无功补偿方案设计注意事项

无功补偿方案设计注意事项
无功补偿方案设计注意事项

无功补偿方案设计注意事项

一,无电抗

1,谐振问题

⑴电容器自谐振:

电容器的自谐振

从理论上讲,理想的电容的容量越大,容抗就越小,滤波效果就越好。但是,电容都存在寄生电感( ESL),容量大的电容一般寄生电感也大,而且寄生电感与电容本身呈串联关系,于是串联自谐振就产生了。寄生电感越大,自谐振频率越低,对高频噪声的去耦效果也越差,甚至根本起不到去耦作用。元件的物理尺寸越大,自谐振点频率也越低。

实际上,所有的电容都包含一个LCR电路,这里L是和引线长度有关的电感、R是引线电阻、C是电容

延伸,电感的自谐振:实际的绕线电感线圈之间有寄生电容,整个电感相当于一个LC并联谐振回路,具有一个谐振频率,即电感的自谐振频率,工作在小于谐振频率的时候呈感性,高于谐振频率的时候电感呈容性了,便不能使用了。

⑵电容组与电网的并联谐振

K为电抗率(K=XL/XC)(没有电抗K=0)

Q CX:电容器装置的谐振容量,Sd:电容器装置接入处母线的短路容量

0.38KV基准短路容量为10 MV A

注意:用Q CX与电容器装置(投入)的容量作比较。不等则不会发生并联谐振2,涌流问题

3,过电压问题

接入的并联电容器将导致如下电压升高:

式中:ΔU—电压升高量, kV;U—接入电容器前的电压,kV;

S—电容器安装处短路容量,MVA; Q—电容器容量,Mvar

注:1MVA=1000KVA 0.38KV基准短路容量为10 MVA

二,有电抗(有谐波且记录谐波含量及次数,串联电抗)

1,谐振问题

⑴电容器组支路串联谐振

K为电抗率n为谐振次数(f=50×n f为谐振频率)

⑵电容组与电网的并联谐振

K为电抗率(K=XL/XC)

Q CX:电容器装置的谐振容量,Sd:电容器装置接入处母线的短路容量

注意:用Q CX与电容器装置(投入)的容量作比较。不等则不会发生并联谐振2,涌流问题

⑴单独一组电容器投入时,

⑵已有并联电容器组在运行,再投入一组电容器时,

3,过电压问题

⑴串联电抗器后,电容元件电压升高问题

⑵电网电压升高问题

接入的并联电容器将导致如下电压升高:

式中:ΔU—电压升高量, kV;U—接入电容器前的电压,kV;

S—电容器安装处短路容量,MVA; Q—电容器容量,Mvar

注:1MVA=1000KVA 0.38KV基准短路容量为10 MVA

ABB无功补偿解决方案

(四) ABB无功补偿解决方案 ABB无功功率补偿主要元件清单 CLMD-ABB低压电力电容器 1.CLMD低压电容器是ABB比利时公司进口产品,电压范围是从220V到 1000V,频率是50/60HZ,其能够满足系统电压、电流、频率的性能水平要求。 2.干式设计:CLMD使用干式电介质绝缘材料,避免了污染环境和泄漏的危险。 3.CLMD电容器重量非常轻,便于运输和安装。 4.极低损耗:CLMD介质损耗少于每千乏0.2瓦,总损耗包括放电电阻在内, 少于每千乏0.5瓦。 5.安全性:CLMD电容器备有放电电阻器,每个电容芯都有热均衡器以提供有 效的热耗散。 6.CLMD寿命长,具有自我恢复功能。当如果电介质的绝缘材料出现故障,临 近的金属电极会及时气化,把故障隔离,使电容器正常运行。 7.CLMD电容芯内部有独特的隔离器,能够在每个元件在寿命结束时有选择性 的把电容器从电路中隔离开来。

