基于Contourlet变换的CT图像处理

基于Contourlet变换的CT图像处理
基于Contourlet变换的CT图像处理

基于Contourlet变换的CT图像处理

【摘要】CT是医学影像重要的工具之一,对CT图像的去噪声处理是医学图像预处理中的重要环节,Contourlet变换是多尺度几何变换中的一种方法,能有效的表示图像,通过对图像进行多尺度、多方向展开,可以得到多尺度、方向性和局部性的图像表示,本文通过程序编写将Contourlet变换对CT图像处理进行了滤波处理,同时对比了传统去噪方法的滤波效果,实验结果表明Contourlet 变换对于医学图像是一种有效的滤波方法之一,Contourlet变换有方向滤波器和金字塔滤波器共同组合,方向滤波器和金字塔滤波器有不同的组合,本文将从滤波器组的组合中研究对于医学图像的处理对CT图像的去噪声处理提供了参考意见,以到达更好的可以保留图像的细节。

【关键词】图像去噪;Contourlet变换;椒盐噪声

引言

医学影像技术是现代医学中重要的组成部分,医学影像的质量好坏直接影响着医生对病人的诊断和治疗,基于X射线的计算机断层成像技术形成CT图像因为拍出来的片子分辨率越高,速度快,成像清楚,相对辐射更低的特点成为了医学诊断的重要手段之一,CT图像在获得的过程中产生的噪声影响着图像的质量,那么对于CT进行预处理显得十分必要,CT图像去噪的目的是在去除噪声的尽可能地保留原始图像的重要特征,另外对图像进行去噪声处理对于图像的分割、检测都有着十分重要的意义。

图像去噪声处理是图像增强中的必要步骤,图像增强分为空间域法和频域法,空间域法中的滤波增强机理就是在待处理的图像中利用空域模板进行图像处理,包括中值滤波法、邻域平均法、噪声消除法等,频域法主要是通过构造低通滤波器滤除代表图像信号的高频分亮,保留低频分量,来改善图像质量。

1.Contourlet变换的构造

小波理论近年来发展迅速,小波变换的特点包括:低熵性、多分辨率性、去相关性、基函数选择灵活。由于自身良好的时频特性在图像去噪邻域取得良好的去噪效果,医学图像对于图像细节的保留有很高的要求,但是因小波方向性不足,对图像细节保留的更高要求不能满足。2002年M. N. Do等[3,4]提出了一种新的图像二维表示方法:Contourlet变换。Contourlet变换是多尺度几何分析方法中十分重要的一种方法,它可以很好地满足曲线的各向异性尺度关系,能够很好地抓住图像的几何结构特性,并且可以有效地实现图像局部的、多方向的、多分辨率的展开,提供了二维图像信号的稀疏表示。

Contourlet变换主要包拉普拉斯金字塔滤波器P(LP,Laplacian Pyramid)和方向滤波器组(DFB,Direetional Filter Bank)两部分。LP分解主要是对原始信号进行了低通滤波和下采样,得到了低频和高频部分,其中高频部分是原始信号

数字图像处理实验四图像几何变换

课程名称数字图像处理与分析 实验序号实验4 实验项目图像几何变换 实验地点 实验学时实验类型 指导教师实验员 专业班级 学号姓名 2017年9月25日

成绩: 教 师 评 语

三、实验软硬件环境 装有MATLAB软件的电脑 四、实验过程(实验步骤、记录、数据、分析) 1、图片比例缩放 代码: I=imread('11.jpg'); J=imresize(I,1.25); J2=imresize(I,1.25,'bicubic'); imshow(I); figure,imshow(J); figure,imshow(J2); Y=imresize(I,[100150],'bilinear');%Y=imresize(I,[mrows ncols],method)---返回一个指定行列的图像。若行列比与原图不一致,输出图像将发生变形。 figure,imshow(Y) %nearest,bilinear,bicubic为最近邻插值、双线性插值、双三次插值方法。默认为nearest。 运行结果: 分析:由实验结果可知,实现了图片放大和缩小的效果。 2、图像旋转 代码:

J=imrotate(I,32,'bilinear');%J=imrotate(I,angle,method,’crop’)------crop用于剪切旋转后增大的图像部分,返回和原图大小一样的图象。 imshow(I); figure,imshow(J) 运行结果: 分析:由实验结果可知,实现了图片旋转的效果 3、图像剪切 代码:

J=imcrop(I); figure(1),imshow(I);title('yuantu'); figure(2),imshow(J);title('croptu') J1=imcrop(I,[604010090]);%对指定区域进行剪切操作figure(3),imshow(J1);title('croptu2'); 运行结果: 运行代码后,出现如下界面,选中要裁剪的区域,双击被选中的区域 出现以下界面:

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

医学图像变换

第四章 医学图像变换 在医学图像处理与分析中广泛应用着各种图像变换技术,它们是图像处理与分析的重要工具之一,通过各种图像变换来转换图像的表示域以及表示数据,给后续的图像处理工作带来极大的方便。图像变换是一种为了达到某种目的而对图像使用的一种数学操作,经过图像变换后的图像将能够更方便、更容易地被处理和操作,因此图像变换在图像增强、图像复原、图像编码、特征抽取等方面有着广泛的应用。例如,傅立叶变换可使处理分析在频域中进行,使运算更简便;某些图像经过变换后往往能反映出图像的灰度结构特征,从而更便于分析;还有许多变换可使变换后的能量集中在少数数据上,从而便于实现数据压缩、图像传输和存储等等方面。 在实际的图像处理中,图像变换可以看作是一个数学问题,即对原图像函数寻找一个合适的变换核,但本质上来说,图像变换有着深刻的物理背景。常用的图像变换方法主要有:傅立叶变换、余弦变换、小波变换、哈达玛变换、K —L 变换、哈尔变换、斜变换等。由于傅立叶变换和小波变换目前应用的较为普遍,并且在理论上也比较重要,所以本章将重点讨论这两种图像变换形式。 第一节 傅立叶变换 傅立叶变换是一种正交变换,它广泛地应用于很多领域,从某种意义上说,傅立叶变换就是函数的第二种描述语言,掌握了傅立叶变换,人们就可以在空域和频域中同时思考处理问题的方法。由于它不仅能把空间域中复杂的卷积运算转化为频率域中的乘积运算,还能在频率域中简单而有效地实现增强处理和进行特征抽取,因而在图像处理中也得到了广泛的应用。 一、一维傅立叶变换 一维连续信号的傅立叶正变换和反变换的数学表达式如下: dx e x f u F ux j ?∞ ∞--=π2)()( (4.1) du e u F x f ux j ?∞ ∞-=π2)()( (4.2)

灰度图像处理及颜色模型转换

灰度图像处理程序代码代码 1.二值图像 function erzhi_Callback(hObject, eventdata, handles) % hObject handle to erzhi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能转换为二值图像','转换失败'); else j=im2bw(x); imshow(j); end 2.图像腐蚀 function fushi_Callback(hObject, eventdata, handles) % hObject handle to fushi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能进行图像腐蚀','失败'); else j=im2bw(x); se=eye(5); bw=bwmorph(j,'erode'); imshow(bw); 3.创建索引图像 function chuanjian_Callback(hObject, eventdata, handles) % hObject handle to chuanjian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能创建索引图像','创建失败'); else y=grayslice(x,16); axes(handles.axes2); imshow(y,jet(16)); end 4.轮廓图

