晶体管原理复习 (1)

晶体管原理复习 (1)
晶体管原理复习 (1)

晶体管原理复习

CH2. 双极型晶体管(BJT)

1.名词解释

基区宽度调变效应(厄利效应);基区扩展效应(kirk 效应);发射结电流集边效应

2.下图为pnp双极型晶体管的载流子输运示意图

1)试根据图示定义定义该晶体管的共基电流增益α,共射电流增益β,注入效率γ,β。

基区输运系数*

2)证明关系式; ;ββ

α+=1成立。

3.画出pnp 晶体管四种工作状态(放大,饱和,截止,反转)下

1)少子分布示意图。

发射区)(+P 基区)(n 集电区)(P

空穴电流

和空穴流电子电流电子流图4.5*γβα=

2)能带图。

3)画出BJT的输出特性曲线图,并在其上标注上述四种工作状态的位置。

4.下图为一典型的npn晶体管的掺杂分布示意图,试从图示说明采取何种措施可提高晶体管的注入效率,基区输运系数。

5.试述异质结晶体管(HBT)相对于同质结晶体管有哪些优势,并说明原因。

6.晶体管的频率响应延迟时间,即信号从发射极输入,从集电极输出的信号延迟时间为c d b e ec τττττ+++=

1)试说出每个时间因子所代表的物理含义,并写出相关公式

2)要提高频率响应特性应采取什么措施?

7.下图为某BJT的电流放大倍数的频率特性示意图,

1)定义截止频率,特征频率。

2)写出截止频率,特征频率之间的关系式。

8.双极晶体管的开关过程即晶体管从饱和区向截止区转换的过程,试定性描述晶体管的开关过程。

9.画出理想BJT的低频、高频小信号等效电路图CH3: MOSFET

1.名词解释:

平带电压,阈值电压,亚阈值电流,沟导电导,沟导跨导,短沟道效应,DIBL效应、热载流子效应、本体穿通,等比例缩小,CMOS器件的闩锁效应。

2。下图为一MOS器件半导体表面电荷密度随表面势的变化关系示意图,试在图上标出积累区,耗尽区,弱反型区,强反型区。

3.下图为某半导体薄膜的C-V 示意图

1)判断该半导体的导电类型

2)定性说明高频C-V 形成的物理过程。

3)低频,高频C-V 曲线差异的形成原因。

4。简明叙述MOSFET 的工作原理。

5.在推导MOSFET 的电流-电压方程时作了哪几点假设?对于短沟道MOSFET 这些假设是否合理,为什么?

6.画出n 沟道增强型,n 沟道耗尽型,p 沟道增强型,p 沟道耗尽型MOSFET 的结构示意图,输出特性曲线,转移特性曲线。

7.已知MOSFET 阈值电压的表达式为

试述控制阈值电压的因素有哪些。

8.画出理想MOSFET 共源连接的低频、高频小信号等效电路。

0)2(22C V ΨqN ΨV V BS B A s B FB T +++≈ε

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的 输入电阻可高达1015W而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS t,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽 型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区, 并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖 一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G 另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS f。它的栅极与其他电 极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 源极s tiffiG m 引纯 ? N旳道增强型场效应管紡拘示胃图低州沟道壇强型场效应管符号 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图6-39(a) 可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0寸,即使加上漏-源电压UDS而且不论UDS的极性如何,总有一个PN结处于 反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID - 0。 若在栅-源极间加上正向电压,即UGS> 0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同 时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子 就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层, 且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称 为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

三极管的工作原理

三极管的工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

项目一三极管的工作原理 三极管,全称应为半导体三极管,也称晶体管、晶体三极管,是一种电流控制电流的半导体器件其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器·件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN 和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。下图是各种常用三极管的实物图和符号。 一、三极管的电流放大作用 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、三极管的偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取)。当基极与发射极之间的电压小于时,基极电流就可以认为是0。但实际中要放大的信号往往远比要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于时,基极电流都是0)。如果我们事先在三极管的基 极上加上一个 合适的电流 (叫做偏置电 流,上图中那 个电阻Rb就 是用来提供这 个电流的,所 以它被叫做基 极偏置电 阻),那么当 一个小信号跟 这个偏置电流 叠加在一起 时,小信号就

数字集成电路(中文)电路设计题

1.在MOS晶体管级设计完成功能为) | (|BE BCD A F 的CMOS静态逻辑门、为了使设计 出的电路具有最小延时提出个MOS晶体管的尺寸比例。 2.分析下图电路功能,并指出其优缺点和可能存在的问题。 图1 3.版图分析题: 图2 参照图2, (a)写出版图对应的逻辑表达式;