8.CLMD具有防火性能,所有电容芯元件有蛭石环绕。蛭石是一种无机,惰性, 防火及无毒性的粒状材料,能够吸收箱体内产生的能量,熄灭任何火焰。9.CLMD电容器的引线端子采用坚固的材料,避免了安装时发生损坏,减少了 维修量。 10.CLMD电容器符合国际电工委员会IEC31-1、IEC31-2的要求。 RVC-ABB功率因数控制器 1.ABB公司的RVC功率因数控制器是ABB比利时公司进口产品,其能够满足 系统电压、电流和频率的性能水平要求。 2.ABB公司的RVC功率因数控制器运行方式灵活,有自动运行模式,手动运 行模式,自动设定模式,手动设定模式四种,方便用户使用。 3.RVC调试功能强大,能够设定目标功率因数,控制器灵敏度C/K,相移,切 换延时,输出,电容器切换顺序,而且具有很好的自动初始化功能。 4.RVC采用液晶显示,液晶显示屏对比度用温度自动补偿,用户界面友好,方 便用户手动操作,能够显示功率因素,报警信号,超温信号,电容器需进行切换的指示信号。 5.具有各种报警功能:所有输出回路均被接通后,如果6分钟内功率因素不能 达到目标值则报警,内部温度上升到85摄氏度报警,电源掉电报警并随即切断所有电容器。 6.最大环境温度额定值为70摄氏度,对谐波不敏感。 RVC部分参数

动态无功补偿设备(SVG)技术协议详情(实用标准)

35kV静止无功发生器成套装置 技术协议

第一节技术协议 一. 总则 1. 本技术协议书仅适用于中铝能源太阳山风电厂五期110kV升压站主变扩建工程动态无功补偿装置(SVG)的加工制造和供货。技术协议中提出了对设备本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求。 2. 本技术协议提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规的条文,供方应提供符合本技术规引用标准的最新版本标准和本技术协议技术要求的全新产品,如果所引用的标准之间不一致或本技术协议所使用的标准如与供方所执行的标准不一致时,按要求较高的标准执行。 3. 本技术协议将作为订货合同的附件,与合同具有同等的法律效力。本技术协议未尽事宜,由合同签约双方在合同谈判时协商确定。 4. 供方保证提供的产品符合安全、健康、环保标准的要求。供方对成套设备(含辅助系统与设备)负有全部技术及质量责任,包括分包(或采购)的设备和零部件。 5. 本技术协议提出了对SVG技术参数、性能、结构、试验等方面的技术要求。 6. 若供方所提供的技术资料协议前后有不一致的地方,以有利于设备安装运行、工程质量为原则,由需方确定。 二. 标准和规 1. 合同设备包括供方向其他厂商购买的所有附件和设备,这些附件和设备应符合相应

的标准规或法规的最新版本或其修正本的要求。 2. 除非合同另有规定,均须遵守最新的国家标准(GB)和国际电工委员会(IEC)标准以及国际单位制(SI)标准,尚没有国际性标准的,可采用相应的生产国所采用的标准,但其技术等方面标准不得低于国家、电力行业对此的各种标准、法规、规定所提出的要求,当上述标准不一致时按高标准执行。 3. 供方提供的设备和配套件要符合以下最新版本的标准,但不局限于以下标准,所有设备都符合相应的标准、规或法规的最新版本或其修正本的要求,除非另有特别说明外,合同期有效的任何修正和补充都应包括在。 DL/T672-1999 《变电所电压无功调节控制装置订货技术条件》 DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB/T 11920-2008《电站电气部分集中控制设备及系统通用技术条件》 GB 1207-2006 《电磁式电压互感器》 SD 325-89 《电力系统电压和无功电力技术导则》 DL/T 840-2003 《高压并联电容器使用技术条件》 GB 50227-2008 《并联电容器装置设计规》 GB 311.1-1997 《高压输变电设备的绝缘配合》 GB 311.2-2002 《绝缘配合第2部分:高压输变电设备的绝缘配合使用导则》GB 311.3-2007 《绝缘配合第3部分:高压直流换流站绝缘配合程序》 GB/T 311.6-2005 《高电压测量标准空气间隙》 GB/T 11024.2-2001《标称电压1kV以上交流电力系统用并联电容器第2部分:耐久性 试验》 JB/T 8170-1995 《并联电容器用部熔丝和部过压力隔离器》 GB 50227-2008 《并联电容器装置设计规》

6、电能质量-无功补偿解决方案

电能质量-无功补偿解决方案 1.方案背景 电力系统中阻感负荷的存在,如变压器、异步电动机,都会消耗大量的无功功率,而大量的冲击性无功负载还会导致电压发生快速波动。电力电子变流设备,特别是各种相控整流装置的普及及应用,同样会消耗大量的无功功率。由此引发了电能质量恶化、网损增加、三相不平衡、输变电设备有效利用率降低等各种问题。系统中整流器、变流器等非线性负荷的应用,会产生大量的谐波电流注入电网,造成电网电压畸变,谐波不仅使电力电子设备和线路产生涡流损耗,导致线损增加,甚至还会引发系统谐振,从而产生谐波过电压,造成设备损坏。大量的谐波还可能影响继电保护和自动控制系统的可靠性,令正常的生产活动无法进行。 图1系统示意图 2.应用场景 2.1.场景1:风电场并网 随着风力发电技术的发展,风力发电装机容量在电网中所占的比例越来越高,风力发电的随机性会影响电力系统的有功无功,从而引起电压的波动。此外,电力系统的低电压故障又会影响到风电场的并网。