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

数字图像处理复习题

第一章绪论 一.选择题 1. 一幅数字图像是:( ) A、一个观测系统 B、一个有许多像素排列而成的实体 C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 2. 半调输出技术可以:( ) A、改善图像的空间分辨率 B、改善图像的幅度分辨率 C、利用抖动技术实现 D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 3. 一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( ) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。 4. 图像中虚假轮廓的出现就其本质而言是由于:( ) A、图像的灰度级数不够多造成的 B、图像的空间分辨率不够高造成 C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃,图像中的虚假轮廓最易在平滑区域内产生。 5. 数字图像木刻画效果的出现是由于下列原因所产生的:() A、图像的幅度分辨率过小 B、图像的幅度分辨率过大 C、图像的空间分辨率过小 D、图像的空间分辨率过大 提示:图像中的木刻效果指图像中的灰度级数很少 6. 以下图像技术中属于图像处理技术的是:()(图像合成输入是数据,图像分类输出 是类别数据) A、图像编码 B、图像合成 C、图像增强 D、图像分类。 提示:对比较狭义的图像处理技术,输入输出都是图像。 解答:1.B 2.B 3.A 4.A 5.A 6.AC 二.简答题 1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2. 什么是图像识别与理解? 3. 简述数字图像处理的至少3种主要研究内容。 4. 简述数字图像处理的至少4种应用。 5. 简述图像几何变换与图像变换的区别。 解答: 1. ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。③图像的几何变换:改变图像的大小或形状。④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将

数字灰度图像的基本运算处理 正文讲解

1前言 介绍一种用可视化数值计算软件MATLAB实现的数字图像处理系统平台,系统使用MATLAB中提供的GUI设计系统可视化的用户界面,下拉式的菜单方便用户选择对图像的处理。用户可以随意选择要处理的图片。但是该系统只支持灰度图片,可实现内容主要包括灰度图像的代数运算、几何运算。基于数字图像处理的一些基本原理,利用MATLAB 设计程序进行对灰度图像的处理。有部分处理运算有很多种方法,我选择了最简单、最明了的方法。 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。 随着计算机的发展,图像处理技术在许多领域得到了广泛应用,用于图像处理的软件也很多,如PHOTOSHOP、PAINTSHOP、GIMP、SaperaProcessing、MATLAB等,其中大部分软件都是基于广告策划和图像修饰处理而设计的应用软件,进行图像处理时并不是很方便。而MATLAB(矩阵实验室) 它在矩阵运算上有自己独特的特点,在矩阵运算处理具有很大的优势,因此用MATLAB处理数字图像非常的方便。不仅如此,MATLAB提供了丰富的图形命令和图形函数,而且其面向对象的图形系统具有强大的用户界面(GUI)生成能力。这样,用户就可以充分利用系统提供的 GUI 特性,编写自己需要的图形界面,从而可以高效地进行图像处理。 MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以对图像进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

Contourlet变换

Contourlet 变换 针对小波变换的缺点,2002年M.N.Do 和M.Vetterli 提出了一种“真正的”二维图像的表示方法—Contourlet 变换。 Contourlet 变换将尺度分析和方向分析分开进行。首先,采用拉普拉斯金字塔变换(Laplacian Pyramid ,LP ) 对图像进行多尺度分解,以捕获奇异点;然后,对每一级金字塔分解的带通分量用方向滤波器组(Directional Filter Bank ,DFB )进行多方向分解,将同方向的奇异“点”合成“线”,这样LP 分解得到的带通图像传递到DFB 后能获得不同方向的子带图像,经过迭代Contourlet 变换可将图像分解为多个尺度多个方向上的子带图像。因此有必要介绍Contourlet 变换多方向分解的实现过程。 Do 和Vetterli 提出了一种DFB 算法。该DFB 算法采用扇型QFB ,无需对原始信号进行调制,并且采用简单的树型结构就可以得到完美的频率划分。其思想是将扇型QFB 与可以实现“旋转”的图像重采样相结合,获得楔型频率划分。由于重构可以看成是分解的对偶过程,因此这里着重介绍分解的实现过程。 1 2 3 图2.2 DFB 的前两层分解结构 图2.2所示给出了DFB 的前两层分解结构,在每一层中都使用了扇型QFB ,其中,黑色区域表示扇型滤波器组的理想频率支撑区域。在第一层和第二层分别选用0Q 和1Q 作为采样矩阵,所以两层的总采样矩阵可以表示为0122Q Q I ,即在每一维完成二取一的下采样操作,就可以得到一个四个方向的频率子带,如图2.3所示:

(0 ω 图2.3 DFB 四个方向频率子带 在Contourlet 变换中所使用的方向滤波器组是通过对双通道五点梅花形滤波器组进行修剪操作,从结构上形成一种L 级的二叉树,在每个尺度上具有2L 个楔形的高频子带。 我们可以将一个L 级方向滤波器组的二叉树结构看作一个具有2L 个并行通道的滤波器组,每个通道由等效分析滤波器i E 、等效合成滤波器i D 和组合采样矩阵i S 组成,如图2.4所示: ?x 图2.4 等效分析滤波器 因为Contourlet 变换基的支撑区间是随尺度变化的“长条形”结构,基函数的形状可以拉伸,并且拉伸的方向是可以改变的,这样使其拥有良好的各向异性,可以捕捉图像中的光滑线段,故对于图像边缘的方向和纹理信息的表达具有一定的优势。Contourlet 变换将多尺度分解和方向分解分开进行,因此在不同尺度上可以实现不同数目的方向分解,从而它能更灵活的实现多尺度和多方向分解。从分析可知,Contourlet 变换具有更好的多分辨率、局部性、方向性和各向异性的优点,能更加有效地捕获图像的边缘信息。

数字图像的灰度处理简述

数字图像的灰度处理 数字图像处理的目的和意义: 图象处理着重强调的是在图象之间进行的各种变换,对图象进行各种加工以改善图象的视觉效果。在图象的灰度处理中,增强操作、直方图及图象间的变换是实现点操作的增强方式,又被称作灰度变换。本文主要介绍了一些数字图像灰度处理的方法,其中图象取反是实现图象灰度值翻转的最直接的方法;灰度切分可实现强化某一灰度值的目的。对直方图进行均衡化修正,可使图象的灰度间距增大或灰度均匀分布、增大反差,使图象的细节变得清晰。 数字图像处理是20世纪60年代初期所形成的一门涉及多领域的交叉学科。所谓数字图像处理,又称为计算机图像处理,就是指用数字计算机及其它有关的数字硬件技术,对图像施加某种应算和处理,从而达到某种预期的目的。在大多数情况下,计算机采用离散的技术来处理来自连续世界的图像。实际上图像是连续的,计算机只能处理离散的数字图像,所以要要对连续图像经过采样和量化以获得离散的数字图像。 数字图像处理中图像增强的目的是改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,使图像与视觉响应特性相匹配。而通过改变图像的灰度以期达到一种很好的视觉效果是图像增强的一种手段。灰度变换的目的是为了改善画质,使图像显示效果更加清晰。 图像的点应算是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。一幅输入图像经过点应算后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。图像的点应算可以有效的改变图像的直方图分布,以提高图像的分辨率和图像的均衡。点应算可以按照预定的方式改变一幅图像的灰度直方图。除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点应算可以看作是“从像素到像素”的复制操作。如果输入图像为A(x,y),

用matlab实现图像灰度变换课程设计

课程设计报告册 课程名称: MATLAB课程设计 课题名称:灰度变换增强 专业班级: 姓名: Bob Wang 学号: 15164 课程设计主要场所:信息楼220 时间: 指导教师:成绩:

前言 数字图像处理技术是20世界60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或变成以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。 MATLAB是一种以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的要求,与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。我们学习掌握MATLAB,也可以说是在科学工具上与国际接轨。

目录 一、课程设计目的 (2) 二、设计任务及容 (2) 三、课题设计实验条件 (3) 四、涉及知识 (3) 五、具体设计过程及调试 (4) 5.1、图像的读入和显示 5.1.1、打开图像 (4) 5.1.2、显示原图像 (5) 5.1.3、图像灰度处理 (7) 5.1.4、显示灰阶后图像 (8) 5.2、直方图均衡化 5.2.1、生成直方图 (10) 5.2.2、直方图均衡化 (12) 5.3、灰度变换 5.3.1、线性变换 (9) 5.3.2、分段线性变换 (9) 5.3.3、非线性变换.................................... (9) 六、心得体会 (17) 七、参考文献 (18) 八、程序清单 (19)