(b)画出晶体管级电路图; (c)描述此类电路的特点和主要应用场合。 4.版图分析题: 图3 参照图3, (a)写出版图对应的逻辑表达式 (b)画出晶体管级电路图 5.版图分析题: 图4

参照图4, (a )写出版图对应的逻辑表达式 (b )画出晶体管级电路图 6. 逻辑设计题:请分别采用标准CMOS 设计方法、镜像电路设计方法、基于传输门的方法 设计一个两输入的XOR 电路。 7. 分析图5电路工作原理,说明该电路完成什么功能。分析该电路的建立时间、保持时间、 以及clk_q 的时间。 图5 8. 设计两输入CMOS 同或门,要求画出其晶体管电路图。 9. 分析图6,12φφ和为两相时钟,且12φφ超前,分析下面电路工作过程,并说明功能。 1 φ1 2 φ 1 φ2 φN M O S 图6

10. 电路设计题:用CMOS 传输门和反向器设计一个上升沿触发的D 触发器。 11. 使用互补CMOS 电路实现逻辑表达式()()F A B C D B E G =++++,当反相器的 NMOS W/L=2, PMOS W/L=4时输出电阻相同,根据这个确定该网络中各个器件尺寸。 12. 分析下面电路,分析其工作原理,并给出该电路实现的逻辑功能。(给出分析过程) A F B B M2 M3/M4 图2 13 考虑图3, a . 下面的CMOS 晶体管网络实现什么逻辑功能?反相器的NMOS W/L=2, PMOS W/L=4 时输出电阻相同,根据这个确定该网络中各个器件尺寸。 b .最初的输入模式是什么,必须采用哪一种输入才能取得最大传输延时? 考虑在内部节点中的电容的影响。(给出分析过程)

晶体管开关电路设计报告

xxx大学 开放性实验报告 (A类) 项目名称:三极管开关电路设计实验室名称:创新实验室 学生姓名:xxxxxxxx

创新实验项目报告书 实验名称 三极管开关电路设计 日期 xxx 姓名 xxx 专业 xxx 一、实验目的(详细指明输入输出) 1.最大开关频率≥10KHz(不加输出负载); 2.其输出用以控制继电器的通断(输入信号1Hz); 3.有效输入控制电压Vin≤0.7V 或Vin≥ 4.3V; 4.设计两种开关电路:高电平饱和导通、低电平饱和导通。 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 晶体管开关电路可以有两种,分别是共射开关电路,共集电极开关电路。 共射开关电路的NPN 型晶体管电路如下图所示: 当V IN >V ON 时,晶体管基极-发射极导通,有电流流过集电极,又晶体管发射 级接地,晶体管工作在饱和区,流过集电极电流很大,V CE 很小,相当于把集电 极-发射极的一个“开关”闭合了一样,从而形成开关动作; 共集电极开关电路的NPN 型晶体管电路如下图所示: 当V BE >V ON 时,晶体管基极-发射极导通,有电流流过集电极和发射极,此时 将信号从发射极电阻取出,可以得到总比基极电压小0.7V 的电压值,于是,当基极输入标准的TTL 电平的时候,NPN 共集电极开关电路从集电极可以得到0.7V 和5V 的电压。还有一点,由于共集电极晶体管电路输出电压同输入电压同向,可以消除米勒效应的影响,因此共集电极开关电路的开关频率大大优于共射极

开关电路。 综上,我们本次试验选择共集电极开关电路作为实验电路。 三、实验过程(记录实验流程,提炼关键步骤)(尽可能详细) a)确定元件型号,查找相关资料,设计最初的设计原理图。 由于手头上只有8050和8550型晶体管,而此次开关电路设计要求对晶体管并不苛刻,因此直接拿8050和8550作为本次试验所用的晶体管。 原理图如下图所示: b)在仿真软件上进行仿真。 按照原理图搭建仿真电路,仿真结果如下图所示: 仿真结果中,输入5V正弦波给予2.5V偏置以便观察共集开关电路的特性。在仿真结果中可以看到,当输入电压大于4.4V时,管子基极-发射极关断,从射极电阻取出的电压直接为V ——在这里为5V。 CC c)按照电路原理图焊接电路板。