图2应用场景1-风电场并网 2.2.场景2:冶金 电弧炉是冲击性非线性负荷,工作时产生大量的谐波和负序电流,使得电网电压发生较大的波动和闪变,功率因数极低。 图3应用场景2-冶金 3.方案实现 3.1.概述 PRS-7586系列动态无功补偿装置(SVG)可直接接入35kV电压等级及以下电力系统,为电网或用电系统快速提供动态无功补偿,可有效提高系统电压暂态稳定性、抑制母线电压闪变、补偿不平衡负荷、滤除系统谐波及提高功率因数。

图4方案实现原理图示3.2.设计原则 表1系统主要设计原则

3.3.装置列表 表2装置列表 4. 1)模块化的电路结构 a)SVG的核心是基于IGBT器件的(链式)逆变器,链式逆变器每相由多个功率模块输出串联而成,功率模块采用N+1或N+2冗余运行结构; b)模块控制采用大规模FPGA芯片载波移相多电平空间矢量PWM控制策略,电路简单,抗干扰能力强,可靠性高; c)采用自励起动技术,使得装置投入时冲击电流小; d)模块面板共四个电气端子,2个光纤端子,接线简单,还设有若干状态及故障指示灯,方便维护及检修。 2)控制 a)采用基于DSP及多FPGA的全数字化控制平台,具有集成度高,可靠性高的优点; b)现场可设定控制方式:系统补偿、负荷补偿,同时可设定谐波补偿次数; c)采用瞬时无功电流控制策略,可在系统短路故障时,快速连续的发出无功,为系统提供充足的无功支撑; d)采用进口PLC实现多组固定电容器的综合投切控制; e)控制器采用全封闭防尘设计,无需冷却风扇,大大提高可靠性。

静态与动态无功补偿

**********. 静态补偿与动态补偿区别是什么? 动态补偿,是近几年发展起来是一类先进的补偿装置,静态补偿是相对于动态补偿来说的。以前我们常见的补偿柜或者补偿箱,大多用接触器做电容的开关。因为接触器的反应慢,又要考虑电容器的放电时间,所以这类补偿装置的一个共同特点是投切间隔较长,最快也不过在5秒左右。 这样的速度,对于电焊机、行吊、锯木机,等等机器来说,就不能很好的补偿了。 为了解决这个问题,就采用了可控硅来做电容开关,可以将反应速度提高到毫秒,也就是可以跟踪负载的变化,级数先进的产品,几乎达到同步补偿的水平。这样的快速补偿装置,我们叫它“动态补偿”。 目前,国家对动态补偿的要求还比较低: 国家标准GB/T15576-2008《低压成套无功功率补偿装置》中“6?13”的规定:动态补偿的响应时间不大于1秒。 JB/T 10695-2007《低压无功功率动态补偿装置》中“6?12?8”的规定:动态补偿的响应时间不大于2秒。 因此,按目前的标准,动态补偿就是:对电网功率因数变化,能在2秒以内反应并投切的补偿装置。 早期动态的补偿装置,因工作时没有接触器动作,没有吸合或释放产生的巨大响声,所以又称静止补偿。 那么,响应时间长的传统补偿装置,就是静态补偿了。 动态补偿的优点:反应快,补偿效果好,特别适用于负载波动剧烈的场合。动态补偿通常还有分补功能,可以对不平衡的负载做良好的补偿。 动态补偿的不足:价格高,可靠性还不够,自身耗能很大。在负载比较稳定的场合没有优势。静态补偿的优点:技术成熟,价格低廉,工作可靠,在一般场合补偿效果良好。所以使用很广泛。 静态补偿的不足:反应慢,对于负载波动大的设备无法补偿。静态补偿因成本限制,通常没有分补功能表。 特别指出:采用复合开关的补偿柜,不能算动态补偿,只能算静态补偿的改进产品,或者是介于动态补偿与静态补偿之间的改良产品。详见:第“20、复合开关是什么开关?” ************SVC&&SVG 止无功补偿器(Static Var Compensator——SVC)等。其中,SVC是用于无功补偿 典型的电力电子装置,它是利用晶闸管作为固态开关来控制接入系统的电抗器和 电容器的容量,从而改变输电系统的导纳。按控制对象和控制方式不同,分为晶 闸管控制电抗器(Thyristor Controlled Reactor——TCR)和晶闸管投切电容器 (Thyristor Switching Capacitor——TSC)以及这两者的混合装置(TCR+TSC)、 TCR与固定电容器(Fixed Capacitor)配合使用的静止无功补偿装置(FC + TCR) 和TCR与机械投切电容器(Mechanically Switch Capacitor——MSC)配合使用的 装置(TCR+MSC)。 为静止无功发生器(Static Var Generator——SVG)。它既可提供滞后的无功功 率,又可提供超前的无功功率。SVG分为电压型和电流型两种,图3给出了SVG装置