基于Contourlet 变换的稳健性图像水印算法

基于Contourlet 变换的稳健性图像水印算法 摘要:提出了基于Contourlet 变换的数字图像水印算法。与小波变换不同的是,Contourlet 变换采用类似于线段 (contour segment)的基得到一种多分辨、局部化、方向性的图像表示。水印信号通过基于内容的乘性方案加载 到Contourlet 变换系数。在采用零均值广义高斯分布拟合Contourlet 变换系数的基础上,提出采用极大似然估计 实现水印的盲检测。依据Neyman-Pearson 准则,在给定虚警率的情况下对判决准则进行了优化。实验结果表明 在保证水印隐蔽性的前提下,水印对常见的信号处理手段以及几何变换具有很好的稳健性。关键词:数字水印;Contourlet 变换;广义高斯分布;极大似然检测;Neyman-Pearson 准则 Robust image watermarking algorithm based on contourlet transform Abstract: A novel robust watermarking algorithm in Contourlet domain was proposed. The Contourlet transform was adopted by virtual of its advantages over the wavelet transform. A flexible multiresolution, local, and directional image expansion was obtained using contour segments. The watermark was inserted through content-adaptive multiplicative embedding. The Contourlet coefficients were modeled as generalized Gaussian distribution (GGD) with zero mean. Then the maximum likelihood watermark detection method was developed. Under the Neyman-Pearson criterion, the decision rule was optimized by minimizing the probability of missing the watermark for a given false detection rate. Experimental results demonstrate that the proposed algorithm is invisible, and robust to signal processing. Key words: digital watermarking; Contourlet transform; generalized Gaussian distribution; maximum-likelihood detection; Neyman-Pearson criterion 1 引言 数字水印技术是近年来信号处理和信息安全领域的研究热点之一,其核心是在不影响数据可用性的前提下把不可移除的水印信号嵌入在待保护的原始信号中。水印信号可以完整地、正确地提取或检测出来,以解决所有权纠纷、盗版跟踪等问题。 常见的图像水印算法将水印信号镶嵌在图像变换(DCT、DFT 和DWT 等)后的系数中,利用相关检测判断水印存在与否[1,2]。基本原理阐述如下:计算可疑作品与水印信号之间的相关系数,通过事先设定的阈值T 判断可疑作品中是否存在相应的水印。一个典型的水印相关检测器由两部分构成:相关系数的计算和判决阈值的确定,如图 1 所示。可疑作品?I 与原始水印W 之间的相关系数的计算公式如式(1) 图1 数字水印相关检测器 可以证明,当嵌入水印的变换系数服从高斯分布时,基于相关的检测方法是最优的,

基于MATLAB的彩色图像灰度化处理

目录 第1章绪论............................................................................................................................ - 1 - 第2章设计原理.................................................................................................................... - 2 - 第3章彩色图像的灰度化处理............................................................................................ - 3 - 3.1加权平均法 .. (3) 3.2平均值法 (3) 3.3最大值法 (4) 3.4举例对比 (5) 3.5结果分析 (6) 第4章结论.......................................................................................................................... - 8 - 参考文献....................................................................................................... 错误!未定义书签。附录............................................................................................................................................ - 9 -