晶体管原理1

第二章 PN结 填空题 1、若某硅突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为()和()。 2、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。内建电场的方向是从()区指向()区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。 4、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。 5、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 6、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 7、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。若硅P 型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为()。 8、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。 9、PN结的正向电流由()电流、()电流和()电流三部分所组成。 10、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。 11、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 12、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。 13、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄基区二极管中,少子浓度的分布近似为()。 14、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN结的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 15、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 16、PN结的击穿有三种机理,它们分别是()、()和()。 17、PN结的掺杂浓度越高,雪崩击穿电压就越();结深越浅,雪崩击穿电压就越()。 18、雪崩击穿和齐纳击穿的条件分别是()和()。 19、PN结的低掺杂一侧浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi 就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。 问答题 1、简要叙述PN结空间电荷区的形成过程。 2、什么叫耗尽近似?什么叫中性近似? 3、PN结势垒区的宽度与哪些因素有关? 4、写出PN结反向饱和电流I0的表达式,并对影响I0的各种因素进行讨论。 5、PN结的正向电流由正向扩散电流和势垒区复合电流组成。试分别说明这两种电流随外加正向电压的增加而变化的规律。当正向电压较小时以什么电流为主?当正向电压较大时以什么电流为主? 第三章双极结型晶体管 填空题 1、晶体管的基区输运系数是指()电流与()电流之比。为了提高基区输运系数,应当使基区宽度()基区少子扩散长度。 2、晶体管中的少子在渡越()的过程中会发生(),从而使到达集电结的少子比从发射结注入基区的少子()。 3、晶体管的注入效率是指()电流与()电流之比。为了提高注入效率,应当使()区掺杂浓度远大于()区掺杂浓度。

三极管放大电路课程设计

三极管放大电路课程设计 (电子1202班杨云鹏0121209330224) 参考资料:《晶体管电路设计》【日】铃木雅臣著 《电子设计从零开始》 9013的相关介绍: 9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以及各种放大电路中经常看到它,应用范围很广,它是NPN型小功率三极管. 主要 用于低频放大与电子开关。 参数: 结构 NPN 材料与极性:SI-NPN 引脚:1 发射极2 基极3 集电 极。集电极发射极电压25V; 集电极基极电压45V ;发射极基极电压 5V ;集电极电流Ic Max 0.5A; 耗散功率0.625W ;工作温度-55℃ +150℃;特征频率150MHz。 课题要求:设计电压放大倍数为100倍的三极管放大电路;并且能够带动8欧和4千欧的负载。 电路设计:用2个9013三极管和一个8050pnp型三极管,前一个作为共射放大电路,放大倍数为50dB,但空载时输出电阻太大,无法带动负载为8欧的喇叭,所以后面加一个推挽型射极跟随器,不会降低放大倍数,但可使空载时输出电阻变的很小一般为几欧到十几欧,可带动8欧的喇叭。

电路设计图: 电路仿真输入输出波形: 实际测量:

出现故障及解决方法 1,在仿真的时候,出现了输出信号饱和失真和截止失真、增益不够、波形变形以及不能带动小负载的现象。解决方法:通过改变rc与re以及偏执电阻的阻值来不断的计算和调整,并加上了推挽式跟随器。最终得到了符合的波形 总结 在设计这次的BJT放大电路的过程中,我较熟练地运用了模电中的三极管放大,射极跟随器,推挽型射极跟随器以及差分放大电路和负反馈等知识。但是设计出的实物与实验要求相比还有比较大的差距。4千欧负载时三极管放大增益较符合,但是8欧的负载时信号衰减过大,不能符合设计要求。在不断地探索与试验中更深的理解了三极管放大电路中各电阻阻值变化对增益的影响。在今后学习中需再接再厉,并吸取这次的经验与教训。

第1章_MOS晶体管基本原理

MOS電晶體基本原理 2.1 MOS電晶體概述 MOS場效應電晶體(Metal Oxide Semiconductor Field Effect Transistor)是各種MOS 數位積體電路的基本組成單元。與雙極型電晶體(BJT,Bipolar Junction Transistor)相比,MOS電晶體的面積比較小,且製造工序也少,因此,MOS已成為VLSI電路中使用最廣泛的器件,主要用於構造數位電路的開關器件。 2.1.1金屬氧化半導體(MOS)的結構 圖2.1所示的是具有兩個電極的簡單MOS結構。它由三層構成:金屬柵極,二氧化矽絕緣層,p型襯底(在Si中摻入了3價元素,如硼)。MOS結構形成了一個電容,其中柵極和襯底分別是電容的兩極,二氧化矽絕緣層作為兩極之間的電介質,其厚度一般在10 nm到50 nm之間。在襯底的載流子濃度及分佈可以受加到柵極和襯底的外部電壓影響。 ) 栅极 衬底 圖2.1 MOS結構 MOS電晶體(MOSFET)的結構和工作原理一個n型MOS器件的基本結構如圖2.8所示。這種器件的襯底為p型,其中兩個區域採用n+摻雜,可以形成漏極和源極。襯底表面源極和柵極之間的區域用一層薄氧化物覆蓋,金屬(或者多晶矽)沉積其上作為柵極。兩個n+區域是這個器件電流傳輸 的兩極。這種器件中源極和漏極結構上是完全對稱的;所載入的結電壓和電流流動的方向決定了這兩個區域的不同功能。 導電溝道的形成是取決於源極和漏極之間所載入的電壓及柵極上施加的偏置電壓。漏極和源極之間擴散層的距離叫做溝道長度L。溝道的橫向擴展稱之為溝道寬度

