且这8个置换是24个置换中,使根之间在域F中的全部代数关系都保持不变的仅有的置换。这8个置换就是方

著名数学定理1

著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174. 阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如, 任意给定二次方程ax 2 +bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++???++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10??? 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都 无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦 给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此. 阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -= ,又有 ??? ? ??r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系. 艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=--Λ如果存在素数 p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p2 不整除a 0 ,那么f (x )在有理数域上是不可约的.

伽罗华与群论

伽罗华与群论》L.R.Lieber著樊识译 引言 大家都知道:科学知识是与时俱进的,科学是一种活的,蓬勃滋长的东西。 然而一般人总把数学看做又老又朽,似乎再也不能滋长发扬的了。的确,在学 校里所教的数学——算术,代数,几何——在几世纪前大家早都知道;就是专 门学院的教程差不多也有三百多年的历史。笛卡尔(Descartes)之创造解析学 和牛顿(Newton)之发明微积分,那都是十七世纪的事情。可是,事实是这样的: 数学的范围甚至比科学的范围还要来的广些,就从那个时候起,他已在脚踏实 地的向前迈进了。 数学中一些比较新颖的概念是什么?是不是他们太抽象了——虽然好些概念 还是由很年轻的数学天才所创的——使得这一代的青年人连听都够不上听一听呢? 是不是他们距离平常的一般思维方法太远了,以致不能使一般普通的人们从中得 到任何用处和快乐?难道连一般数学教员对于这些概念也不能有一个认识的机会 吗?不是的!其实是这样的:那些近代数学上的发展不但能使数学家发生兴趣, 而且正像微积分一样,对于科学家也能有相当伟大的帮助。哲学家公认:近代数 学与基本的宇宙说是有直接关系的。心理学家在近代数学中也会看到一种能从偏 见中把心胸解放出来的以及能在陈腐的偏见之荒墟上建立起簇新有力之结构来的 伟大工具——像是在非欧几里得几何学之创造中所可以看到的。的确,谁都要珍 重现代数学之特殊的旺盛和卓绝的本色。 这本小册子,作者有心把他当做现代数学中一支的入门,使得那些对于这门 数学愿作更进一步研究的人们在阅读时较为容易有趣些。 这本小册子里所讲的是群论(Theory of Groups),群论是近代数学的一种,伽罗华(Evaristo Galois)对于这门数学的理论和应用很多发扬。伽罗华殁于一百年以前, 死的时候还不满二十一岁,在他那短促而悲惨的生命中,于群论颇多贡献;而这门 数学在今日已成为数学中的重要部分了。自古以来的二十五位大数学家中,他就是 其中之一位。 他的一生,除了在数学上有惊人的成功,其余尽是失意的事,他渴望着进巴黎的 L'Ecole Polytechnique,但在入学考试时竟失败了;过了一年,他再去应试,然而 仍旧是失败,他拿自己研究的结果给歌西(Cauchy)和傅利(Fourier)二氏看,这两人 是当时很出色的数学家,但是他们对他都没有注意,而且两人都把他的稿本抛弃了, 他的师长们谈起他的时候,常说:“他什么也不懂”,“他没有智慧,不然就是他 把他的智慧隐藏得太好了,使我简直没法子去发现他”,他被学校开除了,又因为 是革命党徒,曾经被拘入狱,他曾与人决斗,就在这决斗中他是被杀了。(在决斗的 前夜,他自己预知必死,仓猝中将自己在数学上的心得草率写出,交给他的一个朋友)。 敬祝他的灵魂安乐! --

伽罗瓦对数学的贡献

SHANGHAI UNIVERSITY 上海大学第一学年春季学期 (新生研讨课) 课程名称:数学进展中的几个案例和启示 课程号:0100Y035 授课教师:郭秀云 学号:_____13122070____ 姓名:_____曹颖_______ 所属:____理工二组____ 成绩:_______________ 评语:

论伽罗瓦对数学的贡献 曹颖(13122070) 摘要:埃瓦里斯特·伽罗瓦法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人,被公认为数学界两个最具浪漫主义色彩的人物之一。他在21年的人生中为数学领域做出了杰出的贡献,可惜他的一生只能被称为“天才的悲剧”,令人惋惜悲叹。 关键词:伽罗瓦、群论、贡献、体会 一、引言 在数学中,代数方程的求解有悠久的历史。很早就会解1次和2次方程,16世纪也成功解决了3次和4次方程,它们的根都可以表示为系数的根的四则运算,我们称它们有根式解。而5次和5次以上代数方程求解遇到了严重的障碍,经过300年的努力仍然得不出求解公式。经过多次失败之后,阿贝尔和伽罗华从反方向来看问题。在19世纪20年代,他们证明:一般的5次和5次以上代数方程没有根式解。而伽罗华走得更远,他引进群的概念来判断一个5次或5次以上方程是否有根式解。 二、正文 1.伽罗瓦理论的产生背景 用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。 伽罗瓦从1828年开始研究代数方程理论,他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式△1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群