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

动态无功补偿技术的应用现状及发展 刘宪栩

动态无功补偿技术的应用现状及发展刘宪栩 发表时间:2018-05-31T10:36:53.397Z 来源:《电力设备》2018年第2期作者:刘宪栩王云昊刘楠 [导读] 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。 (国网天津市电力公司城西供电分公司天津市 300190) 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。对于电力用户来说,过多地从电网中吸取无功,不仅使电网损耗增加,也影响自身的用电和生产。可见无功功率对供电系统和负荷的运行都十分重要。但是,近些年来,随着我国工业的迅速发展,一些大功率非线性负荷的不断增多,对电网的冲击和谐波污染也呈不断上升趋势,缺乏无功调节手段造成了母线电压随运行方式的变动很大,引发了多种电能质量问题。主要包括:功率因数低、谐波含量高、三相不平衡、功率冲击、电压闪变和电压波动。 关键词:动态无功补偿技术;应用现状;发展 引言 在电力系统的运行中,系统运行的安全性、可靠性和经济性、输送电能的质量是其最根本的问题。一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。特别是如电弧炉等冲击负荷、非线性负荷容量的不断增加,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统提供大量无功功率。特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。 1动态无功补偿技术的现状 性能优良的SVC(静止无功补偿器)和技术更为先进的STATCOM(静止同步补偿器)已大规模应用于电力系统及工矿企业。 1.1同步调相机 早期的动态无功功率补偿装置主要为同步调相机,是传统的动态无功补偿设备,多为高压侧集中补偿,一般装于电力系统的枢纽变电站中,以减少因传输无功功率引起能量的损耗和电压降落。由于它是旋转电机,运行中的损耗和噪声都比较大,维护复杂费用高,且响应速度慢,所以难以满足快速动态补偿的要求。目前已逐渐退出动态无功补偿领域,在现场中仅有少量使用。 1.2静止无功补偿器(SVC) 静止无功补偿器(SVC)于20上世纪70年代兴起,现在是已经发展的很成熟的FACTS(柔性交流输电系统)装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(无功和电压补偿)。SVC装置的典型代表有:晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)和滤波器组(FC)。随着电力电子技术的不断发展和控制技术的不断提高,SVC向高压大容量多套并联的方向发展,以满足电力系统对无功补偿和电压控制的要求。南瑞继保在SVC的技术发展中做出了很大贡献,为国内外电网提供了多套大容量SVC系统。安装于新疆-西北联网工程第二通道750kV沙州变电站的SVC系统容量为-360Mvar(感性)~360Mvar(容性),由两套配置相同的SVC组成,直接接入变电站同一条66kV母线,每套SVC包含TCR(-360Mvar)×1,滤波器组(+180Mvar)×1。本工程SVC系统TCR单体容量达到360Mvar,直接接入电压等级高达66kV,开启了我国输电系统大容量、高电压动态无功补偿器的新篇章。 1.3静止同步补偿器(STATCOM) STATCOM系统基于电压源型变流器,采用目前最为先进的无功补偿技术,将IGBT构成的桥式电路经过变压器或电抗器接到电网上,适当地调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态调整控制目标侧电压或者无功的目的。同时如果需要STATCOM在补偿无功的基础上对负载谐波进行抑制,只要令STATCOM输出与谐波电流相反的电流即可。因此,STATCOM能够同时实现补偿无功功率和谐波电流的双重目标。 南瑞继保研制的百兆乏直流换流站动STATCOM在南方电网±500kV/3000MW永富直流富宁换流站顺利投运,该项目是大容量STATCOM装置应用于高压直流输电领域中的首个成功案例。此STATCOM系统包含协调控制系统和两套35kV/±100MVArSTATCOM成套设备。换流阀采用多电平电压源型换流器结构,成套设备占地面积小、功率密度高,具备快速暂态无功补偿、目标电压控制、交流系统故障穿越、协调控制等功能,是缓解直流换相失败、无功电压调节等的最佳解决方案,代表着柔性交流输电和用户电能质量领域的前沿方向。 2动态无功补偿技术的发展 2.1电力有源滤波器 电力有源滤波器的基本原理如图1所示。 图1 电力有源滤波器的基本原理 电力有源滤波器的交流电路分为电压型和电流型,目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器可分为并联型和串联型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。但电力有源滤波器现仍存在一些问题,如电流中有高次谐波,单台容量低,成本较高等。随着电力半导体器件向大容量、高频化方向发展,这类既能补偿谐波又能补