W 。溝道長度和溝道寬度都是重要的參數,它們可以控制MOS 電晶體的一些電器特性。另外,覆蓋在溝道上的氧化層的厚度ox t 也是一個重要的參數。 圖2.8 n 溝道增強型MOS 電晶體的物理結構 MOS 電晶體在零偏置電壓的情況下沒有導電溝道,它稱為增強型(Enhancement -Type / Enhancement -Mode )MOS 電晶體。否則,它稱為耗盡型(Depletion -Type / Depletion -Mode )MOS 電晶體。具有p 型襯底和n + 型的源極、漏極的MOS 電晶體中,表面形成的是n 型。因此,這種器件被稱之為n 溝道MOS 電晶體。具有n 型襯底和p +型的源極、漏極的MOS 電晶體中,表面形成的是p 型。因此,這種器件被稱之為p 溝道MOS 電晶體。 B S G D S G D S G D B G G G n 沟道MOSFET p 沟道MOSFET S S S D D D 圖2.9 n 溝道和p 溝道增強型MOS 電晶體的電路符號 器件端的縮寫是:柵極用G 表示,漏極用D 表示,源極用S 表示,襯底用B 表

-放大电路的组成及工作原理

2.4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型, 掌握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生 活实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱和区,其中放大区是我们日常生活中较为常用的一种工作区间。大家是否还记得,晶体管工作在放大区时所需要的外部条件是什么吗(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2.4放大器的组成及工作原理 一、放大的概念 放大:利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一是信号不失真,二是要放大。

晶体管结构与工作原理

晶体三极管知识 晶体三极管作为重要的半导体器件,其基本结构和工作原理需要掌握。下面具体介绍。 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极( emitter, E )、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。 (a) (b) 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里 我们先讨论最常用的所谓 "正向活性区” (forwad active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E (这部分是三极管作用不需要的部分) 。InB? E在射极与与电 洞复合,即InB? E=I Erec o pnp三极管在正向活性区时主要的电流种类可以清楚地在图3(a)中看出。

晶体管的分类及应用

晶体管分类及应用 摘要 晶体管是现代电子设备制造的基础,广泛出现在现代电子系统中。晶体管为电子领域带来了革命性的变化,使得电子设备体积更小、成本更低、更加高效。本文归纳了晶体管的分类以及各类晶体管在一些场景下的应用。 正文 一、绪论 晶体管是几乎所有现代电子产品中的关键活动组件,被许多人看作20世纪最伟大的发明之一。现代的半导体器件可以被大批量自动化生产,因此每个晶体管的的成本都很低廉。晶体管的低成本,灵活性和可靠性使其成为无处不在的器件。晶体管机电一体化电路已经成为机电设备控制设备来控制机器。相比于机械控制系统,微控制器和计算机程序用于控制系统显得更加便捷。 二、分类 1)按材料 锗晶体管: 1948年锗晶体管出现后,固态电子器件的应用开始。最早在1941年,锗二极管开始取代了电子装置里的真空管。但是锗晶体管有一个重大缺点,易产生热失控。 硅晶体管:硅的电子特性比锗优越,但是所需的纯度高,取代锗晶体管。 化合物半导体砷化镓晶体管:砷化镓拥有一些比硅还要好的电子特性,如高的饱和电子速率及高的电子迁移率。在高速器件中,化合物晶体管是一个不错的选择。用砷化镓制造的化合物晶体管可以达到很高的工作频率,原因在于化合物砷化镓的电子迁移率是单质硅的5倍。 碳化硅晶体管