伽罗瓦理论

伽罗瓦理论 用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。19世纪上半叶,阿贝尔受高斯处理二项方程(p为素数)的方法的启示,研究五次以上代数方程的求解问题,终于证明了五次以上的方程不能用根式求解。他还发现一类能用根式求解的特殊方程。这类方程现在称为阿贝尔方程。阿贝尔还试图研究出能用根式求解的方程的特性,由于他的早逝而未能完成这项工作。伽罗瓦从1828年开始研究代数方程理论(当时他并不了解阿贝尔的工作),他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。在几乎整整一个世纪中,伽罗瓦的思想对代数学的发展起了决定性的影响。伽罗瓦理论被扩充并推广到很多方向。戴德金曾把伽罗瓦的结果解释为关于域的自同构群的对偶定理。随着20世纪20年代拓扑代数系概念的形成,德国数学家克鲁尔推广了戴德金的思想,建立了无限代数扩张的伽罗瓦理论。伽罗瓦理论发展的另一条路线,也是由戴德金开创的,即建立非交换环的伽罗瓦理论。1940年前后,美国数学家雅各布森开始研究非交换环的伽罗瓦理论,并成功地建立了交换域的一般伽罗瓦理论。伽罗瓦理论还特别对尺规作图问题给出完全的刻画。人们已经证明:这种作图问题可归结为解有理数域上的某些代数方程。这样一来,一个用直尺和圆规作图的问题是否可解,就转化为研究相应方程的伽罗瓦群的性质。 在伽罗瓦死去14年后的1846年,法国数学家刘维尔整理出版了伽罗瓦的手稿,人们才逐渐理解了伽罗瓦的思想。 伽罗瓦运用他的理论彻底解决了方程的根式可解问题,他的主要结论可以归结为:一个方程根式可解当且仅当他的伽罗瓦群是可解群。 诚然,对于伽罗瓦的时代来说,群论无疑太过于超前了,当时的数学家们要么完全不能理解,以至于在几十年之后,当一位大数学家看到了他的理论后,苦苦思索了3个月,才能够理解其含义;当时的数学家们要么出于某种偏见,不给予他正确的评价,短视蒙蔽了他们,使得英才早逝。伽罗瓦的生命永远的停留在了21岁,我们不敢去想象,如果他的生命再

模块六2.探究活动 重温代数学

重温代数学 如果没有一些数学知识,那么就是对最简单的自然现象也很难理解什么,而 要对自然的奥秘做更深入的探索,就必须同时地发展数学 J.W.A.Y oung 数学的历史是重要的,它是文明史的有价值的组成部分。人类的进步是与科 学思想极为一致的。数学和物理的研究是智慧进一步的一个可靠的记录。 F.Cajori §1. 初等数学回顾 1. 主要内容。这里对初等数学作一简要回顾。孔子说:“温故而知新”。柏拉 图说:“天下本无新事”。这是告诉我们,要从旧中找出新,从新中辩出旧。只有如此我们才能学得深、理解得透。 初等数学的主要内容计有:算术,代数,几何,三角和解析几何。它们提供 了最基本的数学知识和最基本的思维模式. 这些内容清楚地表明,数学是空间形式和数量关系的学科。那么,形与数的 本质是什么? 形:空间形式的科学,视觉思维占主导,培养逻辑推理能力,培养洞察力。数:数量关系的科学,有序思维占主导,培养符号运算能力。 在学习数学的时候要注意数、形结合。已故著名数学家华罗庚对此非常重视。他曾写了一首词: 数与形,本是相倚依,焉能分作两边飞。 数缺形时少知觉,形少数时难入微。 数形结合百般好,隔离分家万事非。 切莫忘,几何代数统一体, 永远联系,切莫分离。 数与形相结合,既有助于加深理解,也有助于记忆。 在初等数学中,算术与代数以研究数量关系为主,几何与三角以研究空间形 式为主。解析几何是数与形结合的典范。几何学教给我们逻辑推理的能力,代数学教给我们数学演算的能力。在整个初等数学中代数占有更加重要的作用。 2. 中学代数的主要内容。中学代数主要完成了那些成果呢? 1).从数值运算过渡到符号运算。算术的特点是数值运算,代数的特点是符 号运算。中学代数实现了从数值运算到符号运算的过渡,沿着抽象思维的道路走上了数学的更高级的阶段。但是,在中学代数中,符号代表的仍然是数。2).二元、三元一次线性方程组的解。三元一次线性方程组的一般形式是 3 3 3 3 2 2 2 2 1 1 1 1 a x b y c z d a x b y c z d a x b y c z d + + = + + = + + = 为了求解线性方程组,我们采用逐次消去一些未知量的方法以简化方程组,这就是实施了下面的变换:

阿贝尔和伽罗瓦的比较(精制甲类)

阿贝尔和伽罗瓦的比较 今天我要向大家介绍两位朋友――阿贝尔和伽罗瓦 1 阿贝尔与伽罗瓦的不同点 1.1 两人的个人基本情况比较 1.2 数学研究的成就不同 阿贝尔证明对一般的四次以上的方程没有代数解. 伽罗瓦解决了什么样的方程有代数解,即方程有根式解的充要条件. 1.3 运气不同 “阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他.继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在‘克雷勒杂志‘上发表了.这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他业已成为众所瞩目的优秀数学家之一.遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知.” 但是伽罗瓦的重大创作在生前始终没有机会发表. 1.4 成果的广泛性不同

阿贝尔在数学上的贡献,主要表现在方程论、无穷级数和椭圆函数等方面.即除了代数方程论之外,阿贝尔还从事分析方面的研究.所以说阿贝尔是多产的. 但是伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论.即伽罗瓦的成果重在代数方程论.1.5 成就的影响不同 “阿贝尔的一系列工作为后人留下丰厚的数学遗产,为群论、域论和椭圆函数论的研究开拓了道路.他的数学思想至今深刻地影响着其他数学分支.C.埃尔米特(Hermite)曾这样评价阿贝尔的功绩:阿贝尔留下的一些思想,可供数学家们工作150年.” “伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论.正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程.正是这套理论为数学研究工作提供了新的数学工具―群论.它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始.” 1.6 心理状况不同 阿贝尔――“从满怀希望到渐生疑虑终至完全失望,阿

多项式理论及其应用

多项式理论及其应用 许洋 巢湖学院 数学系 安徽 巢湖 238000 摘 要 多项式是代数学中最基本的对象之一。它不但与高次方程的讨论有关,而且在进一步学习代数以及其他数学分支时也会碰到。本文将介绍一些有关多项式的基本理论以及多项式在矩阵问题,行列式问题和初等数学中的运用。 关键词:多项式;矩阵;行列式 Abstract Abstract:polymial is the most basic object of algebra one.It does not but with high times equation,and discussion about the further study algebra and other branches of mathematic may encounter.This paper will intraduce the basic theory of some relevant polynomial in matrix,determinants and polynomial in the application,elementary algebra Keywords:polynomial;matrix;determinants 引言:多项式理论是古典代数的主要内容。多项式的研究源于“代数方程求解”,是最古老的数学问题之一。16世纪以前,人们对一般的一元二次方程已经有了公式解法,但对于一般的一元二次方程,数学家却束手无策。16世纪的欧洲数学家们都致力于寻求一般的一元三次方程的求根公式。1799年,高斯(Garss,1777-1855)在他的博士论文中第一次严格证明了代数基本定理:在复数域中,任何n(n ≥1)次多项式至少有一个根。经过多年,数学家仍找不到用根式求解五次多项式的一般解法。终于在1824年阿贝尔(Galois,1811-1832)引入了群的概念,证明不存在用根式求解五次或以上的多项式的一般方法,这理论被引申为伽罗华理论。以下本文将介绍多项式的有关理论及其应用。 一,多项式的有关理论 (一)多项式的有关概念 定义1:f(x)= 110...n n x x x -++++n n-1a a a a (0≠n a ,n N ∈)称为关于x 的一元n 次多项式,n 称为f(x)的次数,记作:deg f(x)=n 。 定义2:如果在多项式f(x)与g(x)中,除去系数为零的项外,同次项的系数全相等,那么f(x)与g(x)就称为相等,记为f(x)=g (x ).系数全为零的多项式称为零多项式。 性质:设f(x)≠0与g(x)≠0是两个多项式,且f(x)±g(x) ≠0,则 deg[f(x)±g(x)] ≤max{deg f (x ),deg g(x)};deg[f(x)·g(x)]=deg f(x)+ deg g(x) . (二)多项式的整除法