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿方案.讲解学习

济宁聚能光伏石墨材料有限公司35kV动态无功补偿装置(MCR+FC) 技 术 标 书

武汉国瑞电力设备有限公司 二○一二年九月 动态无功补偿装置设备技术规范书 1 设备总机要求 ◆本设备技术协议书适用于济宁聚能光伏石墨材料有限公司35kV动态无 功补偿装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 ◆本设备技术协议书提出的是最低限度的技术要求,并未对一切技术细节 作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本规范书的优质产品。 ◆本设备技术协议书所使用的标准如遇与供方所执行的标准不一致时,按 较高标准执行。 ◆本设备技术协议书经供、需双方确认后作为订货合同的技术附件,与合 同正文具有同等的法律效力。 ◆本设备技术协议书未尽事宜,由供、需双方协商确定。 2 应用技术条件及技术指标 2.1标准和规范 应遵循的主要现行标准,但不仅限于下列标准的要求,所有设备都符合相应的标准、规范或法规的最新版本或其修正本的要求,除非另有特别外,合同期内有效的任何修正和补充都应包括在内。 DL/T672-1999《变电所电压无功调节控制装置订货技术条件》

DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB11920-89 《电站电气部分集中控制装置通用技术条件》 GB 1207-1997《电压互感器》 SD 325-89《电力系统电压和无功电力技术导则》 SD205-1987 《高压并联电容器技术条件》。 DL442-91 《高压并联电容器单台保护用熔断器订货技术条件》。GB50227-95 《高压并联电容器装置设计规范》。 GB311.2~311.6-83 《高电压试验技术》。 GB11 024 《高电压并联电容器耐久性试验》。 GB11025 《并联电容器用内部熔丝和内部过压力隔离器》。 ZBK48003《并联电容器电气试验规范》。 GB50227《并联电容器装置设计规范》 GB3983.2-89《高电压并联电容器》 JB7111-97《高压并联电容器装置》 DL/T604-1996《高压并联电容器装置定货技术条件》 GB3983.2《高压并联电容器》 GB5316《串联电抗器》 GB1985-89《交流高压隔离开关和接地开关》 JB 5346-1998《串联电抗器》 DL/T 462-1992《高压并联电容器用串联电抗器订货技术条件》DL/T653-1998《高压并联电容器用放电线圈订货技术条件》 JB/T 3840-1985《并联电容器单台保护用高压熔断器》 DL/T620 《交流电气装置的过电压保护和绝缘配合》 GB/T 11032-2000《交流无间隙金属氧化物避雷器》 GB/T 11024.1-2001《放电器》 GB2900 《电工名词术语》

低压无功补偿系统硬件设计

摘要 本文主要介绍低压无功补偿装置的基本原理、控制方案以及硬件方面的选型和设计。 该补偿系统采用TI公司的定点TMS320LF2812系列DSP和MCU的双控制器进行控制,TMS320LF2812为补偿装置的总控制器,具有自动采样计算、无功自动调节、故障保护、数据存储等功能。同时具备指令运算速度快(约100MIP)、运算量大的优点,同时MCU与外部设备进行通讯,互不干扰,更好的满足了实时性和精确性的要求。采用晶闸管控制投切电容器、数字液晶实时显示系统补偿情况,可以实现快速、无弧、无冲击的电容器投切。为了更详细的介绍该系统,在论文第四章设计了比较完整的各功能模块的硬件电路图,其中包括电源模块、信号变换及调理模块、AD采样模块、锁相同步采样模块、通讯模块等。 关键字:低压无功补偿;晶闸管投切电容器;DSP