硅锗合金晶体管:在CMOS工艺方面,SiGe工艺的成本和硅工艺相当,但在异质结技术方面,SiGe工艺的成本比砷化镓工艺还要低。SiGe材料可让异质结双极性晶体管整合进CMOS逻辑集成电路,达成混合信号电路的功能。 石墨烯晶体管等。 2)按结构 BJT、JFET、IGFET (MOSFET)、IGBT等。 3)按电极性 n–p–n及p–n–p(BJT),N沟道及P沟道(FET)。 4)按最大额定功率 低功率晶体管、中功率晶体管及高功率晶体管。 5)按最大工作频率 低频晶体管、中频晶体管、高频晶体管、无线电频率(RF)晶体管、微波频率晶体管。 6)按应用类型 开关晶体管、泛用晶体管、音频晶体管、高压晶体管等。 7)按封装技术 插入式金属封装或塑胶封装、表面黏着技术、球栅阵列封装、功率晶体等。 8)按增益系数 hfe、βF或gm(跨导)等。 三、应用 双极结型晶体管(BJT) 双极性晶体管可放大信号,并应用在功率控制和模拟信号处理等领域。使用双极性晶体管可通过已知的基极-发射极的偏置电压和其温度、电流关系来测量温度。现在人们不断认识到能源问题,而场效应管技术由于功耗更低,在数字集成电路中逐渐成为主流,双极性晶体管的使用相对较少。相比于金属氧化物半导体场效应晶体管,双极性晶体管提供了一定的跨导和输出电阻,在功率控制等方面能力突出,并具有高速和耐久的特性。因此,双极性晶体管仍在模拟电路中占据重要位置,特别是高频应用电路的重要配件。可将MOSFET用BiCMOS技术和双极性

单结晶体管工作原理

单结晶体管工作原理 双基极二极管又称为单结晶体管,它的结构如图1所示。在一片高电阻率的N型硅片一侧的两端各引出一个电极,分别称为第一基极B1和第二基极B2。而在硅片是另一侧较靠近B2处制作一个PN结,在P型硅上引出一个电极,称为发射极E。两个基极之间的电阻为RBB,一般在2~15kW之间,RBB一般可分为两段,RBB = RB1+ RB2,RB1是第一基极B1至PN结的电阻;RB2是第一基极B2至PN结的电阻。双基极二极管的符号见图1的右侧。 图 1 双基极二极管的结构与符号等效电路 将双基极二极管按图2(a)接于电路之中,观察其特性。首先在两个基极之间加电压UBB,再在发射极E和第一基极B1之间加上电压UE,UE可以用电位器RP进行调节。这样该电路可以改画成图2(b)的形式,双基极二极管可以用一个PN结和二个电阻RB1、RB2组成的等效电路替代。 当基极间加电压UBB时,RB1上分得的电压为 式中称为分压比,与管子结构有关,约在0.5~0.9之间。

2.当UE=UBB+UD时,单结晶体管内在PN结导通,发射极电流IE突然增大。把这个突变点称为峰点P。对应的电压UE和电流IE分别称为峰点电压UP和峰点电流IP。显然,峰点电压 Up=UBB+UD T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 式中UD为单结晶体管中PN结的正向压降,一般取UD=0.7V。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 在单结晶体管中PN结导通之后,从发射区(P区)向基压(N区)发射了大量的空穴型载流子,IE增长很快,E和B1之间变成低阻导通状态,RB1迅速减小,而E和B1之间的电压UE也随着下降。这一段特性曲线的动态电阻为负值,因此称为负阻区。而B2的电位高于E的电位,空穴型载流子不会向B2运动,电阻RB2基本上不变。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 当发射极电流IE增大到某一数值时,电压UE下降到最低点。特性由线上的这一点称为谷点V。与此点相对应的是谷点电压UV和谷点电流IV。此后,当调节RP使发射极电流继续增大时,发射极电压略有上升,但变化不大。谷点右边的这部分特性称为饱和区。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 综上所述,单结晶体管具有以下特点:T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 (1)当发射极电压等于峰点电压UP时,单结晶体管导通。导通之后,当发射极电压小于谷点电压UV时,单结晶体管就恢复截止。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 (2)单结晶体管的峰点电压UP与外加固定电压UBB及其分压比有关。而分压比是由管子结构决定的,可以看做常数。T58838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸 对于分压比不同的管子,或者外加电压UBB的数值不同时,峰值电压UP也就不同。(3)不同单结晶体管的谷点电压UV和谷点电流IV都不一样。谷点电压大约在2~5V之间。

晶体管放大器的设计..