图像处理灰度变换实验

一. 实验名称:空间图像增强(一) 一.实验目的 1.熟悉和掌握利用matlab工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。 2.熟练掌握各种空间域图像增强的基本原理及方法。 3.熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。 4.熟悉直方图均衡化的基本原理、方法和实现。 二.实验原理 (一)数字图像的灰度变换 灰度变换是图像增强的一种经典而有效的方法。灰度变换的原理是将图像的每一个像素的灰度值通过一个函数,对应到另一个灰度值上去从而实现灰度的变换。常见的灰度变换有线性灰度变换和非线性灰度变换,其中非线性灰度变换包括对数变换和幂律(伽马)变换等。 1、线性灰度变换 1)当图像成像过程曝光不足或过度,或由于成像设备的非线性和图像记录设备动态范围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清,图像缺少层次。这时,可将灰度范围进行线性的扩展或压缩,这种处理过程被称为图像的线性灰度变换。对灰度图像进行线性灰度变换能将输入图像的灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。 2)令原图像f(x,y)的灰度范围为[a,b],线性变换后得到图像g(x,y),其灰度范围为[c,d],则线性灰度变换公式可表示为

a y x f b y x f a b y x f c c a y x f a b c d d y x g <≤≤>?????+---=),(),(),(, ,]),([,),( (1) 由(1)式可知,对于介于原图像f (x,y )的最大和最小灰度值之间的灰度值,可通过线性变换公式,一一对应到灰度范围[c,d]之间,其斜率为(d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值,令其分别恒等于变换后的最小和最大灰度值。变换示意图如图1所示。 图1 线性灰度变换示意图 当斜率大于一时,变换后的灰度值范围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值范围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。 3)由上述性质可知,线性灰度变换能选择性地加强或降低特定灰度值范围内的对比度,故线性灰度变换同样也可做分段处理:对于有价值的灰度范围,将斜率调整为大于一,用于图像细节;对于不重要的灰度范围,将图像压缩,降低对比度,减轻无用信息的干扰。最常用的分段线性变换的方法是分三段进行线性变换。 在原图像灰度值的最大值和最小值之间设置两个拐点,在拐点处,原图像的灰度值分别为r 1,r 2,该拐点对应的变换后的图像的灰度值分别为s 1,s 2,另外,取原图像灰度的最小值为r 0,最大值为r m ,对应的变换后的灰度值分别为s 0,s m 。

数字图像处理课程设计报告

本科综合课程设计报告 题 目 ____________________________ 指导教师__________________________ 辅导教师__________________________ 学生姓名__________________________ 学生学号__________________________ _______________________________ 院(部)____________________________专业________________班 ___2008___年 _12__月 _30__日 数字图像处理演示系统 信息科学与技术学院 通信工程 052

1 主要内容 1.1数字图像处理背景及应用 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 1.2 图像处理演示系统设计要求 能加载和显示原始图像,显示和输出处理后的图像; 系统要便于维护和具备可扩展性; 界面友好便于操作; 1.3 图像处理演示系统设计任务 数字图像处理演示系统应该具备图像的几何变换(平移、缩放、旋转、翻转)、图像增强(空间域的平滑滤波与锐化滤波)的简单处理功能。 1.3.1几何变换 几何变换又称为几何运算,它是图像处理和图像分析的重要内容之一。通过几何运算,可以根据应用的需要使原图像产生大小、形状、和位置等各方面的变化。简单的说,几何变换可以改变像素点所在的几何位置,以及图像中各物体之间的空间位置关系,这种运算可以被看成是将各物体在图像内移动,特别是图像具有一定的规律性时,一个图像可以由另外一个图像通过几何变换来产生。实际上,一个不受约束的几何变换,可将输入图像的一个点变换到输出图像中的任意位置。几何变换不仅提供了产生某些特殊图像的可能,甚至还可以使图像处理程序设计简单化。从变换性质来分可以分为图像的位置变换、形状变换等 1.3.2图像增强 图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”的信息,削弱或去除不需要的信息,以达到扩大图像中不同物体特征之间的差别,使处理后的图像对于特定应用而言,比原始图像更合适,或者为图像的信息提取以及其他图像分析技术奠定了基础。一般情况下,经过增强处理后,图像的视觉效果会发生改变,这种变化意味着图像的视觉效果得到了改善,某些特定信息得到了增强。