Abstract This paper mainly introduces the basic principle of low-voltage reactive power compensation device, control scheme and hardware selection and design. The compensation system by TI company's fixed-point tms320lf2812 series DSP and MCU dual controller control, tms320lf2812 compensation device controller with automatic sample calculation, automatic reactive power regulation, fault protection, data storage and other functions. At the same time with the instruction operation speed (about 100MIP), the advantages of large amount of computation. At the same time, MCU and peripheral equipment

动态无功补偿装置

随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1 并联无功补偿 1.1 同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2 静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

电力设计中无功补偿自控方案的应用

电力设计中无功补偿自控方案的应用 发表时间:2019-06-21T10:55:08.703Z 来源:《电力设备》2019年第1期作者:王笃林王凡[导读] 摘要:在电力设计之中,无功补偿自控方案是其中重要的内容,影响着电力系统运行的稳定性。 (日照阳光电力设计有限公司 276800)摘要:在电力设计之中,无功补偿自控方案是其中重要的内容,影响着电力系统运行的稳定性。对此,本文将分析电力设计中,不同无功补偿自控方案的应用,包括电子式、单片机控制技术、PLC控制技术等,以期为相关人员提供参考。 关键词:电力设计;无功补偿;自控方案;单片机;PLC 前言:根据补偿方式的差异,可以将无功补偿分为以下三种,即集中补偿、分散补偿以及就地补偿等,每一种方式适用于不同的电力设计之中。另外,结合不同的补偿控制方式,还可以将无功补偿分为电子式、单片机控制式、PLC控制式。所以,在电力设计中,需要保证无功补偿自控方案的合理性、科学性,以此来降低电能的损耗,同时提高供电的稳定性。 1.电力设计中电子式无功补偿自控方案 在电力设计的过程中,电子式无功补偿自控方案实际上是由很多不同的分立元件组成的,包括相位检测、电流检测、相位显示与无功显示、无功值运算、cosφ额定调节、电平比较、电源、定时脉冲、投切控制、过压保护、电容器组、供电系统。其中,系统中的相位、无功运算、电流检测单元、投切单元、电容器等,是影响无功补偿自动控制的主要部件。结合电子式无功补偿控制方案的结构能够发现,其具有体积大、线路复杂、元件多等缺点,同时其使用的周期相对较短。如果电子式无功补偿系统在运行的过程中发生故障问题,而工作人员没能对其进行及时维修、恢复,那么就必须对无功补偿进行手动控制,影响电力系统运行的稳定性。因此,电子式无功补偿自控方案在电力设计中的应用较少,已经逐渐被更加先进的方式所取代。 2.电力设计中单片机控制式无功补偿自控方案 一般情况下,以单片机控制技术为基础的无功补偿自控系统,所涉及的模块较多,如显示模块、信号调理模块、控制补偿模块、键盘控制模块等。在系统运行的过程中,由于其具有先进指令集、单周期执行指令时间,所以可以确定单片机1MIPS/MHz的具体数据吞吐率,以此来解决功率消耗、处理速度之间的矛盾问题。在单片机的内核之中,包含很多相关的无功补偿指令,同时还存在32个寄存器,而寄存器与逻辑运算单元相互连接,保证指令能够在同一个周期中,对两个寄存器进行同一时间的访问。除此之外,单片机控制式的无功补偿自控方案,可以在很大程度上提高代码率,同时与传统的控制器比较,其数据的吞吐率具有明显的优势。 在单片机控制式的无功补偿自控方案中,处理AVR信号的过程为:(1)A/D转换器对电力系统中的信号进行采样;(2)基于FFT算法对所采集的电力信号,进行系统的分析与处理;(3)检查、判断电力系统中,当前的电压是欠压还是过压,电流的状态是否呈现为负值;(4)根据最终的判断结果,确定是否切除电容器。实际上,以单片机控制系统为基础的无功补偿自控方案,全部都是以模块的方式进行设计的,主要的模块包括电网参数计算模块、电容器投切模块、数据采集模块、显示与键盘模块。然后,工作人员以修改程序为前提,完成系统的调试以及连接[1]。例如:ADμc812型号的单片机,其在电力设计的无功补偿自控中发挥着重要得作用,其优势主要表现为:稳定性强、成本较低、结构相对简单等,目前在电力设计中的应用较为广泛。通常投切元件会使用继电器SSR,所以在运行的过程中不需要使用CUP实现系统的控制,解决了控制复杂等相关的问题,提高电力系统运行的安全性、稳定性。 3.电力设计中PLC控制式无功补偿自控方案 以PLC控制技术为基础的无功补偿控制方案,在设计的过程中主要使用稳压电源、输出电路、相角检测电路等。但是,对于电力系统中硬件电路的控制,基本上都是通过PLC实现的,包括清零电路、译码器、可逆计数器等。由于在无功补偿自控系统的运行中,相角检测电路输出的信号相对较弱,所以并不能对PLC的输入产生促进作用,进而需要以放大的方式,对该信号进行处理,然后才能够将其作为系统的输入信号。根据系统的实际控制需求,就能够利用PLC控制技术实现无功补偿自控的基本目标[2]。但是,PLC的输入点在容量大小方面存在局限性,因此应加入中间继电器,然后才能够将其作为输出电路。 根据PLC控制式无功补偿自控的流程,其主要就是将模块化设计、结构化设计进行了有机结合,提高系统中层次的有序性、鲜明性。这样的方案设计,便于系统中的检测模块随时完成相角信息的采集,同时与既定的参数进行系统的比较、分析,确定其中不相符的参数,切除系统中的补偿电容器,提高电力系统功率的合理性、规范性。例如:以S7-200西门子PLC为基础进行无功补偿自控设计,就可以基于系统中的时钟、日历等,完成电力系统中的投切工作,如果发现检测电路、单元模块发生故障问题,根据相应的时间进行设定,就可以自动完成投切工作,减少误动作现象的发生。另外,如果系统中的PLC发生故障,软件可以自动将输出中止,同样能够避免出现误动作,提高电力系统运行的安全性、稳定性。 结语:综上所述,电力设计中无功补偿自控方案包含的方式较多,工作人员必须结合电力系统的实际需求,采用合理的无功补偿自控方案。在这一基础上,可以充分发挥无功补偿的作用与价值,提高电力系统运行的稳定性,减少电力运行过程中所产生的电能损耗,增强电力系统的经济效益、社会效益。简言之,电力设计中无功补偿自控方案的应用,必须具被针对性、科学性。 参考文献: [1]陈超,童可君,杨艳.一种基于电子标签技术的电力安全工具系统设计与应用[J].科技创新与应用,2019(04):86-87. [2]吕晓慧,徐永海,张雪垠.具有电动汽车快速充电接口的电力电子变压器低压直流侧设计[J/OL].现代电力,2019(02):40-48[2019-02-14].