晶体管放大器的设计 一、实验目的 1. 熟悉晶体管放大器的工作原理,体会晶体管放大器的作用。 2. 掌握晶体管放大器静态工作点的测试和调整方法以及测量晶体管放大器各项动态性能指标的方法。 3. 学习和掌握设计、调试具体晶体管放大器电路的方法与技能。 二、实验原理 (一) 设计原理 1.工作原理及基本关系式 (1)工作原理。 晶体管放大器中广泛应用如图1所示的电路,该电路称为阻容耦合共射极放大器,它采用分压式电流负反馈偏置电路。放大器的静态工作点Q 主要由e c b b R R R R 、、、21及电源电压CC V +所决定。该电路利用电 阻1b R 、2b R 的分压固定基极电位bQ V 。如果满足条件bQ I I >>1,当温度升高时,↓↓→↓→↑→↑→cQ bQ be eQ cQ I I V V I ,结果抑制了cQ I 的变化,从而获得稳定的静态工作点。 图1 阻容耦合共射极放大器

(2)基本关系式。 当bQ I I >>1时,才能保证bQ V 恒定,这是工作点稳定的必要条件,一般取 ?????==锗管)硅管)()20~10(()10~5(11bQ bQ I I I I (1) 负反馈越强,电路的稳定性越好。所以要求be bQ V V >>,即bQ V =(5~10)be V ,一般取 ?????==锗管)硅管)()3~1(()5~3(V V V V bQ bQ (2) 电路的静态工作点有下列关系式确定: cQ eQ cQ be bQ e I V I V V R =-≈ (3) 对于小信号放大器,一般取 mA mA I cQ 2~5.0= CC eQ V V )5.0~2.0(= βcQ bQ bQ b I V I V R )10~5(12=≈ (4) 21b bQ bQ CC b R V V V R -≈ (5) ) (e c cQ CC ceQ R R I V V +-≈ (6) 2. 性能指标与测试方法 晶体管放大器的主要性能指标有电压放大倍数V A 、输入电阻i R 、输出电阻0R 及通频带W B 。对于图1所示电路,各性能指标的计算式与测试方法如下: (1)电压放大倍数

晶体管放大电路设计

晶体管放大电路设计 丁炳亮 一、基础理论 具体一个晶体管电路的计算其实并不困难,真正困难的是根据要求设计出合乎要求且实际性能优良的电路。晶体管电路的计算主要是静态工作点和动态参数的估算。首先需要准备一些基础知识用于理论计算。 1、晶体管计算中用到的几个重要公式: 第一个公式是PN节伏安特性公式,公式中电流电压为直流。 第二个公式是共射接法时,BE的输入的动态电阻,经常用到的一个公式。其中rbb比较小,当电流很小时可以忽略,或者认为是200欧,一些晶体管规格书会给出。需要注意是计算交流等效电路时才有用到这个公式。 第三个公式只要记住26mV即可。 第四公式为转移电导,也就是把晶体管等效为电压控制电流源(h模型等效为CCCS,Pi模型等效为VCCS)。 第五、六个公式为考虑厄利电压时的共射直流放大倍数和CE间电阻,看作CCCS时CE间电阻应该是无穷,但是厄利电压的存在使得该值变小。 2、h等效和Pi等效(微变模型) 一般工程计算使用简化的等效模型就能满足要求了。 简化的h等效模型简化的Pi等效模型

3、共射电压增益 h等效模型计算有 Pi等效模型计算有,注意这个公式忽略了rbb,实际上在电流较大时是不能忽略的,例如β=200,ICQ=26mA,则(26mV/ICQ)* β=200欧,与rbb相近,因此BE结的电压约等于Ube/2。 利用上个公式在不考虑负载时有。 二、最简单的放大电路 1、设计需求 信号源最大幅度为50mV,三极管为9013,h=250,电源电压5V。 这里的h值是用万用表测量出来的,实际的电路设计中h值有一个较大的范围,所以需要考虑对静态工作点的影响。 2、静态工作点估算 一般情况UCQ=Vcc/2,R3是为了减小失真,应该远大于rbe,但取的过大则实际输入到晶体管的电流就很小,这里取3.3K较为合适。 ICQ的确定是关键,需要先计算出最大的输入电流幅度,这里估计rbe=1K,则 IBQ=50mV/4.3K=11.6uA,为了避免失真,另外考虑手头上现有的电阻值,所以IBQ设置为17.4uA,即R2=250K,R1=2.5V/(IBQ*h)=575欧,手头上只有510欧电阻,所以实际的UCQ=2.8V 左右。C2和C1这里不做详细计算都选择用1uF的。 3、动态参数估计 如上图是h等效电路,画出了等效电路就很容易计算动态参数。rbe≈200+26mV*β/ICQ=1.7K,则电压增益为Au=Uo/Ui=-βib(R1//R4)/Ui=-(Ui/(rbe+3.3K))βR2/Ui=-βR2/(rbe+3.3K)=-25。注:这里计算的是电压增益的绝对值,严格的需要用复数表示。