第9章Contourlet变换及其应用

Joint
超小波分析及应用
Prof. Jingwen Yan jwyan@https://www.360docs.net/doc/ac6379333.html,
https://www.360docs.net/doc/ac6379333.html,, https://www.360docs.net/doc/ac6379333.html,

第九章 Contourlet变换及其应用
9.1 Contourlet的原理
9.1.1 拉普拉斯金字塔(LP) 9.1.2方向滤波器(DFB) 9.1.3多尺度、多方向分解:塔型方向滤波器组
9.2 Contourlet的应用
9.2.1基于Contourlet变换的图像去噪 9.2.2 基于Contourlet变换的图像融合
9.3 基于Contourlet变换的图像增强
9. 3.1 构建NSCT 9.3.2 NSCT图形增强算法 9. 3.3 实验结果
Joint Laboratory of Shantou and Xiamen University, 2008
2

9.1 Contourlet的原理
Contourlet变换是用类似于轮廓段(Contour segment)的基结 构来逼近图像。基的支撑区间是具有随尺度变化长宽比的 “长 条形”结构,具有方向性和各向异性,Contourlet系数中,表 示图像边缘的系数能量更加集中,或者说Contourlet变换对于 曲线有更“稀疏”的表达。而二维小波是由一维小波张量积构建 得到,它的基缺乏方向性,不具有各向异性。只能限于用正方 形支撑区间描述轮廓,不同大小的正方形对应小波的多分辨率 结构。当分辨率变得足够精细,小波就变成用点来捕获轮廓, 两种变换对曲线的描述如图9.1所示。
Joint Laboratory of Shantou and Xiamen University, 2008
3

基于Contourlet的图像PCA去噪方法(精)

462007,43(21)ComputerEngineeringandApplications计算机工程与应用 基于Contourlet的图像PCA去噪方法 张久文,敦建征,孟令锋 ZHANGJiu-wen,DUNJian-zheng,MENGLing-feng 兰州大学信息科学与工程学院,兰州730000 SchoolofInformationScience&EngineeringofLanzhouUniversity,Lanzhou730000,ChinaE-mail:dunjzh04@lzu.cn ZHANGJiu-wen,DUNJian-zheng,MENGLing-feng.Contourletimagede-noisingbasedonprincipalcomponentanalysis.ComputerEngineeringandApplications,2007,43(21):46-48. Abstract:Thispaperproposesanewmethodwhichutilizesnoiseenergy,insteadofitsvariance,toperformimagede-noisingbasedonPrincipalComponentAnalysis(PCA)inContourletdomain.TheContourlettransformisanewextensionofthewavelettransformintwodimensions.Itsmainfeatureiscombiningnon-separabledirectionalfilterwithwaveletfilter.Mostoftheexistingmethodsforimagede-noisingrelyonaccurateestimationofnoisevariance.However,theestimationofnoisevarianceisveryhardinContourletdomain.Proposeanewmethodforimagede-noisingbasedontheContourlettransform.Experimentsinde-noisingthetypicalimageBarbarashowthattheperformanceoftheproposedmethodisobviouslysuperiorbothinvisionandinPSNR.Keywords:Contou