《抽象代数》课程的一些体会

《抽象代数》课程的一些体会 邓少强 (数学系) 近几年,我担任了我院非数学专业课程《抽象代数》的主讲任务。由于该课程是我院非数学专业课程总体改革的重要一环,院领导和各相关人员对本课程都非常重视。通过几年的教学实践,我在教学方法、手段等方面都积累了一定的经验。下面谈谈自己的体会,与大家分享。 首先,一门课程是否成功,准确的定位是关键之一。课程开始之前,我们碰到的第一个问题就是,这门课程到底要讲到什么程度。《抽象代数》本来是数学系传统课程之一,并不将数学专业与其他专业分开来上,后来由于其他专业计算机等课程的增加,才将这门重要的课程从非数学专业的教学计划中删去。这样做的好处自然是可以开设更多更“现代”的课程。但是时间一长,问题就接踵而至。由于受到的数学训练不够,本院非数学专业的很多学生基础不够扎实,进一步学习的能力不强。最明显的表现就是,连续几届考研,我院报考本校的很多学生的成绩还比不上一般的师范类大学的学生;而报考经济类专业的一些学生,其《高等数学》的成绩比不上经济类专业的学生。正是由于这一原因,我院才下定决心,重新在非数学各专业中开设传统的数学课,如《实变函数》、《泛函分析》、《微分方程》等。但是,恢复开课并不意味着可以将以前数学专业对应课程的教材、内容或者教学方法照搬。因为这些专业的学生,无论基础、能力或者学习的兴趣等方面,毕竟与数学专业的学生大不相同。因此,本课程必须力求适合这些学生的具体情况,既要达到加强学生的基础和训练学生的抽象思维能力的目的,又不能把目标定的太高,使学生望而生畏。 举一个最简单的例子来说,我国出版的抽象代数的教材就没有一本适合本课程。传统教材大都求多、求全,习题力求设计得有难度和深度,讲法务必严格,有的甚至以其讲法抽象为荣。当然,这样的教材对于数学专业的学生而言是有好处的,因为他们将来的工作要求他们必须具有十分坚实的学科基础和相当强的抽象思维能力。但是,对于非数专的学生而言,使用的教材过于深奥,不但收不到预想的效果,反而会使学生因为惧怕而失去学习的兴趣。老一批的教材中,只有张禾瑞的《近世代数基础》从教学内容上比较接近他们的要求,但是,该教材讲法有些陈旧,习题太少,也不是十分合适。在这种情况下,本院副院长顾沛教授与我为此专门编写了一本教材,全书由顾沛教授统筹设计,两人合作编写。正是考虑到这些具体情况,我们舍弃了很多原先预备的内容,而且将伽罗瓦理论作为附录。此外,为了使教材更有适应性,将习题分开普通题和补充题设计,而且教材名称也改为《简明抽象代数》,由高教出版社出版。几年的教学实践表明,该教材十分适合每周三学时的抽象代数课使用。究其原因,就是因为我们的定位比较准确。 我的第二点体会是,一个课程是否成功,能否抓住重点是关键。抽象代数的主要内容,自然是群、环、域的基本理论。但是,如果将这三个理论看作同等重要的三部分而平均使用时间和力量,就大错特错了。事实上,这三个理论有很多

数学史上两个最具浪漫主义色彩的人物之一伽罗华

数学史上两个最具浪漫主义色彩的人物之一伽罗华 伽罗华(Évariste Galois,公元1811年~公元1 832年)是法国对函数论、方程式论和数论作出重要贡献的数学 家,他的工作为群论(一个他引进的名词)奠定了基础;所有这 些进展都源自他尚在校就读时欲证明五次多项式方程根数解(So lution by Radicals)的不可能性(其实当时已为阿贝尔(Abe l)所证明,只不过伽罗华并不知道),和描述任意多项式方程可 解性的一般条件的打算。虽然他已经发表了一些论文,但当他于 1829年将论文送交法兰西科学院时,第一次所交论文却被柯西 (Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与巴黎综合理工大学(École Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文均被泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学史上两个最具浪漫主义色彩的人物之一。 Galois小传: 1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华。 天才的童年 1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗华街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特?伽罗华生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗华表示敬意,于1909年6月设置的。 伽罗华的双亲都受过良好的教育。在父母的熏陶下,伽罗华童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉?加布里埃尔?伽罗华参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗华曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”。可见父亲的政治态度和当时法国的革命热潮对伽罗华的成长和处事有较大的影响。 伽罗华的母亲玛利亚?阿代累达?伽罗华曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗华的传记中,特别谈到“伽罗华的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗华在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。

相关文档
最新文档