晶体管PN结原理解释

PN结的定义: 在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。

双极型晶体管及其在生活中的应用

双极型三极管及其在生活中的应用 一、双极型三极管的介绍 1、 类型与结构 双极型三极管(Bipolar Junction Transistor, BJT )称为半导体三极管、晶体半导体等,是一种重要的三端子电子器件。它是由贝尔实验室(Bell Laboratory )的一个研究团队在1947年发明的。虽然如今MOSFET 已经成为应用最广泛的电子器件,但是BJT 仍然在汽车电子仪器、无线系统频射电路等领域具有一定的优越性。 双极型三极管(BJT )是一种电流控制器件。它由两个背 靠背PN 结构成,是具有电流放大作用的晶体三极管,。它有三 个电极,每个电极伸出一个引脚,由电子和空穴同时参与导电。 BJT 常见的晶体管外形如右图所示。 双极型三极管按材料可分为 锗半导体三极管和硅半导体三极 管,在这两种三极管中又可按结构可分为:NPN 型管和PNP 型管。 由于电子的迁移率比空穴的高, NPN 型BJT 应用的空间相较于PNP 型BJT 更广泛。此外,双极 型三极管按功率耗散能力大小可分为小功率管、中功率管、大功 率管;按工作频率的高低可分为低频管、高频管、微波管;按制造工艺又可分为合金管、合金扩散管、台式管、外延平面管。 在一个硅片或锗片上生成三个半导体区域:一个P 区夹在两个N 区中间的称为NPN 型管;一个N 区夹在两个P 区之间的称为PNP 型管。它们的电路符号和结构图如下图所示。 (双极型晶体管外形图) PNP 管(3Axx ) 双极型晶体管 锗管 硅管 NPN 管(3Bxx ) PNP 管(3Cxx ) NPN 管(3Dxx ) (双极型三极管分类图) (NPN 型管的结构模型图) (A 为NPN 晶体管、B 为PNP 晶体管)

JT-1型晶体管特性图示仪

3.6 JT-1型晶体管特性图示仪 JT-1型晶体管特性图示仪是一种可直接在示波管荧光屏上观察各种晶体管的特性曲线的专用仪器。通过仪器的标尺刻度可直接读被测晶体管的各项参数;它可用来测定晶体管的共集电极、共基极、共发射极的输入特性、输出特性、转换特性、α、β参数特性;可测定各种反向饱和电流I CBO、I CEO、I EB0和各种击穿电压BU CBO、BU CEO、BU EBO等;还可以测定二极管、稳压管、可控硅、隧道二极管、场效应管及数字集成电路的特性,用途广泛。 一、主要技术指标 (l)Y轴编转因数: 集电极电流范围:0.01~1000毫安/度,分十六档,误差≤±3%; 集电极电流倍率:分×2、×1、×0.l三档,误差≤±3%; 基极电压范围:0.01~0.5V/度,分六档,误差≤±3%; 基极电流或基极源电压:0.05V/度,误差≤±3%; 外接输入:0.1V/度,误差≤±3%; (2)X轴偏转因数: 集电极电压范围:0.01~20V/度,分十一档,误差≤±3%; 基极电压范围:0.01~0.5V/度,分六档,误差≤±3%; 基极电流或基极源电压:0.5V/度,误差≤±3%; 外接输入:0.1V/度,误差≤±3%。 (3)基极阶梯信号: 阶梯电流范围:0.001~200mA/度,分十七档; 阶梯电压范围:0.01~0.2V/级,分五档; 串联电阻:10Ω~22KΩ,分24档; 每族级数:4~12连续可变; 每秒级数:100或200,共3档; 阶梯作用:重复、关、单族,共三档; 极性:正、负两档; 误差≤±5%. (4)集电极扫描信号: 峰值电压:0~20V、0~200V两档,正、负连续可调; 电流容量:0~20V时为10A(平均值),0~200V时为1A(平均值); 功耗限制电阻:0~100KΩ,分17档,误差≤±5%; (5)电源:交流220V ±10%,50Hz±20Hz。 功耗:260V A. 环境温度:-10 ℃~+40℃ 相对湿度:≤80%