基于Contourlet变换和形态学的图像去噪方法

基于C ontou rlet变换和形态学的图像去噪方法33 杨 露1,23,苏秀琴1,陆 陶1,2,梁金峰1,2,张占鹏1,2 (1.中国科学院西安光学精密机械研究所,陕西西安710119;2.中国科学院研究生院,北京100039) 摘要:提出了一种C ontourlet变换与数学形态算子相结合的红外图像去噪方法。充分利用C ontourlet变换后系数的分布特性以及尺度内和尺度间的依赖性,结合数学形态算子的特点,利用数学形态算子对变换系数进行处理,使得重要变换系数与非重要变换系数分离,对非重要系数子集进行软阈值处理,然后再将两个子集合起来,进行逆变换重建。实验结果表明,与传统小波相比,该算法具有更好地去噪效果,同时更有效地保留了图像的细节信息。 关键词:图像去噪;C ontourlet变换;数学形态学;多尺度几何分析 中图分类号:TP391.41 文献标识码:A 文章编号:100520086(2008)1121558203 Im age d e2noising app ro ach b ased on contou rlet transform and morphology Y ANG Lu1,23,SU X iu2qin1,LU T ao1,2,LIANGJin2feng1,2,ZHANG Zhan2peng1,2 (1.X i′an Institute of Optics and Precision Mechanics,X i′an710119,China;2.G raduate School,Chinese Academy of Sciences,Beijing100039,China) Abstract:An image de2noising algorithm based on C ontourlet transform and mathematical m orphology was proposed.The statistics of the C ontourlet coefficients of an image were studied,the coefficients of C ontourlet transform of an image were manipulated by m orphological operator,and m orphological dilation was applied to extract the clustered significant coefficients in each subband,which result in the partition of each subband into significance clusters and insignificance space.Then,the smoothing image of the input image was using gotten the soft2thresholding method in insignificance space.Finally,two sub2 sets were combined and the image was reconstructed.The experimental results demonstrate that compared with the tradi2 tional wavelet transform,this algorithm can denoise effectively,and keep the detail information.The method can improve the signal2to2noise ratio. K ey w ords:image denoising;C ontourlet transform;mathematical morphology;multiscale geometric analysis 1 引 言 近年来,小波变换在信号处理中得到了广泛应用,主要是由于它们对一维分段光滑函数有良好的非线性近似效果,同时能将信号能量集中到少数小波系数上,而白噪声在任何正交基上的变换仍然是白噪声,相对而言,信号的小波系数必然大于那些能量分散且幅值较小的噪声的小波系数,因此只要选择一个合适的阈值,对小波系数进行阈值处理,就可以达到去除噪声保留信号的目的。小波阈值方法由于其简单有效性,在图像去噪中得到了广泛的应用[1,2]。然而,二维小波变换,是由一维小波变换直接用张量积扩展得到的,因此只具有有限的方向,无法用来最优表示含有线奇异点或者面奇异点的高维函数。所以小波变换不能充分利用数据本身所特有的几何特征,捕获图像中的边缘方向信息。2002年Do等人[3]提出了一种新的多尺度变换———C ontourlet变换。C ontonrlet变换是一种真正的图像二维表示方法,具有多分辨特性、局域性、方向性的优点。杨 [4]提出了一种基于层结构的C ontourlet多阈值去噪算法,将硬阈值算法与基于子带相关的图像去噪方法相结合,根据C ontourlet变换后各层分解的系数数目及噪声强度设定阈值,并利用硬阈值函数实现图像去噪。郭旭静[5]建立一种离散变换全相位C ontourle变换,在多级分解中利用全相位分级方法,使得分级方法在重建时只需要对低频图像内插,再与高频部分相加即可,计算量与拉普拉斯金字塔分解相比大大简化了,由于全相位内插的优异性能,在图像去噪中,性能优于原C ontourlet变换的结果。郭旭静[6]通过相关性强弱区分噪声与信号系数,并结合阈值方法,提出了一种非下采样C ontourlet 的尺度间相关的图像去噪新算法。利用信号和噪声在变换域内这种相关性的不同可区分系数的类别,进行取舍,达到分离噪声的目的。 本文在C ontourlet变换的基础上结合数学形态算子的特点提出一种新的图像去噪算法。新的算法用数学形态膨胀算子对图像变换后的系数进行处理,以去除噪声,保留边缘信号,将处理后的变换系数用于图像重构,得到去噪后的图像。 光电子?激光 第19卷第11期 2008年11月 Journal of Optoelectronics?Laser Vol.19No.11 Nov.2008 3 收稿日期:2007207216 修订日期:2008202227  3 E2m ail:yanglu.6314@https://www.360docs.net/doc/ac6379333.html,

相关文档
最新文档