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案 1.引言 电力系统中,电能质量是评价电力系统运行性能优劣的重要指标,而电压又是衡量电能质量的一个重要指标,因此,电压的稳定性对电力系统运行性能来说显得尤为重要。电压稳定与否主要取决于系统中无功功率的平衡,如果用电负荷的无功需求波动较大,而电网的无功功率来源及其分布不能及时调控,就会导致线路电压超出允许极限;另外,对于负荷一侧,电力系统多由输配电线、变压器、发电机等构成,其内阻抗主要呈感性,使得负载无功功率的变化对电网电压的稳定性带来极为不利的影响。 无功功率补偿是涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域的重大课题。由于电力电子技术装置的应用日益普及生产、生活各个领域,无功补偿问题引起人们越来越多的关注。据有关科学统计,如果全国都通过优化配置计算来安装无功补偿装置,在总投资不变的条件下,估计每年可以节省电量大约3亿千瓦时。因此,电力系统的无功补偿和电压调整是保证电网安全、优质、经济运行的重要措施。目前,由于电力电子技术的飞速进步,无功功率补偿方面也取得了突破性的进展。 2.连续无功补偿装置发展历史、现状和发展前景 工程上应用的无功补偿器主要包括旋转无功补偿器和静止无功补偿

器,其具体分类见图1。 电力系统的无功补偿和电压调整的解决方案 2.1 连续无功补偿装置的发展历史 旋转无功补偿器以同步调相机为代表,同步调相机实际上就是在过励或欠励状态下运行的同步电机,它既能发出容性无功,也能发出感性无功,因而同步调相机能对变化的无功功率进行动态补偿。由于其存在诸多缺点(见表1),70年代以来逐渐被静止无功补偿器取代。 静止无功补偿技术经历了图1所示的3代发展: 第Ⅰ代属于慢速无功补偿装置,在电力系统中应用较早,目前也仍在应用; 第Ⅱ代属无源、快速动态无功补偿装置,出现于 20 世纪 70 年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少,SVC 可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。 SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换;