晶体管检波电路的设计

高频电子线路课程设计说明书晶体管检波电路设计 学生姓名: 指导教师: 专业: 班级: 完成时间:

摘要 包络检波电路有很多种,无源的有二极管检波,有源的有三极管、运放等;还有单向检波、桥式检波、同步检波等等。最简单的,也是用得最多的就是二极管和三极管。若之前用三极管检波可以实现,那么还是用三极管的吧。要检查几个方面:1、输入信号的幅度是否足够大,电流回路是否完整;2、三极管的偏置应是微导通或略低于导通,保证单向性;3、输出信号需滤波,幅度应符合后级使用要求,否则应加以放大。用二极管检波也无不妥,要检查几个方面:1、输入信号的幅度是否足够大,要保证使二极管导通,并注意电流回路是否完整;2、给二极管加偏压,使之微导通,保证正向波形电压顺利通过、反向波形被截止,波形完整;3、检波后的信号需滤波,幅度应符合后级使用要求,否则应加以放大。 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。 检波(也称解调)二极管的作用是利用其单向导电性将高频或中频无线电信号中的低频信号或音频信号取出来,广泛应用于半导体收音机、收录机、电视机及通信等设备的小信号电路中,其工作频率较高,处理信号幅度较弱。 常用的国产检波二极管有2AP系列锗玻璃封装二极管。常用的进口检波二极管有1N34/A、1N60等。 关键词:检波;二极管;频率特性;包络检波

目录 第一章系统分析 (3) 1.1设计课题任务和技术指标 (3) 1.2基本原理 (3) 第二章设计课题的仿真分析晶体管检波电路虚拟实现 (8) 2.1设计课题的参数选择 (8) 2.2晶体三极管混频器设计及课题的仿真结果 (9) 2.3 软件仿真中出现的问题及解决方法 (11) 第三章硬件电路组装调试 (12) 3.1 使用主要仪器和仪表 (12) 3.2 测试电路的方法和技巧 (12) 3.3 测试数据 (12) 3.4 调试中出现的故障 (12) 第四章电路总结 (12) 第五章元器件清单 (13) 第六章收获和体会 (15) 参考文献 (16)

2章-常用半导体器件及应用题解

第二章常用半导体器件及应用 一、习题 2.1填空 1. 半导材料有三个特性,它们是、、。 2. 在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。 3. 二极管的主要特性是。 4.在常温下,硅二极管的门限电压约为V,导通后的正向压降约为V;锗二极管的门限电压约为V,导通后的正向压降约为V。 5.在常温下,发光二极管的正向导通电压约为V,考虑发光二极管的发光亮度和寿命,其工作电流一般控制在mA。 6. 晶体管(BJT)是一种控制器件;场效应管是一种控制器件。 7. 晶体管按结构分有和两种类型。 8. 晶体管按材料分有和两种类型。 9. NPN和PNP晶体管的主要区别是电压和电流的不同。 10. 晶体管实现放大作用的外部条件是发射结、集电结。 11. 从晶体管的输出特性曲线来看,它的三个工作区域分别是、、。 12. 晶体管放大电路有三种组态、、。 13. 有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。在负载开路的条件下,测得A放大器的输出电压小,这说明A 的输入电阻。 14.三极管的交流等效输入电阻随变化。 15.共集电极放大电路的输入电阻很,输出电阻很。 16.射极跟随器的三个主要特点是、、。 17.放大器的静态工作点由它的决定,而放大器的增益、输入电阻、输出电阻等由它的决定。 18.图解法适合于,而等效电路法则适合于。 19.在单级共射极放大电路中,如果输入为正弦波,用示波器观察u o和u i的波形的相位关系为;当为共集电极电路时,则u o和u i的相位关系为。 20. 在NPN共射极放大电路中,其输出电压的波形底部被削掉,称为失真,原因是Q点(太高或太低),若输出电压的波形顶部被削掉,称为失真,原因是Q 点(太高或太低)。如果其输出电压的波形顶部底都被削掉,原因是。 21.某三极管处于放大状态,三个电极A、B、C的电位分别为9V、2V和1.4V,则该三极管属于型,由半导体材料制成。 22.在题图P2.1电路中,某一元件参数变化时,将U CEQ的变化情况(增加;减小;不变)填入相应的空格内。 (1) R b增加时,U CEQ将。 (2) R c减小时,U CEQ将。 (3) R c增加时,U CEQ将。 (4) R s增加时,U CEQ将。 (5) β增加时(换管子),U CEQ将。

相关文档
最新文档