动态无功补偿基础知识

动态无功功率补偿基础知识 一、什么叫无功 电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功,无功功率 表达式如下: 式中无功量 的单位为Var (乏),线电压的单位为V (伏),视在电流I 单位为A (安)。 二、无功及分类 1、感性无功:电流矢量滞后电压矢量90度, 如:电动机、变压器线圈、晶闸管变流设备等; 2、容性无功:电流矢量超前电压矢量90度, 如:电容器、电缆输配电线路、电力电子超前控制设备等; 3、基波无功:与电源频率相等的无功; 4、谐波无功:与电源频率不相等的无功。 三、什么是无功补偿 1、无功补偿: 指根据电网中的无功类型,人为地补偿容性无功或感性无功来抵消线路中的无功功率。 2、无功功率有那些危害: ——无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。 四、什么是动态无功补偿 1、动态无功补偿 根据电网中动态变化的无功量实时快速地进行补偿。 2、为什么要进行无功功率补偿 ? sin UI Q =Q Q

——是为了减小供配电线路中往复交换的无功功率,提高供配电线路的利用率。五、进行就地动补的意义是什么 ——是能将用电设备至发电厂全程供配电设备、线路、都得到补偿,降损节能效果显著,特别是低压线路及变压器的损耗大幅度降低,企业和用户直接受益。 六、就地动补的有功节能是什么 ——减小供配电设备线路损耗,变压器损耗等一切无功电流引起的发热功率。这部分损耗功率Ps可由下式表达: Ps=i2rΣ 式中i为视在电流,rΣ为供配电设备线路电阻和。 七、使用就地动补后线路损耗的节能比 ——补偿后视在电流的平方与补偿前视在电流的平方之比。 即:I22rΣ:I12rΣ 式中 I1为补偿前视在电流,I2为补偿后视在电流,rΣ为供配电设备线路电阻之和八、动补与静补的主要区别及优点 ——静补投切速度慢,不适合负载变化频繁的场合,容易产生欠补或者过补偿,造成电网电压波动,损坏用电设备;并且有触点投切设备寿命短,噪声大,维护量大,影响电容器使用寿命。 ——动补可对任何负载情况进行实时快速补偿,并有稳定电网电压功能,提高电网质量,无触点零电流投切技术增加了电容器使用寿命,同时具备治理谐波的功能。 九、什么是谐波 1、谐波 ——指电网中非基波(50Hz中国)的其他频率的电流或电压,如高次谐波,谐波 亦属于无功类别。 2、谐波的危害 ——谐波是供配电系统中的公害,可造成供配电线路,用电设备发热,产生趋肤效

(仅供参考)STATCOM 原理介绍 动态无功补偿原理介绍

STATCOM (Static Synchronous Compensator) It is a device connected in derivation, basically composed of a coupling transformer, that serves of link between the electrical power system (EPS) and the voltage synchronous controller (VSC), that generates the voltage wave comparing it to the one of the electric system to realize the exchange of reactive power. The control system of the STATCOM adjusts at each moment the inverse voltage so that the current injected In the network is in cuadrature to the network voltage, Donsión in these conditions P=0 and Q=0. In its most general way, the STATCOM can be modeled as a regulated voltage source Vi connected to a voltage bar Vs through a transformer.

tsc无功补偿装置的设计--电气设计

TSC无功补偿装置的设计 摘要:晶闸管投切电容器(TSC)是静止无功补偿技术的发展方向。根据笔者设计的一种TSC无功补偿装置,分析了TSC装置常用的主电路的特点,介绍了电容器投切判据与信号检测、零电压投入以及晶闸管触发电路等关键问题的解决方案。 关键字:无功补偿晶闸管 TSC 零电压触发 DESIGN ON A TSC REACTIVE POWER COMPENSATION DEVICE Abstract:Thyristor switchedcapactor(TSC)is a new direction of the staticvar compensator(SVC)technology.Basing on a designproject for TSC reactive power compensation device, the characteristics of itsvarious main circuits are analysed.Some key problems on developing TSC deviceare introduced, i.e. the criterion of switched capactor,the data detectionmethod, zero-voltage switching-on,and the triggering circuit for thyristors. key words: reactive power compensation;thyristor;thyristor switched capactor;zero-voltage triggering 1 引言 静止无功补偿装置(SVC)是配电网中控制无功功率的装置,它根据无功功率的需求,对无功器件(电容器和电抗器)进行投切或调节。传统的无功补偿装置采用机械开关(接触器或断路器)投切电容

相关文档
最新文档